
02158 Concurrent Programming Fall 2024 Solutions Page 34

Solutions for Exercises, Week 8

1. Solution for Mon.5

(a) A straightforward solution could be:

monitor ChunkSem

var s : integer := 0;
Empty : condition;
NonEmpty : condition;

procedure P()
while s = 0 do wait(NonEmpty);
s := s − 1;
if s = 0 then signal(Empty)

procedure V ()
while s 6= 0 do wait(Empty);
s := s +M ;
signal all(NonEmpty)

end

(b) For the monitor, the following safety invariant should hold:

I1
∆
= 0 ≤ s ≤ M

Provided M ≥ 1, this readily follows from the intialization and the while tests.

(c) We now try to express that that no calls of the P()-operation are ever “forgotten”. This
would be the case, if there remained processes but s was still positive. Thus we must
require:

I2
∆
= waiting(NonEmpty) > 0 ⇒ s = 0

This follows from the initialization, the fact that s = 0 when waiting on NonEmpty , and
the flushing of NonEmpty , when s is incremented.

(d) If many processes are waiting on NonEmpty and M is small, most of these processes will
be unnecessarily woken up. In order to wake up only as many as can carry through the
P()-operation, either a limited number of signals may be made or cascaded wakeup may
be applied. Here we show the cascade solution:

monitor ChunkSem

var s : integer := 0;
Empty : condition;
NonEmpty : condition;

procedure P()
while s = 0 do wait(NonEmpty);
s := s − 1;



02158 Concurrent Programming Fall 2024 Solutions Page 35

if s > 0 then signal(NonEmpty)
else signal(Empty)

procedure V ()
while s 6= 0 do wait(Empty);
s := s +M ;
signal(NonEmpty)

end

Now, the property I2 does not necessarily hold at entry to a monitor operation, since there
may be processes left on the queue while a woken process is waiting to get back to the
monitor. Therefore the invariant will have to be weakened taken the woken processes into
account. Due to the cascade, at least one process will be woken as long as s > 0. This
may be expressed as:

I3
∆
= waiting(NonEmpty) > 0 ⇒ s = 0 ∨ woken(NonEmpty) > 0

[This can be formulated in a number of equivalent ways.]

For a solution using limited signalling (awakening up to M processes), the invariant should
express that enough processes have been woken up:

I4
∆
= waiting(NonEmpty) > 0 ⇒ s ≤ woken(NonEmpty)

(e) Since both waits recheck their conditions, the solutions shown in (d) is robust towards
spurious wakeups. Also the invariants have been formulated with inequalities allowing for
an spontaneous increase of woken(NonEmpty).

(f) Since we have two waiting conditions the standard solution is to used a mixed condition
queue and use a covering condition:

class ChunkSem {

int s = 0;

public synchronized void P() {

while (s==0) try {wait();} catch (Exception e) {};

s--;

notifyAll();

}

public synchronized void V() {

while (s!=0) try {wait();} catch (Exception e) {};

s = s + M;

notifyAll();

}

}

However, since all calls of P() are woken up when s becomes positive, only V () operations
can be waiting when s > 0. Aside: This may be formally expressed by an invariant:

I5
∆
= s > 0 ⇒ waitingP()() = 0



02158 Concurrent Programming Fall 2024 Solutions Page 36

Therefore, the signalling in P() needs only be done when the condition for V () is true and
only has to awake a single thread.

public synchronized void P() {

while (s==0) try {wait();} catch (Exception e) {};

s--;

if (s==0) notify();

}

An attempt to use the cascade solution will render both P() and V () calls waiting in the
condition queue and hence will not work.

2. Solution for Mon.6

By introducing a variable, next , indicating the smallest waketime of any waiting processes,
the number of unnecessary wakeups may be considerably reduced. Using our notation:

monitor Timer

var tod : integer := 0;
next : integer∗ := ∞;
check : condition;

procedure delay(interval : integer)
var waketime : integer ;
waketime := tod + interval ;
while waketime > tod do

if waketime < next then next := waketime;
wait(check);

procedure tick()
tod := tod + 1;
if tod ≥ next then {next := ∞; signal all(check)}

end

Here integer∗ denotes the set of integers extended with ∞ larger than any integer.



02158 Concurrent Programming Fall 2024 Solutions Page 37

3. Solution for CP Exam December 1998, Problem 4

Question 4.1

A

C

P1

P2

P3

B

P4

Question 4.2

(a) Finishing processes satifying their maximum demands:

Available Can be finished

A B C

0 0 2 P2

0 1 2 P4

0 2 2 P1

1 2 2 P3

1 2 3

Since a sequence exists in which all the processes can have their maximal resource demands
satisfied, the situation is safe.

(b) Even though P4 is granted a C -instance, the above sequence is still possible and the
situation is still safe. Thus, P4 may be granted a C -instance according the banker’s
algorithm.

4. Solution for Silberschatz, Galvin & Gagne Exercise 7.11

For a sytem with m inscances of a resource type, a deadlock situation is characterized by
a number of processes that are requesting more instances while holding some already, but
no more instances are available.

A process Pi can request more instances only if it has not yet reached is maximal claim
MAXi . The maximal number of instances n processes may have reserved without having
reached their maximum claim (and thereby be able to finish) is given by:

n∑

i=1

(MAXi − 1) = (
n∑

i=1

MAXi)− n = MAX − n

Thus, no deadlock can occur if this number is less than the number of available instances
m:

MAX − n < m



02158 Concurrent Programming Fall 2024 Solutions Page 38

or
MAX < n +m

It is assumed that all processes need several instances, ie. MAXi > 1 for all i and, of
course, that MAXi ≤ m.


