[Sync]

Mathematics and Coputer Science HHL 15-11-2016
Technical University of Denmark

Building 303B

DK-2800 Lyngby

Denmark

Hans Henrik Lgvengreen:

CONCURRENT PROGRAMMING PRACTICE 2

Synchronization Mechanisms
Version 1.5

In this note we present a number of mechanisms for synchronizing concurrent processes/threads
as they appear in current langauages and program libraries. Especially we show how the monitor
concept appears or can be implemented.

Contents
1 Introduction 1
2 Specification of synchronization problems 2
2.1 General semaphore 2
2.2 Barrier synchronization (N-synchronization) 2
2.3 Reader/writer synchronization 0L 3
3 Hoare Monitors 3
3.1 General Semaphore 3
3.2 N-synchronization 4
4 Pthreads 4
4.1 General Semaphoreo 5
4.2 N-synchronization 6
5 Java 7
5.1 General Semaphore 8
5.2 Barrier Synchronization L L Lo 8
5.3 Reader/writer Synchronzation oL 9
6 Win32 11
6.1 Generel semaphore Lo 12
6.2 N-synchronization 13
7 .NET and C# 14
7.1 Monitors L e 14
7.2 Other synchronization primitives 15
8 Ada95 16
8.1 General Semaphore Lo 16
8.2 N-synchronization 17
8.3 Reader/Writer 17
9 Rust 18

9.1 General Semaphore 19

(©2016 Hans Henrik Lgvengreen

ii

1 Introduction

In concurrent programs there will practically always be a need for synchronization of the pro-
cesses. By synchronization we generally understand any restriction of the execution of the
concurrent processes relative to one another.

Especially, synchronization is necessary when resources are shared by the concurrent processes.
Typically these resources are shared variables, but may also be other internal or external re-
sources.

All langauges, program libraries, and operating systems that provide concurrency also have to
offer some means of synchronization. Especially, it must be possible to establish the three basic
synchronization forms:

Mutual Exclusion. It must be possible to establish criticial regions, each consisting of a
number of critical sections executed under mutual exclusion.

Conditional Synchronization. It must be possible to let processes await the fulfilment
of (perhaps complex) conditions established by other processes.

True Synchronization. It must be possible to let two or more processes meet. This is
also known as barrier synchronization.

Often only a single synchronization primitive (eg. semaphores) is offered. This will then have to
be used for implementation of all three synchronization forms.

As a structured solution for the use of shared variables, Hoare and Brinch Hansen at the start
of the 1970’ies proposed the monitor concept.

A monitor is a program component that combines data abstraction, atomicity and synchroniza-
tion. A typical form is a class with implicit mutual exclusion among the operations of the class
and with an associated wait queue mechanism.

In the beginning of the 1980’ies the academic interest changed to communicating processes,
while practical use of shared variables continued to be handled by simple semaphore-like mech-
anisms. Thus, during the 1980’ies, the monitor concept was almost forgotten. This changed
in the beginning of the 1990’ies, where the concept was revived by being chosen as the main
synchronization mechnism in a number of widespread langauges and libraries such as Phtreads,
Ada, Java and C#.

In this note we are going to illustrate how different synchronization problems can be solved using
the synchronization mechanisms of a number of different languages and systems. Especially we
show how monitors appear or can be implemented.

It has been attempted to write the code is it would appear in the given system/language. For
library functions, C++ is usually used to emphasize data abstraction. Some places, but not
always, it has been tried to make the code robust towards exceptions etc. Not every piece of
program has been syntactically checked not to mention being tested!

For an introduction to the various languages and creation of processes and threads, see part I
of these notes [Lov13].

2 Specification of synchronization problems

Below, we describe a number of synchronization problems in the form of “abstract monitors”
where the operations are presented as one or more conditional atomic actions on the monitor
state.

2.1 General semaphore

Dijkstra’s classical general semaphore is assumed known:

monitor Sem;
var § : integer := 0;

procedure P :
(S >0—85:=85-1);

procedure V :
(S =841

end;

By changing the counter S to a data queue, the semaphore is generalized to a buffer.

2.2 Barrier synchronization (N-synchronization)

This mechanisms is supposed to let N processes meet (N > 0). We allow more than N processes
to call the mechanism, thus processes should be let pass in groups of N. Also, the mechanism
should be prepared for processes released to call the mechanism again.

monitor Meet;

var OK : boolean := false;
K : integer := 0;

procedure Sync :
(-OK — (K,0OK) .= (K+1,K = N—-1));
(OK - (K,0K) := (K —-1,K > 0))

end;

This specification is rather operational. The first atomic statement lets only the first N calls
through. After this, OK will remain true until all N processes have left Sync again. Then then
next group of N processes allowed to enter etc.

2.3 Reader/writer synchronization

A number of processes read or write some shared data. These readers and writers are assumed to
call StartRead/EndRead respectively StartWrite / EndWrite around their read /write-operations.
It must be ensured that no writers are active at the same time as other writers or readers.

We here chose to specify a solution that gives priority to writers. The number of active readers
are counted in R, W indicates whether a writer is active, and P denotes the number of pending
writers.

monitor ReadWrite;

var W : boolean := false;
R, P : integer := 0;
procedure StartRead :
(-WANP=0—R:=R+1)

procedure EndRead :
(R:=R-1)

procedure StartWrite :
(P:=P+1)
(R=0AN-W — (P,W) := (P —1,true))

procedure EndWrite :
(W = false)

end;

3 Hoare Monitors

Hoare’s original queue-semantics is is charactererized by the fact that a process that is woken
up by a signal immediately takes over the right to execute in the monitor and that the signalling
process has preference to reenter the monitor. In [And00], this is the signal and urgent wait
semantics. This semantics gives a very precise control of is is executing in the monitor. The
Hoare semantics is present in a few academic langauges like Pascal-Plus and Emerald. In [hoa]
you can find a Java package that implements Hoare-monitors.

3.1 General Semaphore

It is exploited that a process that has been woken up reenters the monitor before new ones:

monitor Sem;

var S : integer;
¢ : condition;

procedure P;
begin

if S = 0 then wait(c);
S =85-1
end;
procedure V;
begin
S =541
signal(c)
end;
begin
S =0
end;

3.2 N-synchronization

Again we exploit the fact that during a cascade wakeup, no new processes can enter the monitor.

monitor Meet;

var K : integer;
¢ : condition; — Common waiting queue

procedure Sync;

begin
K = K+1;
if K < N then wait(c);
K = K-—1,;
signal(c)
end;
begin
K =0
end;
4 Pthreads

Pthreads (POSIX threads) is a prescription for introduction of leight-weight processes (theads)
under the POSIX standardization work for Unix systems.

As described in Part I, Pthreads allows C routines to be started as concurrent threads.

For synchronization, threads may use a monitor-like critical region (of the type pthread_mutex_t)
to which condition queues (of the type pthread_mutex_t) may be associated. Regions and con-
dition queues must be initialized before they are used. The queue semantics is basically signal-
and-continue, but with some deviations from the standard semantics described in [And00].

Exclusive access to a critical region m is obtained by calling pthread_mutex_lock(m) at entry
and pthread_mutex_unlock(m) at exit. There are also versions with timeout. A critical region

is owned by the thread that has locked it and cannot be released by another thread. Further, a
thread cannot acquire a region that it has already acquired.

By calling pthread_cond_wait (¢, m), a thread starts waiting on condition queue ¢ atomically
with realeasing the region m. By calling pthread_cond_signal(c), at least one of the waiting
threads will be woken up and implicitly start to try to reenter the critical region. By call-
ing pthread_cond_broadcast(c), all waiting threads on ¢ will be woken up. These threads
participate on equal terms with external threads regarding (re)entry to the critial region.

There is no possibility of asking how many threads are waiting on a particular queue, but these
can be recorded exlicitly explicitly in monitor variables.

It may be noticed that condition queues in Pthreads are not in a fixed association with a
particular monitor, but rather attached to a monitor when the wait takes place. The enables
the use of condition queues for dynamically allocated waiting places in cases where one needs
detailed control of the the waiting processes. Examples can be found in [KSS96]

An idiosynchrasy in Pthreads is the notion of spurious wakeups. In order to enable certain low-
level multiprocessor implmentations of the operations, Phtread_cond_signal(¢) is defined to
wake up one or more threads on ¢. Even worse, most authors interpret the Pthreads standard
such that spurious wakeups may occur at any time, even when no thread signals the condition
queue. Thus, when designing a monitor, one has to cater for these spurious wakeups on condition
queues. This, for instance, makes the programming of N-synchronization rather complicated.

An introduction to Pthreads can be found in [NBF96]. For a very thorough presentation of
all aspects of programming with thread libraries, [KSS96] can be recommended. Another good
book mentioning a many good programming principles is [But97].

4.1 General Semaphore

Since a waiting thread may be woken up at any time, the P operation must check its condition
after wait.

#include <pthread.h>
class Sem {

pthread_mutex_t mutex;
pthread_cond_t queue;

int S;
public:

Sem() {
S = 0;
pthread_mutex_init(&mutex, null);
pthread_cond_init(&queue, null);
}

void P() {
pthread_mutex_lock(&mutex) ;

while (S == 0) pthread_cond_wait (&queue,&mutex) ;
S5=3
pthread_mutex_unlock(&mutex) ;

}

void VO {
pthread_mutex_lock(&mutex) ;
S++;
pthread_cond_signal (&queue) ;
pthread_mutex_unlock(&mutex) ;

Also, a destructor could be added to close down the mutex and queue in a proper manner.

It should be mentioned that Pthreads goes hand-in-hand with POSIX Semaphores that renders
it superflous to construct them as monitors.

4.2 N-synchronization

Due to the problem of spurious wakeups, each thread must check after each wait whether the
synchronization is about to take place. Hereby, it becomes critical that new threads may enter
the monitor during wakeups of the waiting threads. To cope with this, we introduce a “pre-
queue” where new, external threads are gathered while a synchronization is taking place. A
synchronization is started by setting a variable L to indicate how many threads are still to get
out the monitor. When all N threads are out of the way, the threads on the pre queue can be
allowed to proceed.

#include <pthread.h>
class Meet {
int K, L;

pthread_mutex_t mutex;
pthread_cond_t pre,ok;

public:
Meet () {
K = 0;
L = 0;

pthread_mutex_init(&mutex, null);
pthread_cond_init (&ok, null);
pthread_cond_init (&pre, null);

}

void Sync() {
pthread_mutex_lock(&mutex) ;
while (L > 0) pthread_cond_wait(&pre,&mutex) ;
K++:

’

if (K < N)

while (L == 0) pthread_cond_wait (&ok,&mutex) ;
else {

K = 0;

L =0N;

pthread_cond_broadcast (&ok) ;

}

L-—;

if (L == 0) pthread_cond_broadcast(&pre);
pthread_mutex_unlock(&mutex) ;

Alternatively, one may also make a solution where the processes wait on two alternating queues,
see [KSS96].

5 Java

In Java, threads are synchronized by syntactically supported critical regions. Every Java object
implicitly has an associated critical region. A critical section belonging to the region of an object
o is established using the synchronized construct:

synchronized (o) { critical section }

By declaring an operation (method) of a class as synchronized, a call of this operation for
a given object is automatically executed as a critical section of the region associated with the
object. If all the operations of a class are declared as synchronized, the objects of the class
hereby become monitors.

For conditional waiting within the critical sections, each object’s critical region has one and only
one anonymous wait queue (wait set). A thread enters the wait queue by calling the wait ()-
operation of the object!. As usual for condition queues, the critical region is released atomically
with the entrance to the wait queue.

Threads that wait on an objects wait queue can be woken up by call of the object’s notify()
and notifyAll () methods. A call of notify () will wake up exactly one arbitrary thread on the
wait queue, if any. A call of notifyAll () will wake up all threads on the queue. The notifying
thread continues without releasing the critical region. The woken threads will have to enter
the critical region again before continuing after the wait (). These threads participate on equal
terms with new threads in the race of getting access to the critical region.

The notify operations are only to be used within critical sections belonging to an object’s critical
region.

!During the wait, the thread may be “interrupted” by another process resulting in an InterruptedException.
Therefore this exception must be handled somewhere around the wait. If interruption is not used, it is often
caught immediately around the wait and is ignored.

It is also possible to wait with timeout by the call wait (millisec). A thread that waits using
timeout is not informed whether is was woken due to a notify operation or to timeout. Therefore,
it has to determine by itself whether a timeout has occurred or not.

It is not possible to ask how many threads are on the wait queue, nor whether it is empty or
not. If this information is needed, it has to be recorded in monitor variables.

As of Java 1.5, it is explicitly defined that waits may suffer from spurious wakeups as in Pthreads.
Therefore, after a wait, a Java thread cannot be sure whether it was woken due to a call of
notify/notifyAll, a timeout (if the wait is timed) or a spurious wakeup. Therefore, the
waiting condition should always be rechecked in Java monitores.

Note that most Java threading literature (including [And00]), has not yet been adapted to this
semantics.

5.1 General Semaphore

Even though spurious wakeups cannot occur in Java, a woken thread may still be overtaken by
a new, external thread. Thus, after the wait in the P-operation, it is necessary to check if the
semaphore value is still positive.

class Sem {
int S;

public Sem() {
S = 0;
}

public synchronized void P() {
while (S == 0) try {wait();} catch (InterruptedException e) {}
S--;

}

public void synchronized V() {
S++;

notify();
}
}

5.2 Barrier Synchronization
An attempt to utilize the notifyA11() operation:

class Meet {
int K;
public Meet() {

K = 0;
}

public synchronized void Sync() {

K++;
if (K < N)

try {wait();} catch (InterruptedException e) {3}
else {

K = 0;

notifyAll();

does not work. A spurious wakeup may take place at any time and make a tread leave the
barrier too early.

Instead, a flag OK may be used as in the abstract specification:

class Meet {

int K;
boolean OK = false;

public Meet() {
K = 0;
}

public synchronized void Sync() {
while (OK)
try {wait();} catch (InterruptedException e) {}
K++;
if (K ==1N) {
0K = true;
notifyAll();
}
while (!0K)
try {wait();} catch (InterruptedException e) {}
K--;
if (K == 0) {
OK = false;
notifyAll1();
}
}

Here, a leave phase is initiated by the last thread to arrive and new threads are held back at the
start of the method until all threads have left the barrier.

5.3 Reader/writer Synchronzation

When trying to solve the reader/writer problem one encounters the limitations of Java’s single
wait queue associated with each critical region. In particular, it is not possible to start readers

and writers separately. Instead, the following general scheme can be used: Each wait condition
is represented by a loop that waits as long as the condition is false. After each monitor operation
(that could possibly enable one of the wait conditions), notifyA11() is performed to ensure that
all waiting threads get a chance to evaluate their condition.

For the reader/writer problem, this general scheme results in:

class ReaderWriter {

int pending = 0; // pending writers
int reading = 0; // active readers
boolean writing = false; // writer active

public synchronized void StartRead() {
while (writing || pending > 0)
try {wait();} catch (InterruptedException e) {3}
reading++;

}

public synchronized void EndRead() {
reading--;
if (reading == 0)
notifyAll();
}

public synchronized void StartWrite() {
pending++;
while (reading > O || writing)
try {wait();} catch (InterruptedException e) {}
pending--;
writing = true;

}

public synchronized void EndWrite() {
writing = false;
notifyAll1();

}

Since StartRead and StartWrite do not affect the wait conditions positively they need not
perform notifyAll. Likewise, reading must be 0 before it is necessary to wake up anybody
from EndRead.

Even though the monitor this way has been slightly optimized, one may still risk that a great
number of readers are woken up after every writer just to realize that there are still pending
writers and wait again. This may put a strain on the monitor.

If one wants a fair solution to the reader/writer problem, it becomes very difficult to use the
above scheme. There are more advanced schemes using extra critical regions (see eg. [Lea99])
to implement separate wait queues. In such cases, however, it is recommended to use instead
a general Java implementation of a more sofisticated synchronization mechanism like Hoare
monitors as described in [hoa].

10

In [LB00] you can find a number of detailed examples covering many aspects of thread program-
ming in Java.

6 Win32

Win32 is the common application program interface (API) to the Windows operating system
family (Windows 95/98,/2000/ME/NT/CE).

Win32 offers among many other things, threads. As above, threads are light-weight processes
with a common address space. See Part 1.

For synchronization of threads there are a number of primitive synchronization objects:

e Mutex is a mechanism for mutual exclusion.
e Semaphore is a classical general semaphore.

e Event is a simple flag that may be awaited.

As a unique facility, in Win32 it is possible to wait atomically on all or on one of a set of these
synchronization objects.

Critical Regions

A critical region is created by CreateMutex (access, reserve,name), where access indicates ac-
cess rights, reserve indicates whether the region should be reserved initially and name is a global
name for the region. In our examples access and name ar e not use as indicated by null-values.
The operation returns a reference (HANDLE) that is used for identification of the region.

A critical region with reference m is reserved by WaitForSingleObject (m,timeout). 1 our
examples we do not use timeout indicated by the value INFINITE. The region is released with
ReleaseMutex(m). The region may be reserved several times by the same thread.

Mutex-regions may be shared among threads in different programs. For establishing critical re-
gions within a single program, Win32 offers a more efficient mechanism called CriticalSection
with the operations InitializeCriticalSection(cs), EnterCriticalSection(cs), and
LeaveCriticalSection(cs), where cis (the address of) a variable of the type CRITICAL_SECTION.

Semaphores

For conditional synchronization, Win32 offers Dijkstra’s classical, general counting semaphores.
A semaphore is created with CreateSemaphore (access, Sy, Smaz » naMe) where access indicate
access rights, sg is the initial value of the semaphore, s, is a possible upper limit (with
unknown semantics!) and name is a global name for the semaphore. The operations returns a
reference (HANDLE) to identify the semaphore.

A standard wait operation (P-operation) on a semaphore is made by Win32’s general wait
operation: WaitForSingleObject (s, timeout) where s is the semaphore reference. As for Mutex
wait, timeout can be set to INFINITE.

11

For signalling (V operation) on a semaphore one uses ReleaseSemaphore(s, n, [) that incre-
ments the semaphore s with n (n > 0). [is a result parameter in which one can get the old
value of the semaphore (not useful for very much).

No liveness properties are specified for semaphores and thus only weak fairness should be as-
sumed.

Events

FEvents are primitive flags on which threads may wait. An event flag can be created with auto-
reset or manual reset. Events are created with CreateEvent (access, manual , init , name) where
access are the access rights, manual is a boolean indicating whether the event should be of
the manual reset type, init is the initial value of the flag and name is the global name of the
event. The flag is set and reset by calling SetEvent(e) and ResetEvent (e) respectively. A
call of WaitForSingleEvent (e, timeout) will await that the event flag e becomes set. For an
auto-reset event, the flag is reset by the wait, for a manual reset event, the flag remains set.

Thus, events are just simple shared boolean variables and are as notoriously diffucult to use as
such. However, the atomic multi-wait of Win32 opens for controlled use of events as guards at
the entry to critical regions as described below.

Monitors
A monitor with non-waiting operations can be implemented as a class in which all operations
reserve and release a Mutex (or CriticalSection) associated with each object of the class.

As said above, waiting operations can be implemented by a combination of critical regions and
events. The idea is that each entry condition B in the abstract specification of the monitor
operations is represented by a event flag Ep which is set exactly when B holds. Now, by waiting
atomically on both the critical region m and the flag Fp it is ensured that the operation is
started atomically with B holding. Of course, this requires all monitor operations to maintain
the correspondence between the Bs and their associated event flags.

A fairly good description of the synchronization primitives in Win32 can be found in [Ric95].

6.1 Generel semaphore

As said, Win32 offers directly a classical semaphore. The below semaphore implementation is
thus only to illustrate the use of Mutex and Event for construction of a monitor.

class Sem {

int S;
HANDLE mutex, nonzero;

public:
Sem() {
= 0;

S

12

mutex = CreateMutex(null, false, null);
nonzero = CreateEvent(null, true, false, null); // Not set initially

}

void P() {
WaitForTwo (mutex,nonzero) ;
5—3
if (S == 0) ResetEvent(nonzero);
ReleaseMutex (mutex) ;

}

void VO {
WaitForSingleObject (mutex, INFINITE) ;
S++;

SetEvent (nonzero) ;
ReleaseMutex (mutex) ;

Here WaitForTwo is an auxiliary operation that makes a atomic wait on two synchronization
objects. It can be implemented using the multiple wait of Win32:

void WaitForTwo(Handle hi, h2) {
HANDLE handles[2];
handles[0] = hi;
handles[1] h2;
WaitForMultipleObjects(2,&handles, true, INFINITE);

6.2 N-synchronization

The meeting problem can be solved by counting the number of processes arrived and then wait
on a flush-event until all have arrived. To avoid that new processes interfere, the monitor
blocks for new processes using an ok guard during the sychronization.

class Meet {

int K;
HANDLE mutex, ok, flush;

public:
Meet () {
K = 0;
mutex = CreateMutex(null, false, null);
ok = CreateEvent (null, true, true, null); // Initially set
flush = CreateEvent(null, true, false, null); // Initially not set
}

void Sync() {
WaitForTwo (mutex,ok) ;
K++:

’

13

if (K < N) {
ReleaseMutex (mutex) ;
WaitForTwo (mutex,flush);

}

else {
ResetEvent (ok) ;
SetEvent (flush);

}

K-;

if (K == 0) {
ResetEvent (f1lush) ;
SetEvent (free) ;

}

ReleaseMutex (mutex) ;

As in the semaphore solution, the auxiliary operation WaitForTwo is used.

7 ..NET and C#

For an introduction to Microsoft’s .NET platform, see the first note in this series [Lov13] or the
ECMA/ISO standards [Ecm02a, Ecm02b]. Like we did in the first note, the synchronization
mechanisms will be described as they appear in C#, relative to Java.

As for the notion of threads, also the synchronization mechanisms of C#, owes a lot to Java.
In addition, also the traditional mechanisms from the Win32 API have been included in the
framework.

7.1 Monitors

The basic means of synchronization is that of monitors. As in Java, a monitor is a critical region
that may be associated with any kind of object. The critical sections belonging to the region
must be ecplicitly indicated, either by a synctactic lock construct, or through the use of entry
and exit primitives. A region has a single anonymous condition queue with signal-and-continue
semantics. Below a comparison between the monitor constructs in Java and C# is presented.:

Facility Java Cc#
Critical section synchronized P(...)
synchronized (o) {...} lock (o) {...}

Monitor.Enter (o)
Monitor.Exit (o)
Monitor.TryEnter(o,t)

Condition queue o.wait() Monitor.Wait (o)
o.notify() Monitor.Pulse (o)
0.notifyAl11() Monitor.PulseAll (o)

where o is the monitor object and t is a timeout parameter. C# has a few deviations from
Java. First, there is no syntatic sugar for turning a whole method into a critical section. Thus,

14

the explicit lock(0) construct must be used instead. Secondly, the region may be used in an
unstructured way though the use of the primitives Monitor.Enter (o) and Monitor.Exit (o).
This gives more freedom for making the critical sections as small as possible, but requires a high
discipline from the programmer. The Monitor.TryEnter (o,t) primitive allows for timeout on
entrance to the critical regionl. This could be used for detecting regions that are never released,
indicating a programming error.

The explicit use of the monitor object makes the code a bit more verbose than Java. For instance,
a simple semaphore would look like:

class Sem {
int S = 0;

public void PO {
lock(this) {
while (S == 0) Monitor.Wait(this);
S--;
}
}

public void V(O {
lock(this) {
S++;

’

Monitor.Pulse(this);
}
}
}

Since the synchronization mechanism in C# is so similar to that of Java, any of the examples
from the Java section will carry over. Also, the programming techniques presented in [Lea99]
can be applied to C#.

7.2 Other synchronization primitives

Microsoft’s implemenation of the .NET platform provides classes that give access to the under-
lying Win32 primitives that may be used across processes in the underlying operating system
(cf. section 6). Thus, these primitives are not part of the ECMA /ISO standard. The primitives
include mutex’es and events whereas the classical semaphore has been dismissed. The possibility
of awaiting one or all of set of synchronization objects has been retained.

Furthermore, a new reader/writer lock has been introduced. It works as a traditional reader /writer
lock with fairness for both readers and writers. The mechanism also provides a means of up-
grading a reader lock to a writer lock, but unfortunately, this is not done atomically.

The Interlocking class, included in the ECMA/ISO standard, provides a set of routines to
perform simple atomic actions, like incrementing or decrementing integers. These may be di-
rectly supported by indivisible machine instructions reducing the overhead associated with e.g.
gathering of statistics.

15

8 Ada95

Ada95 is a revision of the Ada langauge that was originally developed around 1980 for use in
US defense systems.

Ada has an integrated notion of processes called tasks. In the original language the basic form of
communication was rendezvous between two tasks. This had the consequence that data shared
among tasks had to be implemented by server tasks that other tasks had to communicate with
in order to read or write the common data. Recognizing that shared data is a more efficient way
of tranferring common data when processes have a common physical address space, a monitor-
like construct was wished for at the revision. On the other side, the high-level synchronization
obtained by when clauses in the select construct was much appreciated.

The result was a monitor-like construct in the form of protected objects that are records (struc-
tures) that can be accessed only through a number of operations. The operations are executed
with mutual exclusion. The operations are divided into entries and procedures/functions. Each
entry has an associated waiting queue and a boolean guard. An entry is open when the asso-
ciated guard is true. A call of an entry will first await the the critical region is free and then
reserve it. Then the guard of the entry is checked and if not true, the calling taks is put on the
waiting queue of the entry (releasing the region).

After execution of a monitor operation (entry or procedure), all entry guards are reevaluated
and if there are tasks waiting on open entries, one of them will take over the critical region.
Only when there are no tasks waiting on open entries, new tasks will be allowed to reserve the
region.

Basically a tasks can only wait for some condition at the start of an entry. However, to allow
a task to register itself before waiting, it is possible for a taks to requeue itself on a new entry.
Hereby the tasks will try to execute the new entry using its original parameters.

The most comprehensive description and discussion of Ada’s concurrency mechanisms is found
in [BW95]. A more general introduction to programming using Ada95 is given in [BA9S]

8.1 General Semaphore
A general semaphore is implemented directly corresponding to the abstract specification:

protected Sem is
entry P;
procedure V;
private
S: integer := 0;
end Sem;

protected body Sem is
entry P when S > 0 is
begin

S =S -1;
end;

16

procedure V is
begin

S =S +1;
end;

end Sem;

The FIFO-semantics of waiting queues ensures that also the semaphore becomes FIFO.

8.2 N-synchronization

To solve the N-synchronization problem, one may use the possibility of querying the number of
tasks waiting at a queue. The number of waiting tasks at entry E is denoted by E’count

protected Meet is

entry Sync;
private

flush : boolean := false;
end Meet;

protected body Meet is

entry Sync when Sync’count = N or flush is
begin

flush := Sync’count > 0;
end;

end Meet;

Meet works as follows: Each call of Sync awaits that the critical region of the object is free.
Then the entry guard is checked and if it is true, the calling tasks will be put on the waiting
queue of Sync. If the entry is still not open, the region is released. The Nth call of Sync is thus
to enter the queue because Sync’count= N — 1. After having entered the queue, however, the
entry becomes open (Sync’count is now N) and the first on the waiting queue is thus to be
woken up and take over the critical region. This tasks now sets flush true (if N > 1), whereby
the next on the queue is taking over the critical region etc. This will continue as long as there
are tasks waiting on Sync’s waiting queue and during this activity the region is occupied such
that new tasks cannot get in from outside and interfere.

8.3 Reader/Writer

To implement the reader/writer problem with writer priority it is useful that one can see directly
how many taksks are waiting at a given entry.

protected ReadWrite is
entry StartRead;
entry StartWrite;
procedure EndRead;
procedure EndWrite;

17

private
readers: integer := 0;
writing: boolean := false;
end ReadWrite;

protected body ReadWrite is

entry StartRead when not writing and StartWrite’count = 0 is
begin

readers := readers + 1;
end;

procedure EndRead is
begin

readers := readers -1;
end;

entry StartWrite when readers = 0 and not writing is
begin

writing := true;
end;

procedure EndWrite is
begin

writing := false;
end;

end ReadWrite;

Again this solution is close to the abstract specification due to the automatic test of the entry
conditions.

9 Rust

Rust a recent language which tries to address memory and concurrency issues such as dangling
pointers and unprotected concurrent access to shared data through its type system.

The languages combines functional and imperative paradigms with elements of object-oriented
programming using a c-like concrete syntax. Is is a compiled language aiming at being the
langauge of choice for efficient systems programming (replacing C/C++).

Rust is well documented on the language home page [Rus] although the language itself it still
in a stabilizing phase. The initial development of the language was done under the auspices of
the Mozilla project.

Concurrency is acheieved through the standard notion of threads. For an introduction to Rust
thread creation, see the first part of this note series [Lov16].

Rust uses a complex type system to ensure that threads only have access to shared, mutable
state objects if they have been made thread-safe, eg. by encapsulating them within a critical
region.

18

In general Rust uses type traits to signal that a type has certain methods or certain properties.
The traits that are relvant here are Sync which indicates that a type is protected by a lock
and Send which indicates that a mutalbe reference of the type may safely be passed to another
thread, eg. as a message on a communication channel.

A type may be protected by encapsulating an instance of it by a Mutex. A refence to such a
protected type may be shared among threads using an atomic refence counter (Arc) which is

a collection of handles to the shared object. New handles are created by cloning an existing
handle.

To use a shared object protected by a Mutex instance m, the instance is locked by calling
m.lock(), returning a refence to the shared object. When this reference goes out of scope, the
region m is unlocked automatically.

The type system enforces that the locking of a shared object syntactically must be done within
the thread that wants to use the object. Therefore, a proper monitor notion in which the
protection is done in close connection with the definition of the object operations does not seem
feasible. Rather a number of critical sections distributed over the threads must be applied.

With a Mutex, condition variables may be associated. These work as traditional wait-
ing queues with signal-and-continue semantics. They too suffer from spurious wakeups as in
Pthreads and Java.

9.1 General Semaphore

To illustrate the synchronization mechanisms in Rust, we show how to implement a module
providing the notion of a general semaphore:

use std::sync::Mutex;
use std::sync::Condvar;

pub struct Semaphore { mutex: Mutex<SemState>, cond: Condvar}
struct SemState { count: u32 }

impl Semaphore {

pub fn new(init: u32) -> Semaphore {
Semaphore{
mutex: Mutex::new(SemState {count: init}),
cond: Condvar: :new()
}
}

pub fn v(&self) {
let mut locked_sem = self.mutex.lock().unwrap();
locked_sem.count += 1;
self.cond.notify_one();

}
pub fn p(&self) {

let mut locked_sem = self.mutex.lock().unwrap();
while locked_sem.count == 0 {

19

locked_sem = self.cond.wait(locked_sem).unwrap()
+;
locked_sem.count -= 1;
}
}

The semapore state consists of the semaphore count which is encapsulated within a critical
region. Also a condition queue is associated with the semaphore. Note especially that the
semaphore state can be accessed only through the locked_sem handle which locks the critical
region and that the region is automatically unlocked when the handle goes out of scope.

An instance of such a semaphore object may be distributed to multiple threads through an
instance of the Arc class and in this example:

use std::thread;

use std::time: :Duration;
use std::sync::Arc;
extern crate sem;

use sem::Semaphore;

fn main() {
let global_sem = Arc::new(Semaphore::new(0));

let sem = global_sem.clone();

let t_a = thread::spawn(move || {
thread: :sleep(Duration: :from_millis(100));
sem.v();
println! ("Thread {}", "A");

b;

let sem = global_sem.clone();

let t_b = thread::spawn(move || {
thread: :sleep(Duration::from_millis(10));
sem.p();
println! ("Thread {}", "B");

b;

t_a.join() .unwrap();
t_b.join() .unwrap();
}

The synchronization via the global semaphore global_sem ensures that thread B awaits thread

A.

Here, the type system ensures that the references to global_sem can be accessed only in pro-
tected (locked) mode.

References

[And00] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley, 2000.

20

[BA9S]
[But97]

[BWY5]

[Ecm02a)

[Ecm02b]

[hoal

[KSS96]

[LB00]

[Lea99]

[Lov13]

[Lov16]

[NBF96]

[Ric95]
[Rus]

M. Ben-Ari. Ada for Software Engineers. Wiley, 1998.
David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

Alan Burns and Andy Wellings. Concurrency in Ada95. Cambridge University Press,
1995.

Ecma. C# Language Specification, 2002. ECMA-334.

http://www.ecma-international.org/publications/standards/Ecma-334.htm.

Ecma. Common Language Infrastructure (CLI), 2002. ECMA-335.

http://www.ecma-international.org/publications/standards/Ecma-335.htm.

Hoare monitors in Java.

http://www.imm.dtu.dk/courses/02220/CP/hoaremon.html.

Steve Kleiman, Devang Shah, and Bart Smaalders. Programming with Threads. Sun-
soft Press, 1996.

Bil Lewis and Daniel J. Berg. Multithreaded Programming with Java Threads. The
Sun Microsystems Press, 2000.

Dough Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 2nd edition, 1999.

Hans Henrik Lgvengreen. Processes and threads. Course notes, DTU Compute, 2013.
Version 1.7.

Hans Henrik Lgvengreen. Processes and threads. Course notes, DTU Compute, 2016.
Version 1.8.

Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Ptreads Programming.
O’Reilly, 1996.

Jeffrey Richter. Advanced Windows. Microsoft Press, 1995.

The rust programming langauge. URL: www.rust-lang.org.

21

