ashing

» Dictionaries

« Chained Hashing

 Universal Hashing

- Static Dictionaries and Perfect Hashing

Philip Bille

ashing

- Dictionaries

 Chained Hashing

 Universal Hashing

- Static Dictionaries and Perfect Hashing

Dictionaries

- Dictionary problem. Maintaina set S ¢ U = {0, ..., u-1} supporting
- lookup(x): return true if x € S and false otherwise.
- insert(x): set S = S u {x}
« delete(x): set S = S - {x}

- Think universe size u = 254 or 2%2and [S| « u.

- Satellite information. We may also have associated satellite information for each key.

« Goal. A compact data structure (linear space) with fast operations (constant time).

Dictionaries

« Applications.
« Maintain a dictionary (!)

- Key component in many data structures and algorithms. (Examples in exercises
and later lectures).

Dictionaries

« Which solutions do we know?

ashing

« Chained Hashing

Chained Hashing

- Simplifying assumption. |S| < N at all times and we can use space O(N).
« Chained hashing [Dumey 1956].

+ Pick some crazy, chaotic, random function h (the hash function) mapping U to {0,
..., N-1}.

* Initialize an array A[Q, ..., N-1].
- AJi] stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

- Example.
- U={0, ..., 99}
- S={1,16, 41, 54, 66, 96}
* h(x) =x mod 10

A

Satellite info

¥

41

——>

54

66

96

16

Chained Hashing

« Operations. How can we support lookup, insert, and delete?

« Lookup(x): Compute h(x). Scan through list for h(x). Return true if x is in list and
false otherwise.

* Insert(x): Compute h(x). Scan through list for h(x). If x is in list do nothing.
Otherwise, add x to the front of list.

« Delete(x): Compute h(x). Scan through list for h(x). If x is in list remove it.
Otherwise, do nothing.

« Time. O(1 + length of linked list for h(x))

Chained Hashing

« Hash functions. A crazy, chaotic hash function (like h(x) = x mod 10) sounds good,
but there is a big problem.

« For any fixed choice of h, we can find a set whose elements all map to the same
slot.

« = We end up with a single linked list.

« How can we overcome this?

« Use randomness.
« Assume the input set is random.
« Choose the hash function at random.

Chained Hashing

« Chained hashing for random hash functions.

« Assumption 1. h: U = {0, ..., N-1} is chosen uniformly at random from the set of
all functions from U to {0, ..., N-1}.

« Assumption 2. h can be evaluated in constant time.

« What is the expected time for an operation OP(x), where OP = {lookup, insert,
delete}?

Chained Hashing

Time for OP(x) = O (1 + E [length of linked list for h(x)])
=01+ E[{y €S| h(y) =h(z)}])

) (1 if h(y) = h(z)
O<1+EL§<0 ifh@);éh(x)D
) (1 if h(y) = h(z)
0<1+ZE <\0 ifh(y);éh(x)])

yesS
= O(1+ Z Prlh(x) = h(y)])

yes
—0(1+1+ Z Prlh(z) = h(y)])

yeS\{z} '\
=01 +1+ Z L/N) N2 choices for pair (h(x), h(y)),
yeS\{z} N of which cause collision

—O(14+1+N(1/N)) =0(1)

Ve

Chained Hashing

« Theorem. With a random hash function (under assumptions 1 + 2) we can solve the
dictionary problem in

« O(N) space.

* O(1) expected time per operation (lookup, insert, delete).

« Expectation is over the choice of hash function.
« Independent of the input set.

Random Hash Functions

« Random hash functions. Can we efficiently compute and store a random function?

« We need u log N bits to store an arbitrary function from {0,..., u-1} to {0,..., N-1}
(specify for each element x in U the value h(x)).

* We need a lot of random bits to generate the function.
« We need a lot of time to generate the function.

Random Hash Functions

« Do we need a truly random hash function?

« When did we use the fact that h was random in our analysis?

Time for OP(z) = O (1 + E [length of linked list for h(z)])
=01+ E[{y €S| h(y) =h(z)}])

B (1 if h(y) = h(z)
O<1+E ygzsio ifh(y)yéh(x)D

B (1 if h(y) = h(z)
_O<1+ZE 10 ifh(y);éh(x)D

yes

— O(1+1+ N(1/N)) = O(1)

Random Hash Functions

« We do not need a truly random hash function!
« We only need: For all x # vy, Pr[h(x) = h(y)] < 1/N
 Captured in definition of universal hashing.

ashing

 Universal Hashing

Universal Hashing

« Universel hashing [Carter and Wegman 1979].
+ Let H be a set of functions mapping U to {0, ..., N-1}.
« His universal if for any x2y in U and h chosen uniformly at random in H,
Pr[h(x) = h(y)] < 1/N

 Universal hashing and chaining.
- If we can find family of universal hash functions such that
* we can store it in small space
« we can evaluate it in constant time
« = efficient chained hashing without special assumptions.

Universal Hashing

« Positional number systems. For integers x and p, the base-p representation of x is x
written in base p.

- Example.
* (10)10=(1010)2 (1-23+0-22+1-27+0-29)
* (107)10=(212)7 2:72+1-71 +2-79)

Universal Hashing

- Hash function. Given a prime N < p < 2N and a = (a1az...ar)p, define
ha(X = (X1X2...Xr)p) = @1X1 + @2X2 + ... + arXr mod p
« Example.
e p=7
- a=(107)10=(212)7
X = (214)10 = (424)7
haX)=2-4+1-2+2-4mod7=18mod7 =4

« Universal family.
* H={ha|a=(a1a2...a)p € {0, ..., p-1}'}
* Choose random hash function from H ~ choose random a.
* H is universal (next slides).
- O(1) time evaluation.
« O(1) space.

 Fast construction (find suitable prime).

Universal Hashing

- Lemma. Let p be a prime. For any a € {1, ..., p-1} there exists a unique inverse a™’
suchthata’ - a=1 mod p. (Zp is a field)

- Example.p=7

Universal Hashing

« Goal. For random a = (aiaz...ar)p, show that if x = (X1x2...X1)p # Y = (Y1y2...yr)p then
Pr[ha(X) = ha(y)] < 1/N

* (X1X2...Xr)p 2 Y = (Y1Y2...¥r)p = Xi # yi for some i. Assume wlog. that xr # yr.

Prihe((z1...20)p) = ha((Y1 -+, Yr)p)]

=Priaiz1 + -+ arzr = a1y1 + - - + a,y, mod p

= Pr :arwr — QrYr = a1y1 — 171 + 0+ Qr_1Yr—1 — Gr_1ZTr—1 Mod p] existence of inverses
= Prla;(xr —yr) =a1(y1 —21) + -+ ar—1(yr—1 — Tr—1) mod p|

= Pr [ar(zr —yp)(xr —)" = (a1 (y1 — @1) + -+ + ar—1(yr—1 — 1)) (zr — y») " mod p]

1
= Pr [CLT =(a1(y1 —x1)+ -+ ar—1(yr—1 — Tr—1)) (2 — yr)_l mod p} =<

!
J

p choices for ar, exactly one causes a collision by uniqueness of inverses.

Universal Hashing

« Lemma. H is universal with O(1) time evaluation and O(1) space.

- Theorem. We can solve the dictionary problem (without special assumptions) in:
« O(N) space.
* O(1) expected time per operation (lookup, insert, delete).

Other Universal Families

« Forprimep>0,ae{1, .., p-1}, b e {0, ..., p-1}

hap(x) = (ax 4+ b mod p) mod N
H=A{hgp|aec{l,...,p—1},b€{0,...,p—1}}

« Hash function from k-bit numbers to |-bit numbers. a is an odd k-bit integer.

| most significant bits of the k least significant bits of ax

ha(z) = (az mod 2) > (k — 1) -
H = {h, | a is an odd integer in {1,...,2% —1}}

ashing

- Static Dictionaries and Perfect Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set S ¢ U ={0,..,u-1} of size N for preprocessing
support the following operation

 lookup(x): return true if x € S and false otherwise.

- As the dictionary problem with no updates (insert and deletes).

-+ Set given in advance.

Static Dictionaries and Perfect Hashing

- Dynamic solution. Use chained hashing with a universal hash function as before =
solution with O(N) space and O(1) expected time per lookup.

« Can we do better?

« Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

« Perfect hash function in O(N) space and O(1) evaluation time = solution with
O(N) space and O(1) worst-case lookup time. (Why?)

» Do perfect hash functions with O(N) space and O(1) evaluation time exist for any
set S?

Static Dictionaries and Perfect Hashing

« Goal. Perfect hashing in linear space and constant worst-case time.
 Solution in 3 steps.

-+ Solution 1. Collision-free but with too much space.

+ Solution 2. Many collisions but linear space.

« Solution 3: FKS scheme [Fredman, Komlos, Szemerédi 1984]. Two-level solution.
Combines solution 1 and 2.

- At level 1 use solution with lots of collisions and linear space.
* Resolve collisions at level 1 with collision-free solution at level 2.

* lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in
level 2 dictionary.

Static Dictionaries and Perfect Hashing

« Solution 1. Collision-free but with too much space.

- Use a universal hash function to map into an array of size N°. What is the expected
total number of collisions in the array?

E[#collisions| = E

x,yeS,x#y [
N\ 1 N? 1
= Z Prh(x):h(y)]:(2>m§7 m_l/Q
T,yE€S,T#Y = -
#distinct pairs Universal hashing into N2 range

« With probability 1/2 we get perfect hashing function. If not perfect try again.
+ = Expected number of trials before we get a perfect hash function is O(1).

- = For a static set S we can support lookups in O(1) worst-case time using O(N?)
space.

Static Dictionaries and Perfect Hashing

- Solution 2. Many collisions but linear space.
+ As solution 1 but with array of size N. What is the expected total number of

collisions in the array?

E[#collisions] = E

if h(y) = h(x

if h(y) # h(x)

if h(y) = h(az)]

if h(y) # h(x)

wl = (5) < = /2N

Static Dictionaries and Perfect Hashing

- Solution 3. Two-level solution.
At level 1 use solution with lots of collisions and linear space.
* Resolve each collisions at level 1 with collision-free solution at level 2.

« lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level
2 dictionary.

« Example.
- S={1, 16, 41, 54, 66, 96}
* Level 1 collision sets:
- S1={1, 41},
- Sy = {54}, 4
- Se = {16, 66, 96} 5

* Level 2 hash info stored with subtable. s —> 16 96 66

- (size of table, multiplier a, prime p) 7
« Time. O(1) j
- Space?

Static Dictionaries and Perfect Hashing

« Space. What is the the total size of level 1 and level 2 hash tables?

0
— 12 1 > 41 1
space = O <N+ Z |S;]) 2
1€{0,...,N—1}

3

#collisions = O(N) 4 —»| 54
5

|S.| 6 > 16 96 66

#collisions = | Z (21 > ,
1€{0,....N—1} 8
9

For any integer a, a? = a + 2(3)

— T

ol -o{v ()

_ <N+zs+22(5')> O(N + N +2N) = O(N)

Static Dictionaries and Perfect Hashing

« FKS scheme.
* O(N) space and O(N) expected preprocessing time.
« Lookups with two evaluations of a universal hash function.

- Theorem. We can solve the static dictionary problem for a set S of size N in:
* O(N) space and O(N) expected preprocessing time.
« O(1) worst-case time per lookup.

* Multilevel data structures.

« FKS is example of multilevel data structure technique. Combine different
solutions for same problem to get an improved solution.

ashing

» Dictionaries

« Chained Hashing

 Universal Hashing

- Static Dictionaries and Perfect Hashing

