
02158 Concurrent Programming Fall 2024 Solutions Page 28

Solutions for Exercises, Week 7

1. Solution for Andrews Ex. 5.4

Given Figure 5.5 in [Andrews] (here in our notation):

monitor RW Controller :

var nr ,nw : integer := 0;
oktoread : condition;
oktowrite : condition;

procedure request read()
while nw > 0 do wait(oktoread);
nr := nr + 1;

procedure release read()
nr := nr − 1;
if nr = 0 then signal(oktowrite)

procedure request write()
while nr > 0 ∨ nw > 0 do wait(oktowrite);
nw := nw + 1;

procedure release write()
nw := nw − 1;
signal(oktowrite)
signal all(oktoread)

end

(a) The signal all operation can be replaced with repeated signalling:

while ¬empty(oktoread) do signal(oktoread);

Alternatively, cascaded wakeup can be used. Then signal all(oktoread) is replaced by a
single signal(oktoread), and request read becomes:

procedure request read()
while nw > 0 do wait(oktoread);
nr := nr + 1;
signal(oktoread);

Cascaded wakeup is especially useful in situations where the number processes to be awak-
ened is not known in advance, eg. may depend on parameters of the woken processes.



02158 Concurrent Programming Fall 2024 Solutions Page 29

(b) To give preference to writers, readers should be held back if there are any pending writers
in order to prevent starvation of writers. Likewise, writers should be favoured after a
writing phase. Thus, request read() and release write() are modified to:

procedure request read()
while nw > 0 ∨ ¬empty(oktowrite) do wait(oktoread);
nr := nr + 1;

procedure release write()
nw := nw − 1;
if ¬empty(oktowrite) then signal(oktowrite)

else signal all(oktoread)

(c) The solution below attempts to carefully alternate between readers and writers. Thus,
the last reader should start a writer and an ending writer should start a group of readers.
However, to prevent readers from starving writers, new readers should wait in a prequeue

if there are writers waiting. Since all waiting readers should start together, the normal
condition queue oktoread may be used for that purpose as well.

procedure request read()
if ¬empty(oktowrite) then wait(oktoread);
while nw > 0 do wait(oktoread);
nr := nr + 1;

procedure release write()
nw := nw − 1;
if ¬empty(oktoread) then signal all(oktoread)

else signal(oktowrite)

This solution, however, allows for new writers to overtake a woken writer and in theory a
particular writer may be starved forever. For a truly fair solution, see (d).

It is also possible to use the general fairness technique of alternating a priority between
the two groups. The priority is to be used only if both readers and writers are waiting.
Here we use a boolean variable reader prio indicating whether readers have priority (if
not, writers have).



02158 Concurrent Programming Fall 2024 Solutions Page 30

monitor Fairly Fair RW Controller :

var nr ,nw : integer := 0;
reader prio : boolean := true;
oktoread : condition;
oktowrite : condition;

procedure request read()
while nw > 0 ∨ (¬empty(oktowrite) ∧ ¬reader prio) do

wait(oktoread);
nr := nr + 1;

procedure release read()
reader prio := false;
nr := nr − 1;
if nr = 0 then signal(oktowrite)

procedure request write()
while nr > 0 ∨ nw > 0 ∨ (¬empty(oktoread) ∧ reader prio) do

wait(oktowrite);
nw := nw + 1;

procedure release write()
reader prio := true;
nw := nw − 1;
if ¬empty(oktoread) then signal all(oktoread)

else signal(oktowrite)
end

Here the priority is changed when (the first of) a group ends its operation. Again, in
theory readers may still be starved, if they do not all get out of request read before the
first of the reader group changes the priority. However, in practice this would probably
not be an issue if reading is a longer-lasting operation.

(d) [Advanced] In order to get a strict First-Come-First-Served discipline both readers and
writers must be processed in some common entrance queue. Further, if the first process
of this queue discovers that it cannot start (eg. being a writer when readers are active), it
will have to wait being the first to be considered next time. For this to work two condition
queues can be used: pre where processes queue up in FIFO order and front where the
(single) front process of the queue waits. To determine which queue to wait at, a count
ne of the currently entering readers/writers is maintained. Only when being the only one
entering, a process it can go directly to the front position. Whenever a process leaves the
front position, the next process from the pre-queue (if any) is moved to the front.



02158 Concurrent Programming Fall 2024 Solutions Page 31

monitor FCFS RW Controller :

var nr ,nw ,ne : integer := 0;
pre : condition;
next : condition;

procedure request read()
ne := ne + 1;
if ne > 1 then wait(pre);
if nw > 0 then wait(front);

signal(pre);
nr := nr + 1;
ne := ne − 1;

procedure release read()
nr := nr − 1;
if nr = 0 then signal(next);

procedure request write()
ne := ne + 1;
if ne > 1 then wait(pre);
if nw > 0 ∨ nr > 0 then wait(next);

signal(pre);
nw := nw + 1;
ne := ne − 1;

procedure release write()
nw := nw − 1;
signal(next);

end

[Due to the wait conditions not being rechecked, this solutions is not robust towards
spurious wakeups.]



02158 Concurrent Programming Fall 2024 Solutions Page 32

2. Solution for Andrews Ex. 5.8

(a) The required invariant must state that the balance never becomes negative:

I
∆
= Bal ≥ 0

The basic problem in this exercise is that the waiting condition for each withdraw(amount)
operation depends on the parameter value amount . A general solution to this is to use
a covering condition, i.e. to wake up all waiting processes, whenever the balance has im-
proved. It is assumed that all amounts belongs to a type of positive integers PosInt .

monitor SimpleAccount

var Bal : integer := 0;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
signal all(positive);

procedure withdraw(amount : PosInt)
while Bal < amount do wait(positive);
Bal := Bal − amount ;

end

(b) Under the standard assumption the the condition queues are FIFO, the customers may be
served FCFS by waking only one at a time, but only as long as the balance is large enough
(using the magic amount function). Special care must be taken to prevent outside processes
from making withdrawals before the woken processes. This could be accomplished by
letting the deposit operation do the balance decrementation as in the FIFO Semaphore
solution shown in Andrews Figure 5.3. Here, however, we take a more general approach.
Whenever a withdrawal process is woken, the monitor is considered busy, and new processes
will have to wait. Now the processes are started in FIFO order by a cascade wakeup:

monitor MagicFSCSAccount

var Bal : integer := 0;
Busy : boolean := false;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
if ¬Busy ∧ ¬empty(positive) ∧ amount(positive) ≤ Bal then

Busy := true;
signal(positive);

procedure withdraw(amount : PosInt)
if Busy ∨ ¬empty(positive) ∨ Bal < amount then

wait(positive);
Busy := false;



02158 Concurrent Programming Fall 2024 Solutions Page 33

Bal := Bal − amount ; — Bal assumed large enough
if ¬Busy ∧ ¬empty(positive) ∧ amount(positive) ≤ Bal then

Busy := true;
signal(positive);

end

Note that deposit processes may increment Bal , even when the monitor is busy, but that
will not violate the expectations of the woken withdrawal process.

(c) In order to implement the magic function amount giving the requested amount of the first
withdrawal process, two ideas may be applied:

• A new, separate condition queue is used by the first waiting process and that processes
may set a global amount variable. Further processes will have to wait on the old queue.
Now great care must be taken to ensure that exactly one and only one of the waiting
processes proceed to this queue.

• Within the monitor, a datastructure is maintained giving the amounts of the waiting
processes. Thus the datastructure will be parallel to the condition queue. Since the
queue is supposed to be FIFO, a list type will be appropiate.

Here we choose the latter approach, extending the above solution with a list type with
operations append , head and tail :

monitor FSCSAccount

var Bal : integer := 0;
Busy : boolean := false;
amounts : List of integer ;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
if ¬Busy ∧ ¬empty(positive) ∧ head(amounts) ≤ Bal then

Busy := true;
amounts := tail(amounts);
signal(positive);

procedure withdraw(amount : PosInt)
if Busy ∨ ¬empty(positive) ∨ Bal < amount then

amounts := append(amounts, amount);
wait(positive);
Busy := false;

Bal := Bal − amount ; — Bal assumed large enough
if ¬Busy ∧ ¬empty(positive) ∧ head(amounts) ≤ Bal then

Busy := true;
amounts := tail(amounts);
signal(positive);

end


