Solutions for Exercises, Week 2

1. Solution for Trans.1

- $(1) \quad a_1 \ a_2 \ a_3 \ b_1 \ b_2$
- (2) $a_1 a_2 b_1 a_3 b_2$
- (3) $a_1 a_2 b_1 b_2 a_3$
- (4) $a_1 b_1 a_2 a_3 b_2$
- (5) $a_1 b_1 a_2 b_2 a_3$
- (6) $a_1 b_1 b_2 a_2 a_3$

- (10) $b_1 b_2 a_1 a_2 a_3$

2. Solution for Trans.2

The number of interleavings is given by:

$$\left(\begin{array}{c} n_1 + n_2 \\ n_1 \end{array}\right) = \left(\begin{array}{c} n_1 + n_2 \\ n_2 \end{array}\right) = \frac{(n_1 + n_2)!}{n_1! * n_2!}$$

An argument:

Each interleaving must contain n_1 actions from P_1 and n_2 actions from P_2 , ie. in total $n_1 + n_2$ actions. We may say that each interleaving has $n_1 + n_2$ places and an interleaving is the uniquely given by selecting n_1 of these for the actions of P_1 (the actions are supposed to come in the given order). As known from combinatorics, the number of ways n_1 elements can be selected out of $n_1 + n_2$ elements is given by the above expression.

An other argument:

For any interleaving, the actions from P_1 can be permuted in n_1 ! ways and the actions from P_2 in n_2 ! ways. From any interleaving, we may thus generate $n_1! * n_2!$ permutations of the total of $(n_1 + n_2)!$ permutations of all actions of P_1 and P_2 . From this, the expression follows.

2. Solution for Trans.5

Rewriting to atomic assignment statements:

$$\begin{array}{l} x := 1; \ y := 2; \\ \textbf{co} \\ \langle t_1 := y + 1 \rangle; \ \langle x := t_1 \rangle \parallel \langle t_2 := x - 1 \rangle; \ \langle y := t_2 \rangle \\ \textbf{oc} \end{array}$$

Or equivalently as transition diagrams:

Let the global state be given by a vector $(x, y, t_1, t_2, \pi_1, \pi_2)$ where π_i is the control pointer for process P_i . Assuming arbitrarily t_1 and t_2 to be initially 0, the transition system for the concurrent systems is given by the transition graph:

$$(1, 2, 0, 0, l_0, k_0) \xrightarrow{b_1} (1, 2, 0, 0, l_0, k_1) \xrightarrow{b_2} (1, 0, 0, 0, l_0, k_2)$$

$$(1, 2, 0, 0, l_0, k_0) \xrightarrow{b_1} (1, 2, 0, 0, l_0, k_1) \xrightarrow{b_2} (1, 0, 3, 0, l_1, k_2) \xrightarrow{a_1} (1, 0, 0, 0, l_0, k_2)$$

$$(1, 2, 3, 0, l_1, k_0) \xrightarrow{b_1} (1, 2, 3, 0, l_1, k_1) \xrightarrow{b_2} (1, 0, 3, 0, l_1, k_2) \xrightarrow{a_2} \xrightarrow{a_$$

By inspection of the final states $(\pi_1 = l_2 \land \pi_2 = k_2)$ we find the possibilities for (x, y): $\{(1,0), (3,0), (3,2)\}$

3. Solution for Trans.6

Transition diagrams of the processes in Andrews Fig. 2.2:

