
02158 Concurrent Programming Fall 2024 Solutions Page 44

Solutions for Exercises, Week 10

1. Solution for Exam June 1994, Problem 3

Question 3.1

Before each round, P2 must synchronize with either P1 or P3. A Petri-net expressing this
is:

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

A B C❄

❄
✆

✻

☎✛

❄

❄
✝

✻

✞ ✲

✆

✻

☎✛

❄

❄
✝

✻

✞ ✲

s s s

Question 3.2

[A synchronization can be implemented by signalling forth and back using two semaphores.
A choice between two synchronizations is then implemented by using a common semaphore
for the signalling:]

var SAC ,SB : semaphore := 0;

process PA =
repeat

wait(SAC );
signal(SB );
A

forever;

process PB =
repeat

signal(SAC );
wait(SB );
B

forever;

process PC =
repeat

wait(SAC );
signal(SB );
C

forever;

[Alternatively, wait and signal may be exchanged in all three processes.]



02158 Concurrent Programming Fall 2024 Solutions Page 45

2. Solution for Andrews Ex. 8.9

(a) A solution giving priority to writers is shown in [Andrews p.388] using the facility to query
the number pending calls of an operation op to block readers when there are pending
writers.

(b) A fair solution can be obtained from the above solution by explicitly processing the readers
inbetween the writers. Using our notation, we get:

module ReadersWriters

op read(var T );
op write(T );

body

op startread();
op endread();

var val : T ;

proc read(var r : T )
startread();
r := val ;
endread()

process Writer =
var nr : integer := 0;
repeat

in startread() and ?write = 0 → nr := nr + 1
[] endread() → nr := nr − 1
[] write(v : T ) and nr = 0 → val := v

while ?startread > 0 do

in startread() → nr := nr + 1 ni

ni

forever;

end ReadersWriters;

Although extra readers may slip through while the reader group is started in the write

branch, they cannot recur at the startread queue as they cannot pass endread . So for a
finite number of readers, the startread queue will eventually be emptied.

If only the readers waiting when the write has ended should be started, the while loop
may be replaced by:

for i in 1..?startread do

in startread() → nr := nr + 1 ni



02158 Concurrent Programming Fall 2024 Solutions Page 46

3. Solution for Andrews Ex. 8.12

Assuming that a guard using the function that gives the number of pending operation calls
is re-eavaluated whenever a call is made, we can do with:

module Barrier

op arrive();
body

process Control =
var nr : integer := 0;
repeat

in arrive() and ?arrive >= n → for i in 1..n − 1 do

in arrive() → skip ni

ni

forever;

end Barrier ;

If such size-dependent guards were not reevaluated, we could instead nest n accepts within
each other by recursion:

module Barrier

op arrive();
body

procedure meet(k : integer)
in arrive() → if k > 1 then meet(k − 1) ni

process Control =
var nr : integer := 0;
repeat

meet(n)
forever;

end Barrier ;

Aside: In Ada neither of these solutions are possible since the count-attribute is not
reevaluated and accept-statements can occur only in the main loop of a task (not within
procedures). Instead the requeue facility must be used.

[Solutions for Exam Dec. 2018 and Dec. 2020 will appear on the material page.]


