
Course 02158

Transition Systems

Hans Henrik Løvengreen

DTU Compute

Implementation — Mono-processor

CPUMemory

Processes



Implementation — Multi-processor

Implementation — Distributed system

Network



Shared Variables

var x , y := 0

a3 b3

a2 b2

a1 b1

Shared Variables

x := 1 y := 3

var x , y := 0

a1 b1



Shared Variables

x := 3x := 1

var x := 0

a1 b1

Atomic Actions

Idea

• Atomic = virtually indivisible

Definition

• Two actions, a and b, are mutually atomic iff

a ‖ b has the same effect as a; b or b; a

• A program has atomic actions if they are mutually atomic

• Assuming a to be atomic is denoted by 〈 a 〉
Interleaving Model

• Assume that all actions a program are atomic:

Any (parallel) execution of the program corresponds to some sequential
interleaving of the atomic actions



Shared Variables

x := x + 1 x := x − 2

var x := 0

a1 b1

Shared Variables

ta := ta + 1

x := ta

tb := tb − 2

x := tb

tb := xta := x

var x := 0

a3 b3

a2 b2

a1 b1



Critical References

• A simple variable is held in a machine word

• Access to simple variables is assumed atomic on standard HW

• A critical reference is either:
I Reading a simple variable written by another process
I Writing a simple variable accessed by another process

• Access to non-simple variables counts for more critical references

Rule of Critical References

• S contains at most one critical reference ⇒ S is atomic

Shared Variables

ta := x tb := x − 2

x := ta + 1 x := tb

var x := 0

a2 b2

a1 b1



Transition Systems

• General mathematical model of discrete behaviour

Definitions

• A (labelled) transition system TS is a tuple (Σ,A, T , s0), where:
Σ is a set of states
A is a set of actions (or labels)
T ⊆ Σ×A× Σ is the transition relation
s0 ∈ Σ is the initial state

• (s, a, s ′) ∈ T :
Action a can be executed in state s resulting in a new state s ′

• For a given TS , this fact is usually written s
a−→ s ′

• An execution of TS is a finite or infinite sequence

s0
a0−→ s1

a1−→ s2
a2−→ . . .

where s0 is the initial state and (si , ai , si+1) ∈ T for every i .

Transition Diagrams

• AKA program graphs

• Each process is described by a graph with:

I Nodes representing control locations (with one being initial)
I Edges representing (conditional/guarded) action execution

�
��
l

�
��
k
?
a : B → S

• Branches are represented by using mutally exclusive guards

• Blocking can be represented by single conditional action edges

• All edges assumed to represent atomic actions

• A set of concurrent transition diagrams generates a transition system



Transition Diagrams — Example

• var x , y : integer := 0;

�
��
l0

�
��
l1

�
��
l2

?

?
a1: x := y

?
b1: y := x

P1:

�
��
k0

�
��
k1

?

?
a2: y := 1

P2:

Transition Graph

• Transition graph = transition relation of program transition system

• States: (x , y , π1, π2),

• Initial state: (0, 0, l0, k0)

(0, 0, l0, k0)
?

(0, 0, l1, k0)
?
a1

(0, 1, l0, k1)-
a2

(1, 1, l1, k1)
?
a1

(1, 1, l2, k1)
?
b1

(0, 0, l2, k0)
?
b1

(0, 1, l1, k1)-
a2

(0, 0, l2, k1)
?
b1

(0, 1, l2, k1)-
a2



Textual Process Definitions

• Declaring top-level processes with the process keyword:

var x , y : integer ;

x := 1; y := 2;

process p1{x := y + 1}
process p1{y := x − 1}

• Using co S1 ‖ S2 ‖ . . . ‖ Sn oc

var x : integer := 1, y : integer := 2;

co x := y + 1 ‖ y := x − 1 oc

• Generalized forms:

process p[i in 1..n]{. . . ; sum := sum + a[i ]; . . . }
co [i in 1..n]{. . . ; a[i ] := 0; . . . }


