
Philip Bille

Hashing

• Dictionaries

• Chained Hashing

• Universal Hashing

• Static Dictionaries and Perfect Hashing

Hashing

• Dictionaries

• Chained Hashing

• Universal Hashing

• Static Dictionaries and Perfect Hashing

• Dictionary problem. Maintain a set S ⊆ U = {0, ..., u-1} supporting

• lookup(x): return true if x ∈ S and false otherwise.

• insert(x): set S = S ∪ {x}

• delete(x): set S = S - {x}

• Think universe size u = 264 or 232 and |S| ≪ u.

• Satellite information. We may also have associated satellite information for each key.

• Goal. A compact data structure (linear space) with fast operations (constant time).

Dictionaries

• Applications.

• Maintain a dictionary (!)

• Key component in many data structures and algorithms. (Examples in exercises

and later lectures).

Dictionaries

• Which solutions do we know?

Dictionaries

Hashing

• Dictionaries

• Chained Hashing

• Universal Hashing

• Static Dictionaries and Perfect Hashing

• Simplifying assumption. |S| ≤ N at all times and we can use space O(N).

• Chained hashing [Dumey 1956].

• Pick some crazy, chaotic, random function h (the hash function) mapping U to {0,
..., N-1}.

• Initialize an array A[0, ..., N-1].

• A[i] stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

• Example.

• U = {0, ..., 99}

• S = {1, 16, 41, 54, 66, 96}

• h(x) = x mod 10

41 1

54

66 96 16

1

2

3

0

4

5

6

7

8

9

A Satellite info

Chained Hashing

• Operations. How can we support lookup, insert, and delete?

• Lookup(x): Compute h(x). Scan through list for h(x). Return true if x is in list and

false otherwise.

• Insert(x): Compute h(x). Scan through list for h(x). If x is in list do nothing.

Otherwise, add x to the front of list.

• Delete(x): Compute h(x). Scan through list for h(x). If x is in list remove it.

Otherwise, do nothing.

• Time. O(1 + length of linked list for h(x))

Chained Hashing

• Hash functions. A crazy, chaotic hash function (like h(x) = x mod 10) sounds good,
but there is a big problem.

• For any fixed choice of h, we can find a set whose elements all map to the same

slot.

• ⇒ We end up with a single linked list.

• How can we overcome this?

• Use randomness.

• Assume the input set is random.

• Choose the hash function at random.

Chained Hashing

• Chained hashing for random hash functions.

• Assumption 1. h: U → {0, ..., N-1} is chosen uniformly at random from the set of

all functions from U to {0, ..., N-1}.

• Assumption 2. h can be evaluated in constant time.

• What is the expected time for an operation OP(x), where OP = {lookup, insert,
delete}?

Chained Hashing

Chained Hashing

N2 choices for pair (h(x), h(y)),
N of which cause collision

Time for OP(x) = O (1 + E [length of linked list for h(x)])

= O (1 + E [|{y 2 S | h(y) = h(x)}|])

= O

0

@1 + E

2

4
X

y2S

(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

3

5

1

A

= O

0

@1 +
X

y2S

E

"(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

#1

A

= O(1 +
X

y2S

Pr[h(x) = h(y)])

= O(1 + 1 +
X

y2S\{x}

Pr[h(x) = h(y)])

= O(1 + 1 +
X

y2S\{x}

1/N)

= O(1 + 1 +N(1/N)) = O(1)

• Theorem. With a random hash function (under assumptions 1 + 2) we can solve the
dictionary problem in

• O(N) space.

• O(1) expected time per operation (lookup, insert, delete).

• Expectation is over the choice of hash function.

• Independent of the input set.

Chained Hashing

• Random hash functions. Can we efficiently compute and store a random function?

• We need u log N bits to store an arbitrary function from {0,..., u-1} to {0,..., N-1}

(specify for each element x in U the value h(x)).

• We need a lot of random bits to generate the function.

• We need a lot of time to generate the function.

Random Hash Functions

• Do we need a truly random hash function?

• When did we use the fact that h was random in our analysis?

Random Hash Functions

For all x 6= y, Pr[h(x) = h(y)]  1/N

Time for OP(x) = O (1 + E [length of linked list for h(x)])

= O (1 + E [|{y 2 S | h(y) = h(x)}|])

= O

0

@1 + E

2

4
X

y2S

(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

3

5

1

A

= O

0

@1 +
X

y2S

E

"(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

#1

A

= O(1 +
X

y2S

Pr[h(x) = h(y)])

= O(1 + 1 +
X

y2S\{x}

Pr[h(x) = h(y)])

= O(1 + 1 +
X

y2S\{x}

1/N)

= O(1 + 1 +N(1/N)) = O(1)

• We do not need a truly random hash function!

• We only need: For all x ≠ y, Pr[h(x) = h(y)] ≤ 1/N

• Captured in definition of universal hashing.

Random Hash Functions

Hashing

• Dictionaries

• Chained Hashing

• Universal Hashing

• Static Dictionaries and Perfect Hashing

• Universel hashing [Carter and Wegman 1979].

• Let H be a set of functions mapping U to {0, ..., N-1}.

• H is universal if for any x≠y in U and h chosen uniformly at random in H,

• Pr[h(x) = h(y)] ≤ 1/N

• Universal hashing and chaining.

• If we can find family of universal hash functions such that

• we can store it in small space

• we can evaluate it in constant time

• ⇒ efficient chained hashing without special assumptions.

Universal Hashing

• Positional number systems. For integers x and p, the base-p representation of x is x
written in base p.

• Example.

• (10)10 = (1010)2 (1⋅23 + 0⋅22 + 1⋅21 + 0⋅20)

• (107)10 = (212)7 (2⋅72 + 1⋅71 + 2⋅70)

Universal Hashing

• Hash function. Given a prime N < p < 2N and a = (a1a2…ar)p , define

ha(x = (x1x2…xr)p) = a1x1 + a2x2 + ... + arxr mod p

• Example.

• p = 7

• a = (107)10 = (212)7

• x = (214)10 = (424)7

• ha(x) = 2⋅4 + 1⋅2 + 2⋅4 mod 7 = 18 mod 7 = 4

• Universal family.

• H = {ha | a = (a1a2…ar)p ∈ {0, ..., p-1}r}

• Choose random hash function from H ~ choose random a.

• H is universal (next slides).

• O(1) time evaluation.

• O(1) space.

• Fast construction (find suitable prime).

Universal Hashing

• Lemma. Let p be a prime. For any a ∈ {1, ..., p-1} there exists a unique inverse a-1
such that a-1 ⋅ a ≡ 1 mod p. (Zp is a field)

• Example. p = 7

Universal Hashing

a 1 2 3 4 5 6
a-1

a 1 2 3 4 5 6
a-1 1 4 5 2 3 6

• Goal. For random a = (a1a2…ar)p, show that if x = (x1x2…xr)p ≠ y = (y1y2…yr)p then
Pr[ha(x) = ha(y)] ≤ 1/N

• (x1x2…xr)p ≠ y = (y1y2…yr)p ⟹ xi ≠ yi for some i. Assume wlog. that xr ≠ yr.

Universal Hashing

p choices for ar, exactly one causes a collision by uniqueness of inverses.

existence of inverses

Pr[ha((x1 . . . xr)p) = ha((y1 . . . , yr)p)]

= Pr [a1x1 + · · ·+ arxr ⌘ a1y1 + · · ·+ aryr mod p]

= Pr [arxr � aryr ⌘ a1y1 � a1x1 + · · ·+ ar�1yr�1 � ar�1xr�1 mod p]

= Pr [ar(xr � yr) ⌘ a1(y1 � x1) + · · ·+ ar�1(yr�1 � xr�1) mod p]

= Pr

⇥
ar(xr � yr)(xr � yr)

�1 ⌘ (a1(y1 � x1) + · · ·+ ar�1(yr�1 � xr�1))(xr � yr)
�1

mod p

⇤

= Pr

⇥
ar ⌘ (a1(y1 � x1) + · · ·+ ar�1(yr�1 � xr�1))(xr � yr)

�1
mod p

⇤
=

1

p

 1

N

• Lemma. H is universal with O(1) time evaluation and O(1) space.

• Theorem. We can solve the dictionary problem (without special assumptions) in:

• O(N) space.

• O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

• For prime p > 0, a ∈ {1, .., p-1}, b ∈ {0, ..., p-1}

• Hash function from k-bit numbers to l-bit numbers. a is an odd k-bit integer.

Other Universal Families

ha,b(x) = (ax + b mod p) mod N

H = {ha,b | a 2 {1, . . . , p� 1}, b 2 {0, . . . , p� 1}}

ha(x) = (ax mod 2

k
)� (k � l)

H = {ha | a is an odd integer in {1, . . . , 2k � 1}}

l most significant bits of the k least significant bits of ax

Hashing

• Dictionaries

• Chained Hashing

• Universal Hashing

• Static Dictionaries and Perfect Hashing

• Static dictionary problem. Given a set S ⊆ U = {0,..,u-1} of size N for preprocessing
support the following operation

• lookup(x): return true if x ∈ S and false otherwise.

• As the dictionary problem with no updates (insert and deletes).

• Set given in advance.

Static Dictionaries and Perfect Hashing

• Dynamic solution. Use chained hashing with a universal hash function as before ⟹
solution with O(N) space and O(1) expected time per lookup.

• Can we do better?

• Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

• Perfect hash function in O(N) space and O(1) evaluation time ⟹ solution with

O(N) space and O(1) worst-case lookup time. (Why?)

• Do perfect hash functions with O(N) space and O(1) evaluation time exist for any

set S?

Static Dictionaries and Perfect Hashing

• Goal. Perfect hashing in linear space and constant worst-case time.

• Solution in 3 steps.

• Solution 1. Collision-free but with too much space.

• Solution 2. Many collisions but linear space.

• Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution.

Combines solution 1 and 2.

• At level 1 use solution with lots of collisions and linear space.

• Resolve collisions at level 1 with collision-free solution at level 2.

• lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in

level 2 dictionary.

Static Dictionaries and Perfect Hashing

• Solution 1. Collision-free but with too much space.

• Use a universal hash function to map into an array of size N2. What is the expected

total number of collisions in the array?

Static Dictionaries and Perfect Hashing

E[#collisions] = E

2

4
X

x,y2S,x6=y

(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

3

5

=

X

x,y2S,x6=y

E

"(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

#

=

X

x,y2S,x6=y

Pr[h(x) = h(y)] =

✓
N

2

◆
1

N

2
 N

2

2

· 1

N

2
= 1/2

#distinct pairs Universal hashing into N2 range

• With probability 1/2 we get perfect hashing function. If not perfect try again.

• ⟹ Expected number of trials before we get a perfect hash function is O(1).

• ⟹ For a static set S we can support lookups in O(1) worst-case time using O(N2)

space.

• Solution 2. Many collisions but linear space.

• As solution 1 but with array of size N. What is the expected total number of

collisions in the array?

Static Dictionaries and Perfect Hashing

E[#collisions] = E

2

4
X

x,y2S,x6=y

(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

3

5

=

X

x,y2S,x6=y

E

"(
1 if h(y) = h(x)

0 if h(y) 6= h(x)

#

=

X

x,y2S,x6=y

Pr[h(x) = h(y)] =

✓
N

2

◆
1

N

 N

2

2

· 1

N

= 1/2N

• Solution 3. Two-level solution.

• At level 1 use solution with lots of collisions and linear space.

• Resolve each collisions at level 1 with collision-free solution at level 2.

• lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level

2 dictionary.

• Example.

• S = {1, 16, 41, 54, 66, 96}

• Level 1 collision sets:

• S1 = {1, 41},

• S4 = {54},

• S6 = {16, 66, 96}

• Level 2 hash info stored with subtable.

• (size of table, multiplier a, prime p)

• Time. O(1)

• Space?

Static Dictionaries and Perfect Hashing

41

54

1

2

3

0

4

5

6

7

8

9

16 96 66

1

• Space. What is the the total size of level 1 and level 2 hash tables?

Static Dictionaries and Perfect Hashing

space = O

0

@N +
X

i2{0,...,N�1}

|Si|2
1

A

#collisions =

X

i2{0,...,N�1}

✓
|Si|
2

◆

#collisions = O(N)

For any integer a, a2
= a + 2

�a
2

�

space = O

N +

X

i

|Si|2
!

= O

N +

X

i

✓
|Si| + 2

✓
|Si|
2

◆◆!

= O

N +

X

i

|Si| + 2
X

i

✓
|Si|
2

◆!
= O(N + N + 2N) = O(N)

41

54

1

2

3

0

4

5

6

7

8

9

16 96 66

1

• FKS scheme.

• O(N) space and O(N) expected preprocessing time.

• Lookups with two evaluations of a universal hash function.

• Theorem. We can solve the static dictionary problem for a set S of size N in:

• O(N) space and O(N) expected preprocessing time.

• O(1) worst-case time per lookup.

• Multilevel data structures.

• FKS is example of multilevel data structure technique. Combine different

solutions for same problem to get an improved solution.

Static Dictionaries and Perfect Hashing

Hashing

• Dictionaries

• Chained Hashing

• Universal Hashing

• Static Dictionaries and Perfect Hashing

