Persistent
_ocation

Inge Li Gortz

Data Structures and

Planar

Point

Parsistent

Ephemeral

Partial
persistence

Data Structures

Full
persistence

Confluent
persistence

Pearsistent Data Structures

Partial Full Confluent
Ephemeral persistence persistence persistence
!
!
!
update and
query last

version

Pearsistent Data Structures

Partial Full Confluent
Ephemeral persistence persistence persistence

C
i
r®

| :
s ()
© e
updatl and upzate

query last
version

Pearsistent Data Structures

Partial Full
Ephemeral persistence persistence

| (v)
g () (v2) (Vs)

OROROENO
@ Qg update and query all

l

l

!
& | &
[

update and update
query last
version

DO —=0C

Confluent
persistence

Pearsistent Data Structures

Partial Full
Ephemeral persistence persistence

| ¢ -
q () (v2) (Vs)

OROROENO
@ Qg update and query all

l

l

!
& | &
[

update and update
query last
version

DO —=0C

Confluent
persistence

update, query and
combine all versions

Simple methods for making data structures persistent

Simple methods for making data structures persistent

 Structure-copying method. Create a copy of the data structure each time it is
changed. Slowdown of €2(n) time and space per update to a data structure of
size n.

Simple methods for making data structures persistent

 Structure-copying method. Create a copy of the data structure each time it is
changed. Slowdown of €2(n) time and space per update to a data structure of
size n.

- Store a log-file of all updates. In order to access version i, first carry out i
updates, starting with the initial structure, and generate version i. Overhead of
Q2(i) time per access, O(1) space and time per update.

Simple methods for making data structures persistent

 Structure-copying method. Create a copy of the data structure each time it is
changed. Slowdown of €2(n) time and space per update to a data structure of
size n.

- Store a log-file of all updates. In order to access version i, first carry out i
updates, starting with the initial structure, and generate version i. Overhead of
Q2(i) time per access, O(1) space and time per update.

- Hybrid-method. Store the complete sequence of updates and additionally
each k-th version for a suitably chosen k. Result: Any choice of k causes
blowup In either storage space or access time.

Overview

 Partial persistence.
« Fat node method.

- Node copying
 Full persistence. Main idea.

* Algorithmic applications

Partial Persistence

Fat node method

Fat node method

 Associate set c(x) for each location in memory x.

D(x): data structure containing c(x)

Fat node method

 Associate set c(x) for each location in memory x.

- c(xX)={<t,v>: x modified in version t, x has value v after construction of version t}

D(x): data structure containing c(x)

Fat node method

 Associate set c(x) for each location in memory x.

- c(xX)={<t,v>: x modified in version t, x has value v after construction of version t}

D(x): data structure containing c(x)

« Query q(t,x): Find largest version number t’ in t such that t’< t. Return value
associated with t’ in D(x).

Fat node method

 Associate set c(x) for each location in memory x.

- c(xX)={<t,v>: x modified in version t, x has value v after construction of version t}

D(x): data structure containing c(x)

« Query q(t,x): Find largest version number t’ in t such that t’< t. Return value
associated with t’ in D(x).

- Update (create new version m): If memory locations x1,...,xk modified to the
values vi,...vk: Insert <m,vi> in D(x).

Fat node method

 Implementation of D(x):

Fat node method

 Implementation of D(x):

- Balanced binary search tree:

Fat node method

 Implementation of D(x):
- Balanced binary search tree:

» query O(log |c(x)|) = O(log m), m number of versions.

Fat node method

 Implementation of D(x):
- Balanced binary search tree:
» query O(log |c(x)|) = O(log m), m number of versions.

- Update: O(1)

Fat node method

 Implementation of D(x):
- Balanced binary search tree:
» query O(log |c(x)|) = O(log m), m number of versions.
- Update: O(1)
- Extra space: O(1)

Fat node method

 Implementation of D(x):
- Balanced binary search tree:
» query O(log |c(x)|) = O(log m), m number of versions.
- Update: O(1)
- Extra space: O(1)

- y-fast trie:

Fat node method

 Implementation of D(x):
- Balanced binary search tree:
» query O(log |c(x)|) = O(log m), m number of versions.
- Update: O(1)
- Extra space: O(1)
- y-fast trie:

 query: O(loglog m)

Fat node method

 Implementation of D(x):

- Balanced binary search tree:
» query O(log |c(x)|) = O(log m), m number of versions.
- Update: O(1)
- Extra space: O(1)

- y-fast trie:
 query: O(loglog m)
 update: expected O(loglog m)
 Extra space: O(1)

Fat node method

« Linked data structures:

 each pointer field store many time value
pairs.

* new node created by ephemeral update:
create new node and mark all fields with Value

version i. null 2
4)&» null
. 10
14

 Auxiliary array keep pointer to root of
each version.

Fat node method example

Fat node method example

Fat node method example

Fat node method example

Fat node method example

Fat node method example

Fat node method example

Fat node method example

Fat node method example

Fat node method

* Driscoll, Sarnak, Sleator, Tarjan, 1989.

* Any data structure can be made partially persistent with slowdown

O(log m) for queries and O(1) for updates. The space cost is O(1) for each
ephemeral memory modification.

* Any data structure can be made partially persistent on a RAM with
slowdown O(loglog m) for queries and expected slowdown O(loglog m) for
updates. The space cost is O(1) for each ephemeral memory modification

Partial Persistence

Node copying method

Node copying method

* Linked data structure with bounded
indegree p, p = O(1). |t

- Each node has p predecessor pointers +
p + 1 extra fields.

 Auxiliary array to keep pointer to root of
each version

(field name, version)

Partially persistent balanced search trees via node
copying

- One extra pointer field in each node enough
- Extra pointers: tagged with version number and field name.

« When ephemeral update allocates a new node you allocate a new node as
well.

- When the ephemeral update changes a pointer field:
- if the extra pointer is empty use it, otherwise copy the node.
- Try to store pointer to the new copy in its parent.
- If the extra pointer at the parent is occupied copy the parent.....

- Maintain array of roots indexed by timestamp.

Node copying example

1

2

3

4

5

6

10

Node copying example

3

4

5

6

10

Node copying example

3

4

5

6

10

Node copying example

1 2 3

4

5

6

10

Node copying example

1 2 3

4

5

6

10

Node copying example

1 2 3 4

5

6

10

~—

Node copying example

1 2 3 4

5

6

10

7/ ~—

Node copying example

1 2 4 5 6 7 8 10
’(IA// ~

12 12\

W L2 X
ull
AR
. y null
22

Node copying example

1 2 4 5 6 7 8 10
; | -~ N\
Yo T~
12 (12
w o2 Y
ull
W [24X
. y null
22

Node copying example

null

1 2 4 5 6 7 8 10
N
12 12\
e | ¥
7 q ¥

Node copying example

1 2 3 4 5 6 14 8 9 110
AN

T~
12 /12
O Ly
; (20 (200
1 %

Node copying example

1 2 4 5 6 7 8 9 10
S
12 12\
W L2 xRy
(20 (20
W (R4)/

null

Node copying example

1 2 4 5 6 7 8 9 10
K/A// \\ 1
12 12\
Ry
(20 (200
i %

null

Node copying example

1 2 3 4 5 6 14 8 9 110
AN

K/A// ~ \ l
12 (12
SR
: (20 (200
1 xladX %

Node copying example

1 2 4 5 6 7 9 10
K/A// \\ L
12 (12
S
4 (20 (20
Y %
(1) (18X [z
AW Y IX %

Node copying example

1 2 4 5 6 7 9 10
K/A// \\ L pd
12 (12
S
4 (20 (20
Y %
(1) (18X [z
AW Y IX %

Node copying example

T~
12 /12
S
; (20 (20
AR 4
(1) (18X [z
Y M

Node copying example

1 2 3 4 5 6 7 8 9 10
yi s ~_ \ 1)
¥~ ~
12 12
NE
ull
ull
] D\ (20N [0
A)
null
null null

Node copying example

1 2 3 4 5 6 7 8 9 | 10
Vi Z ~1 N\ l Z ~
¥, ~\ T~
A A
W o2 Y N
ull \ >

YT (N (2 20

al
<
L
N
<]
&
o<
-

Partially persistent BST with node copying

* Analysis:
* Time slowdown:
« access: O(1)
 updates: O(1) amortized
- Extra space: O(1) amortized
- O(1) for new nodes also created by ephemeral data structure

- O(1) amortized space for nodes created when a node is full. Proof uses
potential analysis (next time).

Partially Persistent Data Structures

* Driscoll, Sarnak, Sleator, Tarjan, 1989.

* Any bounded-degree linked data structure can be made partially persistent
with (worst-case) slowdown O(1) for queries, amortized slowdown O(1) for
updates, and amortized space cost O(1) per memory modification.

-ull Persistence

Fat node method

Version tree

Version tree

 Version tree: partial order. 0

Version tree

 Version tree: partial order.

Version tree

 Version tree: partial order.

* Tree color problem:

Version tree

 Version tree: partial order.
* Tree color problem:

- AddLeaf(v, c): Add leaf u as child of v, with
color(u)=c.

Version tree

 Version tree: partial order.

* Tree color problem:

- AddLeaf(v, c): Add leaf u as child of v, with
color(u)=c.

- Lookup(v, c): Find nearest ancestor of v with
color c.

Version tree

 Version tree: partial order.

* Tree color problem:

- AddLeaf(v, c): Add leaf u as child of v, with
color(u)=c.

- Lookup(v, c): Find nearest ancestor of v with
color c.

* Fully persistent array:

Version tree

 Version tree: partial order.

* Tree color problem:

- AddLeaf(v, c): Add leaf u as child of v, with
color(u)=c.

- Lookup(v, c): Find nearest ancestor of v with
color c.

* Fully persistent array:

- Store(A, |, X, t): Set AJi]l=x at time t
~ AddLeaf(t, i), value v = x.

Version tree

 Version tree: partial order.

* Tree color problem:

- AddLeaf(v, c): Add leaf u as child of v, with
color(u)=c.

- Lookup(v, c): Find nearest ancestor of v with
color c.

* Fully persistent array:

- Store(A, |, X, t): Set AJi]l=x at time t
~ AddLeaf(t, i), value v = x.

« Access(A, i, 1): Lookup value AJ[i] at time t
~ Lookup(t, i)

Version tree and version list

- Euler tour: L(T) = (v1, v, v3, V7, V7, V3, V4, V4, Ve, Ve, V2, V5, V8, Vg, V5, V1’)

« Partition list for each color:

« L(1) = (v1, Vo, V3, V7, V7, V3, V4, V4, (V6, V6'), e
(v2’, Vs, Vs, Vs, V5, V1’)

()
* L() =(v1), (v2), (v3, v7, V7, v3), (V4, Va),

(Ve, Ve, V2, V5, V8, Vg, V5, V1’) @ @ @
« L(3) = (v1, V2, V3, V7, V7, V3, Va, V&', Ve, Ve, V2), @{

(vs), (vs, Vg), (V5', V1)
* Predecessor data structure for each color to find right sublist.

e Maintaining order in a list problem: O(1) time.

Fully Persistent Data Structures

* Driscoll, Sarnak, Sleator, Tarjan, 1989.

- Any data structure can be made fully persistent with slowdown O(log m)

for both queries and updates. The space cost is O(1) for each ephemeral
memory modification.

« Any bounded-degree linked data structure can be made fully persistent
with (worst-case) slowdown O(1) for queries, amortized slowdown O(1) for
updates, and amortized space cost O(1) per memory modification.

 Dietz, 1989. Any data structure can be made fully persistent on a RAM with
slowdown O(loglog m) for queries and expected slowdown O(loglog m) for
updates. The space cost is O(1) for each ephemeral memory modification.

Algorithmic Applications

Planar Point Location

 Planar point location. Euclidean plane subdivided into polygons by n line
segments that intersect only at their endpoints. Query: given a query point p

determine which polygon that contains p.

- Measure algorithm by three parameters:
* Preprocessing time
* Query time

- Space

Planar point location: Example

From slides by H. Kaplan

™~

AN

Planar point location:

—Xxample

I\

/

/

Planar Point Location

 Within each slab the lines are totally
ordered.

« Search tree per slab containing the lines
at the leaves with each line associate the
polygon above it.

 Another search tree on the x-coordinates
of the vertical lines.

* query
- find appropriate slab

« search the search tree of the slab to
find the polygon

<

e
A
\
/

Planar Point Location

* One search tree for each slab:

* Query time:

« Space:

Planar Point Location

* One search tree for each slab:
* Query time:
« O(log n)

« Space:

Planar Point Location

* One search tree for each slab:
* Query time:
« O(log n)
« Space:
.« Q(n?)

Planar Point Location

* One search tree for each slab:
* Query time:
« O(log n)
« Space:
.« Q(n?)

NN

Total # lines O(n), and number of lines in each slab is O(n).

Planar point location: Improve space bound

2

Lo

/

/SN

Planar point location: Improve space bound

- Key observation: The lists of the lines in
adjacent slabs are very similar.

~

Z

Lo

/

/SN

Planar point location: Improve space bound

- Key observation: The lists of the lines in
adjacent slabs are very similar.

* Create the search tree for the first slab.

~

—

Z

Lo

/

/SN

Planar point location: Improve space bound

- Key observation: The lists of the lines in
adjacent slabs are very similar.

* Create the search tree for the first slab.

- Obtain the next one by deleting the
lines that end at the corresponding
vertex and adding the lines that start at
that vertex.

~

—

Z

\2<
\

/

/

- Key observation: The lists of the lines in
adjacent slabs are very similar.

* Create the search tree for the first slab.

- Obtain the next one by deleting the
lines that end at the corresponding
vertex and adding the lines that start at
that vertex.

« Number of insertions/deletions?

~

—

Z

Planar point location: Improve space bound

\2<
\

/

/

- Key observation: The lists of the lines in
adjacent slabs are very similar.

* Create the search tree for the first slab.

- Obtain the next one by deleting the
lines that end at the corresponding
vertex and adding the lines that start at
that vertex.

 Number of insertions/deletions? 2n

~

—

Z

Planar point location: Improve space bound

\2<
\

/

/

- Key observation: The lists of the lines in
adjacent slabs are very similar.

* Create the search tree for the first slab.

- Obtain the next one by deleting the
lines that end at the corresponding
vertex and adding the lines that start at
that vertex.

 Number of insertions/deletions? 2n

» Use partially persistent search tree. x-
axis is time.

~

—

Planar point location: Improve space bound

Z\

\2<
\

/

/

Planar Point Location

- Sarnak and Tarjan. Sweep line + partially persistent binary search tree:
* Preprocessing time: O(n log n)
* Query time: O(log n)
- Space O(n)

- To get linear space: Balanced binary search tree with worst case O(1) memory
modifications per update.

