
02158 Concurrent Programming Fall 2024 Solutions Page 9

Solutions for Exercise Clas 2

1. The final value of x may range from 2 (!) to 10.

Assuming the two processes to be called P1 and P2, this is how it can get as low as 2:

x

Initially: 0

P1 reads 0 from x . 0
P2 increments x four times. 4
P1 writes 1. 1
P2 reads 1 from x . 1
P1 increments x four times. 5
P2 writes 2. 2

It can be shown (using invariants — not imagination!) that this is the smallest result.

2. First question: NO. x := x + 2 and x := x + 1 can be executed in any sequential order,
but are not atomic.

Second question: NO. x := 1 and x := 2 are each atomic, but the order is important.

3. The the number of critical references within statements a to f are 2, 1, 1, 2, 1, and 2
respectively. Hence only statements b, c, and e can be considered atomic.

4. If a variable spans more than one memory word, it has to be accessed using several bus
cycles. If these words are accessed by other processors or devices, intermediate memory
states may be seen. Even if used only by a single processor, the access to a larger memory
area (e.g. a record/structure) is likely to be divided into interruptable steps.

5. Usually the least addressable unit of memory is a byte. Thus to change a boolean variable
represented as a bit of a byte, it is necessary to read the whole byte into a register, change
the bit by masking and finally store the byte againg. This will not be atomic.

6. Solution for Share.2

(a) First we note that the statement C1 := ¬C2 cannot be considered atomic since C1 is a
shared variable and C2 is a variable read by the other process. Rewriting to atomic actions
we the following entry protocol for P1:

repeat

< t1 := ¬C2 >;
<C1 := t1 >;

until <¬C2 >;

Correspondingly for process P2. Transition diagrams:



02158 Concurrent Programming Fall 2024 Solutions Page 10

❝

❝

❝

❝

❝

❝

P1

❄

❄
non critical1

❄
t1 := ¬C2

❄
C1 := t1

❄
¬C2 →

C2 →

❄
critical1

C1 := false

✆✝

✞ ✲

✆

☎✛

❝

❝

❝

❝

❝

❝

P2

❄

❄
non critical2

❄
t2 := ¬C1

❄
C2 := t2

❄
¬C1 →

C1 →

❄
critical2

C2 := false

✆✝

✞ ✲

✆

☎✛

(b) The algorithm does not ensure mutual exclusion. We now see that with the initializations
given, an execution in which the atomic actions of the two processes alternate will first set
both C -s to true and in the next repetition, both variables false after which both processes
will enter their critical section!

(c) Since the idea of the algorithm is to set ones flag to the opposite of the flag of the other
process, it is tempting to believe that the algoritm will work, if the statements C1 := ¬C2

and C2 := ¬C1 are executed atomically. But even assuming these to be atomic, the
following execution is possible:

C1 C2

Initially: false false

P2 executes nc2, its entry-protocol and enters cs2. false true

P1 executes nc1 and (atomically) sets C1 := ¬C2. false true

P2 leaves cs2 and executes C2 := false. false false

P1 tests C2 and enters cs1. false false

P2 executes nc2, enters its entry-protocol, sets C2 to true,
finds C1 to be false and enters cs2.

false true

Both processes are now in their critical sections!

The trouble is that the value of C2 that is tested is not the same as the one that C1 is set
relative to (and vice versa).

[If the until-test in P1 is changed to C1 and correspondingly in P2 to C2, the algorithm
ensures mutual exclusion given atomic assignments.

To actually prove this we need the following auxiliary invariants:

Gi

∆
= in csi ⇒ Ci i = 1, 2

I
∆
= ¬(C1 ∧ C2)



02158 Concurrent Programming Fall 2024 Solutions Page 11

Now assume that both processes are in their critical sections

in cs1 ∧ in cs2

According to Gi this would mean that both C variables were true. This, however, would
be in contradiction with I . Thus, if Gi and I are invariants, mutual exclusion is ensured.

We are now going to show the auxliary invariants. G1 andG2 are seen to be local invariants.

I is shown by an inductive argument:

• Initially I holds since both C1 and C2 are false.

• Since e1 obviously preserves I , the only potentially dangerous action in P2 is a1:

a1: This actions will preserve I , as C1 is set to the negation of C2 and hence one of
them will be false after the action.

• By symmetry, all actions in P2 will also preserve I .

Thus I is an invariant of the program.]

7. In this course, we define a critical region to comprise a set of critical sections which
are pieces of code among which there must be mutual exclusion. In the literature, this
distinction is not always made.

8. Yes. The only constraint is that there cannot be two processes active within the same
region at the same time.

9. Yes. For instance there may be a region protecting the use of a printer and a region
protecting some shared variables. Critical regions may even overlap.

10. (a) ✷¬Snows(Bermuda)

(b) ✷(Snows(Helsinki) ⇒ Snows(Finland))

(c) ✷(Snows(Norway) ⇒ ✸Snows(Sweden))

(d) ✷✸Snows(DK ) ∧ ✷✸Snows(NZ ) ∧ ✷¬(Snows(DK ) ∧ Snows(NZ ))

(e) ✷(Snows(Sahara) ⇒ ✷Snows(Sahara))

(f) ✷∃x : Snows(x )


