
Course 02158

Properties of Concurrent Programs

Hans Henrik Løvengreen

DTU Compute

Properties of Concurrent Programs

• Concurrent programs are (usually) reactive

• Properties must deal with behaviour, not results

• Two kinds of functional properties:

I Safety properties Program does nothing wrong
I Liveness properties Program does something (good)

• Real-time and performance requirements may be added

Formal treatment

• Let α = s0
a0−→ s1

a1−→ s2 · · · be a (finite or infinite) execution

• Let φ[α] denote that property φ holds for execution α

• A property φ holds for a program P iff

∀α ∈ Exec(P) : φ[α]

where Exec(P) is the set of all executions of P



Safety Properties

• A safety property ensures that the program does nothing wrong

Examples

• At most one process may use the printer at a time

• The variable x never decreases

• The motor turns off only if the key has been removed

Formal treatment

• Property φ is satisfied for execution α: φ[α]

• φ is a safety property iff

∀α : ¬φ[α]⇒ ∃β ≺ α : ∀γ : ¬φ[βγ]

• Can be stated by invariants (and history variables)

• Can be shown by model-checking or inductive proofs

Liveness Properties

• A liveness property ensures that the program makes progress

Examples

• The program will return to input mode again and again

• The variable x will never become constant

• The green light is lit when the Go button is pressed

Formal treatment

• φ is a (pure) liveness property iff

∀β : fin(β)⇒ ∃γ : φ[βγ]

• Can be stated using Temporal Logic

• Can be shown by temporal reasoning, e.g. proof lattices



Race Conditions

• A race condition is the possibility of an unintended result or effect
• Caused by a particular execution

Example (Java)

class job extends Thread {

private boolean finish;

public void run() {

finish = false;

while (finish==false) {

...

}

public void endThread() { finish = true; }

...

Lack-of-progress Properties

Deadlock

• Deadlock = cycle of processes waiting for each other (for ever)

• Typical cause: incremental reservation of shared resources

Starvation

• A process suffers from starvation if it could make progress, but never does so

• Typical causes: Unfair scheduling, priorities, bad luck

Livelock

• Livelock = mutual starvation (after-you-after-you)

• Like deadlock, but can be escaped

• Typical cause: Symmetrical strategies

• Note: Andrews sets livelock = deadlock — we don’t


