
Philip Bille

External Memory

• Computationals models

• Shortest path in implicit grid graphs

• RAM algorithm

• I/O algorithms

• Cache-oblivious algorithm

External Memory

• Computationals models

• Shortest path in implicit grid graphs

• RAM algorithm

• I/O algorithms

• Cache-oblivious algorithm

• iPad Air 2.

• A8X Chip (triple-core ARMv8-A)

• L1 cache: 64 KB instruction + 64 KB data per core

• L2 cache: 2 MB

• L3 cache: 4 MB

• Memory: 2 GB

• Disk: 16 GB SSD

Computational Models

CPU L
1

L
2

R
A
M

Disk

• Word RAM model.

• Infinite memory of cells.

• Read/write a cell.

• Arithmetic and boolean operations (+,-,/,=,<,>,&,|,…)

• Cost.

• Time complexity = number of operations.

Computational Models

CPU
R
A
M

CPU
R
A
M Disk

I/O

Computational Models

• I/O model [Aggarwal and Vitter 1988].

• Limited memory + infinite disk

• I/O operation = read/write consecutive block of B cells between memory and

disk.

• Arithmetic and boolean operations (+,-,/,=,<,>,&,|,…) on cells in memory.

• Cost.

• I/Os = number of I/O operations.

• Computation is free (!)

N = problem size

M = memory size

B = block size

CPU
R
A
M Disk

I/O

Computational Models

• Cache-oblivious model [Frigo et al. 1999].

• Identical to I/O model except algorithms do not know M and B.

• Program in RAM model and analyze in I/O model.

• Assume optimal cache replacement strategy with full associativity.

• Properties.

• Efficient on one level of cache ⟹ efficient on all levels cache.

• Portable + self-tunable + simple.

N = problem size

M = memory size

B = block size

External Memory

• Computationals models

• Shortest path in implicit grid graphs

• RAM algorithm

• I/O algorithms

• Cache-oblivious algorithm

• Implicit grid graphs.

• Let S and T be strings of length n.

• The implicit grid graph for S and T is A 2D grid of (n+1) x (n+1) nodes.

• For each node an edge to neighbors to E, S, SE.

• E and S edges have weight 1.

• SE edge (i-1,j-1) to (i, j) has weight 0 if S[i] = T[j] and 1 otherwise.

Shortest Paths in Implicit Grid Graphs
a a an n

b
a

n

n
a

s

a

• Shortest paths in implicit grid graphs (SPIIG) problem.

• Input. Strings S and T of length n.

• Output. Length of shortest path from (0,0) to (n,n).

Shortest Paths in Implicit Grid Graphs
a a an n

b
a

n

n
a

s

a

• Applications.

• Shortest paths in implicit grid graphs is the edit distance problem.

• With other edge weight functions we get longest common subsequence,

sequence alignment, string similarity, approximate string matching, etc.

Shortest Paths in Implicit Grid Graphs

External Memory

• Computationals models

• Shortest path in implicit grid graphs

• RAM algorithm

• I/O algorithms

• Cache-oblivious algorithm

• How can we solve SPIIGG on a RAM?

• Dynamic programming algorithm.

• Construct (n+1) x (n+1) matrix.

• Fill in each entry in O(1) time in left-to-right top-to-bottom order.

• Time. O(n2)

• Space. O(n) (only store current + last row)

• Slightly faster solutions known [MP1980, Myers1999, CLZ2002, BFC2008]

RAM Algorithm
a a an n

b
a

n

n
a

s

a

a a an n

b
a

n

n
a

s

a

1 2 3 4 5 6
1 2 3 4 5 6
1 2 2 3 4 5
2 1 2 2 3 4
3 2 1 2 2 3
4 3 2 1 2 3
5 4 3 2 1 2

0
1
2
3
4
5
6

External Memory

• Computationals models

• Shortest path in implicit grid graphs

• RAM algorithm

• I/O algorithms

• Cache-oblivious algorithm

• Goal. Efficient external memory algorithms.

• I/O model.

• Solution 1. Converted RAM algorithm

• Solution 2. Table partitioning

• Cache-oblivious model.

• Solution 3. Recursive table partitioning

External Memory Algorithms

• Strings S and T stored consecutively in n/B blocks on disk.

• Algorithm.

• Do as RAM algorithm. Read and write blocks as necessary.

• I/Os. O(n2/B).

Solution 1. Converted RAM Algorithm

?

• Divide into subtables with overlapping boundaries.

• Algorithm. Process subtables from left-to-right, top-to-bottom order. For each

subtable:

• Read corresponding substrings and input boundary into internal memory

• Fill in subtable using RAM algorithm.

• Write output boundary to disk.

Solution 2. Table Partitioning

• How to choose subtable size?

• Make subtable dM x dM for d < 1 such that substrings + input boundary + output

boundary + space for internal memory algorithm on subtable < M.

• I/Os.

• Number of subtables = O(n2/M2).

• I/Os per subtable = O(M/B).

• ⟹ O(n2/M2 · M/B) = O(n2/MB)

Solution 2. Table Partitioning
• Theorem. We can solve SPIIGG in the I/O model in

• O(n2/MB + n/B) I/Os

• O(n2) time

• O(n) space

Solution 2. Table Partitioning

• How can we make solution 2 cache-oblivious?

• Challenge. We cannot use M and B.

• Idea. Use recursion to design algorithm that is good for all M and B.

Solution 2. Table Partitioning

• Algorithm.

• Divide table into 4 quadrants with overlapping boundaries.

• Process quadrants from left-to-right, top-to-bottom order. For each quadrant:

• Read corresponding substrings and input boundary.

• Fill in quadrant recursively.

• Write output boundary.

Solution 3. Recursive Table Partitioning

• I/Os.

• Define IO(n) = number of I/Os to process a table of size n x n

• Case 1: n ≤ dM (substrings + boundaries + computation fit in internal mem)

• IO(n) = O(n/B)

• Case 2: n > dM?

Solution 3. Recursive Table Partitioning

• Algorithm.

• Divide table into 4 quadrants with overlapping boundaries.

• Process quadrants from left-to-right, top-to-bottom order. For each quadrant:

• Read corresponding substrings and input boundary.

• Fill in quadrant recursively.

• Write output boundary.

Solution 3. Recursive Table Partitioning

O(1)

O(n/B)
4・ IO(n/2)

O(n/B)

• Case 1 + 2:

• ⟹ IO(n) = O(n2/MB)

Solution 3. Recursive Table Partitioning

IO(n) =

(
O(n/B) if n  dM

4 · IO(n/2) +O(n/B) if n > dM

• Theorem. We can solve SPIIGG in the cache-oblivious model in

• O(n2/MB + n/B) I/Os

• O(n2) time

• O(n) space

Solution 3. Recursive Table Partitioning

External Memory

• Computationals models

• Shortest path in implicit grid graphs

• RAM algorithm

• I/O algorithms

• Cache-oblivious algorithm

