
02158 Concurrent Programming Fall 2024 Solutions Page 12

Solutions for CP Exercises, Week 4

1. Solution for Andrews Ex. 3.3

(a) var l : integer := 1;

process P [i : 1..n] =
var r : integer := 0;
repeat

nc1: non-critical sectioni ;
repeat

Swap(r , l);
until r = 1;

cs1: critical sectioni ;
Swap(r , l);

forever;

We are now going to prove that the above solution does ensure mutual exclusion.

First, we assume that the local variables r are renamed to global variables ri (i = 1..n)
that are all initialized to 0;

Next, we prove some auxiliary invariants:

Fi
∆
= in csi ⇒ ri = 1 i = 1..n

G
∆
= l ∈ 0, 1

Hi
∆
= ri ∈ 0, 1 i = 1..n

Since ri is changed only in Pi , Fi is a local invariant By induction, Hi and G are easily
seen to be invariants since 0 and 1 are the only values being swapped around.

Now we define
I

∆
= r1 + r2 + . . .+ rn + l = 1

This holds intially and since any of the variables are changed only by atomic swapping of
two of them, their sum will remain constant. Therefore, I is an invariant of the program.

Now, if two of the processes Pi and Pj (j 6= i) should be in their critical sections at the
same time, Fi and together with G and Hi would give us

r1 + r2 + . . .+ rn + l ≥ 2

contradicting the invariant I . Thus, we conclude that this cannot be the case, ie. the
algorithm ensures mutual exclusion.

If two or more processes execute Swap(ri , l) at the same time, one of the will get the
“token” first and thereby obtain access to the region. Which of them it is not determined.
Thus, the algorithm cannot deadlock nor livlock, but it is not fair. Starvation can occur if
other process manages to enter the region inbetween a given process attempts to execute
Swap(ri , l).

(b) To avoid memory contention by writing to l , its value may be checked before an attempt
is made to change it with Swap:



02158 Concurrent Programming Fall 2024 Solutions Page 13

repeat

while l = 0 do skip;
Swap(r , l);

until r = 1;

This will not effect the proof in (a).

(c) Not included

2. Solution for Andrews Ex. 3.2

var l : integer := 1;

process P [i : 1..n] =
var s : integer ;
repeat

non-critical sectioni ;
DEC (l , s);
while s > 0 do {

INC (l , s);
delay;
DEC (l , s);

}
critical sectioni ;
INC (l , s);

forever;

Here, the lock l is used as in the test-and-set solution. However, if the lock is already “set”
(l < 1), the effect of DEC must be undone by INC , before trying again. The correctness
argument (or proof) follows the same line as for the test-and-set solution.


