Course 02158

Transition Systems

Hans Henrik Lgvengreen

DTU Compute

Implementation — Mono-processor

Processes

Memory CPU

Implementation — Multi-processor

O

Implementation — Distributed system

00

[Network

Shared Variables

var x,y :=0

a by
a b>
as b3

Shared Variables

var x,y :=0

ap x:=1 y =3 by

Shared Variables

var x :=0

ai x:=1 x:=3 b1

Atomic Actions

Idea
e Atomic = virtually indivisible
Definition
e Two actions, a and b, are mutually atomic iff
all b has the same effect as a; b or b; a

e A program has atomic actions if they are mutually atomic

e Assuming a to be atomic is denoted by (a)
Interleaving Model

e Assume that all actions a program are atomic:

Any (parallel) execution of the program corresponds to some sequential
interleaving of the atomic actions

Shared Variables

var x .= 0
ai x:=x+1 X:i=x—2 by
Shared Variables
var x .= 0
ai t, ' =X tp ' = X by
an ty=t;+1 tp =1t —2 bo

I
~
o
(op
w

as X = t, X !

Critical References

e A simple variable is held in a machine word

e Access to simple variables is assumed atomic on standard HW
e A critical reference is either:

» Reading a simple variable written by another process
» Writing a simple variable accessed by another process

e Access to non-simple variables counts for more critical references
Rule of Critical References

e S contains at most one critical reference = S is atomic

Shared Variables

var x .= 0

a t; = x th =x—2 by

ar x:=t,+1 X =ty b,

Transition Systems

e General mathematical model of discrete behaviour
Definitions

o A (labelled) transition system TS is a tuple (X,.A,T,sp), where:
is a set of states
is a set of actions (or labels)
C ¥ x A x X is the transition relation
€ X is the initial state
o (s,a,s')eT:
Action a can be executed in state s resulting in a new state s’

M

e For a given TS, this fact is usually written s — s’

e An execution of TS is a finite or infinite sequence

a a a
So 0)51 1)52 25 ..

where sg is the initial state and (s;, a;,s;+1) € T for every i.

Transition Diagrams

e AKA program graphs
e Each process is described by a graph with:

» Nodes representing control locations (with one being initial)
» Edges representing (conditional/guarded) action execution

a:B—S

e Branches are represented by using mutally exclusive guards
e Blocking can be represented by single conditional action edges

e All edges assumed to represent atomic actions

A set of concurrent transition diagrams generates a transition system

Transition Diagrams — Example

e var x,y : integer := 0;

Pli PQZ
() (k)
a1 X=y ay: =1
(W) (k)
bi: y:=x

Transition Graph

e Transition graph = transition relation of program transition system
e States: (x,y,m,m),
e Initial state: (0,0, lo, ko)

* a2

(0,0, /o,ko) - (0,1,/0,/(1)
a1 a1
Y ar Y
(0,0, /1,k0) > (0,1,/1,/(1) (1,1,/1,/(1)
by by by
Y a Y

2
(0,0, /2,/(0) —— (0,1,/2,/(1) (0,0, /2,/(1) (1,1,/2,/(1)

Textual Process Definitions

e Declaring top-level processes with the process keyword:

var x,y : integer;
x =1 y =2

process pi{x := y + 1}

process pi{y = x — 1}

e Usingco 51 || S2 || --. || Snoc
var x : integer := 1, y : integer := 2;
cox:=y+1]| y:=x—-1o0c

e Generalized forms:

process p[i in 1..n]{... ;sum := sum+ a[i];...}

co[iin 1l.n{...;a[] :=0;...}

