
02158 Concurrent Programming Fall 2024 Solutions Page 47

Solutions for Exercises, Week 11

1. Solution for ParComp.1

(a) With the given task execution times it is possible to make a perfect fit:

t1

t2

A B D

C E
✲

0 5 10

This gives an execution time of 8 seconds and a speedup of 16

8
= 2.

(b) If task E is postponed, the following scenario is possible:

t1

t2

A B C

D E
✲

0 5 10

with an execution time of 11 seconds and a speedup of 16

11
≈ 1.45.



02158 Concurrent Programming Fall 2024 Solutions Page 48

2. Solution for Concurrent Systems Exam December 2002, Problem 3

Question 3.1

(a) I
∆
= open ⇒ waiting(Queue) = 0

(b) I is a monitor invariant since processes only wait at Queue if open is false and Queue is
emptied by signal all whenever open becomes true.

(c) If there are currrently less than k processes waiting when Go(k) is called, all of these are
woken, but new calls of Pass() still have to wait (if closed). As a special case, if the gate
is open, a call of Go(k) has no effect.

Question 3.2

module Gate

op Pass();
op Set(boolean);
op Go(integer);

body

process Keeper ;
var open : boolean := false;
repeat

in Pass() and open → skip

[] Set(b : boolean) → open := b

[] Go(k : integer) → for j in 1..min(k , ?Pass) do

in Pass() → skip ni

ni;
forever;

end Gate;



02158 Concurrent Programming Fall 2024 Solutions Page 49

3. Solution for Concurrent Systems Exam December 2003, Problem 3

Question 3.1

The first three calls of put() will enable one of the calls of unload() to succeed. The two
remaing calls of put() will then both succeed leaving the server with count = 2. The
second call of unload() will remain blocked waiting for acceptance by the server.

Question 3.2

monitor Batch

var count : integer := 0;
NonFull : condition;
Full : condition;

procedure unload() {
while count < N do wait(Full);
count := 0;
signal(NonFull);

}

procedure put() {
while count = N do wait(NonFull);
count := count + 1;
if count < N then signal(NonFull) else signal(Full);

}

end

In this solution, care has been taken to wake up only the mininum number of waiting
put-calls using a cascade wakeup on NonFull . A solution in which unload signals to all on
NonFull is also acceptable.



02158 Concurrent Programming Fall 2024 Solutions Page 50

4. Solution for Concurrent Systems Exam December 2004, Problem 3

Question 3.1

monitor Latch

var count : integer := 0;
IsZero : condition;

procedure set(k : integer) {
if k ≥ 0 then count := k ;
if count = 0 then signal all(IsZero)

}

procedure down() {
if count > 0 then count := count − 1;
if count = 0 then signal all(IsZero)

}

procedure await() {
while count 6= 0 do wait(IsZero)

}

end

[The signalling in set is necessary since count may be set to 0 (!). The while-loop in await

might be replaced by an if-statement although in the server-based solution, not all waiting
processes are guaranteed to get through before a set is called and hence the solution shown
here is closer to this semantics.]

Question 3.2

The given synchronize code indicates a solution with two simple (i.e. one-time) barriers
in a row. Care must be taken in resetting the simple barriers properly.

process Q ;
repeat

latch1.await();
latch3.set(n); latch4.set(1); — Prepare for second stop
latch2.set(0);
latch3.await();
latch1.set(n); latch2.set(1); — Prepare for next round
latch4.set(0);

forever;

[set(0) may be replaced by down(). Resetting of latch1 and latch3 may be done earlier.]


