
02158 Concurrent Programming Fall 2024 Solutions Page 51

Solutions for Exercises, Week 12

1. Solution for Concurrent Systems Exam December 2006, Problem 2

Question 2.1

A1 A2

B1 B2C

Question 2.2

Corresponding to the Petri-net, we introduce a semaphore DoneA that counts the number
of A-operations executed. C may then be executed after n P-operations on DoneA. Q

controls the final synchronization by awaiting a signal from each finished B -operation on
a semaphore DoneB and then signalling each process Pi on a private semaphore GoA[i ]:

var DoneA : semaphore; // Counts no. of A’s done
DoneB : semaphore; // Counts no. of B ’s done
GoA[1..n] : semaphore; // OK to start Ai again.

All semaphores are initialized to 0

process P [i : 1..n];
repeat

Ai ;
V(DoneA);
Bi ;
V(DoneB);
P(GoA[i ])

forever

process Q ;
repeat

for j in 1..n do P(DoneA);
C ;
for j in 1..n do P(DoneB);
for j in 1..n do V(GoA[j ])

forever

[It is not possible to replace GoA[1..n] with a common semaphore since a P process
may wait again immediately after a wait and thereby could consume a token destined for
another process.]



02158 Concurrent Programming Fall 2024 Solutions Page 52

Question 2.3

monitor Sync

var adone : integer := 0; // No. of A’s done
done : integer := 0; // No. of B ’s and C done
OkC : condition; // Wait for all A’s done
Alldone : condition; // Wait for all B ’s and C done

procedure EndA()
adone := adone + 1;
if adone = n then signal(OkC )

procedure StartC ()
while adone < n do wait(OkC );
adone := 0

procedure Done()
done := done + 1;
if done < n + 1 then wait(Alldone)

else done := 0;
signal all(Alldone)

end

process P [i : 1..n];
repeat

Ai ;
Sync.EndA();
Bi ;
Sync.Done()

forever

process Q ;
repeat

Sync.StartC ();
C ;
Sync.Done()

forever

[Solution assumes no spurious wake-ups.]



02158 Concurrent Programming Fall 2024 Solutions Page 53

2. Solution for Concurrent Systems Exam December 2008, Problem 3

Question 3.1

The operation must be declared as:

op get users() returns integer ;

and be accepted unconditionally by adding the following branch to both the inner and
outer in statements:

[] get users() returns integer → return users

Question 3.2

The module VarReg must be initialized with N = m.

Writer: set(0);
writing

set(m);

Readers: acquire();
reading

release();

Question 3.3

(a)

P1

A

B

P3

P2

C

(b) If the free C instance is granted to P2, it may finish. Then P1 and P2 can finish in arbitrary
order. Since all processes can finish, the situation would normally be called safe.

(c) If P3 calls RegC .acquire() (before P2 does) and henceforth P1 calls RegB .acquire() and P2

calls RegC .acquire(), all processes will have standing requests which cannot be fulfilled,
since all instances are acquired. Hence the system has deadlocked.

(d) An attempt is made to reserve the resources according to a strict ordering:

In P1, RegC .acquire() and RegA.acquire() are exchanged.
In P2, RegB .acquire() and RegC .acquire() are exchanged.
In P3, RegC .acquire() and RegA.acquire() are exchanged.

Hereby, the resources are reserved in the order: A, C and B .

There is a problem though, since P3 reserves its two A instances in two rounds and hence
the principle of deadlock prevention by strict ordering does not apply directly. However,
since P1 and P2 only need one A instance each, there is always one instance “reserved” for



02158 Concurrent Programming Fall 2024 Solutions Page 54

P3. We may think of this as being taken by the first call of RegA.acquire() in P3 and may
henceforth be ignored. Deadlock freedom then follows from the ordering principle applied
to the remaining resources.

Question 3.4

The operations are assumed to act upon the following shared variables:

var users : integer := 0;
max : natural := N ;
setting : boolean := false;

Now, the operations may be specified by:

acquire() : 〈 users < max → users := users + 1 〉

release() : 〈 users := users − 1 〉

set(k : natural) : 〈 ¬setting → max := k ; setting := true 〉;
〈 users ≤ max → setting := false 〉

Question 3.5

(a) monitor VarReg

var users : integer := 0;
max : natural := N ;
setting : boolean := false;
Room,SizeOk ,Done : condition;

procedure acquire() {
while users ≥ max do wait(Room);
users := users + 1;
if users < max then signal(Room) — Cascade wakeup

}

procedure release() {
users := users − 1;
if users = max then signal(SizeOk);
if users < max then signal(Room);

}

procedure set(k : natural) {
while setting do wait(Done);
max := k ;
setting := true;
while users > max do wait(SizeOk);
setting := false;
signal(Done);
if users < max then signal(Room);

}

end



02158 Concurrent Programming Fall 2024 Solutions Page 55

(b) Calls of acquire() should wait only if there is no room in the region:

I
∆
= waiting(Room) > 0 ⇒ users ≥ max

However, with the chosen cascade wakeup, this has to be relaxed in order to take leaving
calls into account:

I ′
∆
= waiting(Room) > 0 ∧ woken(Room) = 0 ⇒ users ≥ max


