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In this note we show how the notion of concurrency appears in different languages or can be
implemented by use of program libraries.

[In this preliminary version, thread pool options have been eloborated for Java only.]
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1 Introduction

The most central notion of concurrent program is probably that of a process. There are many
ways to define this notion, but here we shall use the following general characteristics:

A process is a distinguished independent activity.

Processes are assumed to take place over time and different processes are concurrent if they may
overlap in time.

In a computer system, a process is generally associated with the activity of executing a program
or part of a progam. We usually just talk about the program part as “the process” and think of
it as being executed by its own abstract processor1.

This general, abstract model of concurrent activities may be illutrated as in Figure 1. Here the
rounded boxes denote the delineated program parts, the X -box indicates that processes may
share state and the arrows indicate that processes may communicate.

X

Process

Abstract processor

Figure 1: Concurrent processes

In this note, we shall see how this abstract model of concurrent execution is implemented in an
number of current languages and operating systems.

In a concurrent system, it must at least at the outermost level be possible to establish two or
more concurrent activities. In some programming languages, this may be done by statically
declaring a number of activities before the programs starts. Typically, however, in most current
languages a main activity may fork into sub-activities or to spawn (create) new activitivies
dynamically.

As a common example it is shown how to make a program that creates three concurrent sub-
activities and awaits their termination.

All of the languages and systems shown do, of course, also provide means of synchronization
and communication between concurrent activities, but these means will be dealt with in other
parts of this note series. Also, it is not discussed how the execution of concurrent activities may
be influenced by the programmer, e.g. by assigning them priorities.

It has been tried to write the code as it would appear in the actual language. Some places, but
not always, it has been tried to make the code resilint to exceptions etc. Finally, it should be
noted that not all examples have been checked syntactically not to mention being run.

1Could also be called a logical or virtual processor, but these terms are used at the hardware level.
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2 Threads versus processes

In many languages and operating systems processes and threads are separate notions. Below,
we will elaborate on this.

In the early development of operating systems the multiprogramming technique was introduced
to switch the the execution among different sequential user programs in order to utilize the
system resources better. While one program would be waiting for i/o, another program could be
executed on the CPU. By this techniques, the user programs were executed largely independently
and overlapping in time. Hence the execution of a program would correspond to the general
notion of a process and the simultaneous execution of multiple programs would correspond
to concurrent processes. Thus, a “program in execution” became known as a ”process”, and
it became a central task of the operating system to schedule the CPU (and later multiple
CPUs/cores) among the processes.

With several user programs running simultaneously, another important task of the operating
system became to protect the programs against each other since they could not be assumed
to cooperate—rather on the contrary! Apart from representing an independent activity, the
process notion was extended to encompass control of resources such as memory and files. As
a consequence, within operating system terminology, the process concept has also become an
administrative entity and hence a “heavy” notion.

Mean-while, for control applications, a number of simple multiprogramming kernels or multi-
tasking kernels implementing concurrent activities were developed. For a control application,
one may assume the activities to cooperate, and therefore such kernels do not spend much effort
(i.e. time) protecting them against each other.

Over the years, the two worlds have come closer: The usefulness of having a user program consists
of several concurrent activities has been recognized. On the other hand, control applications
have demanded more traditional operating systems facilities (file systems, user interfaces, etc.).

As a result, the two worlds have amalgamated such than in modern operating systems we now
see two levels of concurrent entities:

Process (operating system notion)
A process is administrative unit encapsulating an activity, typically the execution of a user
program (application, app). The process is associated with a number of resources (memory,
files) which thereby become protected from other processes. Processes exist concurrently.
The activity of a process is carried by one or more threads. Processes may interact by
means of operating systems provided inter process communication (IPC) mechanisms.

Thread
A thread is an independent sequential activity within the context of an operating system
process. A process may contain several concurrent threads, sharing the resources of the
process. Threads within a process are not protected against each other by the operating
system. Especially, threads share the (virtual) address space of the process and hence may
efficiently share data with each other. Normally, all threads may act externally on behalf
of the process.

From the above, we see that “thread” is the notion that corresponds best to the general under-
standing of a process. This gives rise to an unfortunate language confusion that we have to live
with and be aware of.
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2.1 Thread implementation

Threads may be implemented in principally two ways:

• Within the framework of a single process, one may provide a thread library that implements
a mini-kernel switching the execution among threads. From the viewpoint of the operating
system, the process looks like a single sequential program. Threads implemented this way
are often called user-level threads.

• Threads may be introduced as a built-in operating system notion. Hereby, it becomes
the task of the operating system to switch execution among all threads in all processes.
Threads implemented by the operating systems are often called operating systems threads
(OS threads), native threads or kernel threads.

Older Unix-systems used user-level threads where the mini-kernel was given by a program library.
Also some early implementations of Java used user-level threads (e.g. the green threads library).

With OS/2 being one of the first non-academic operating systems supporting OS threads and
shortly followed by Windows 95, OS threads are now standard in modern operating systems. OS
threads enable the operating system to assign several physical processing entities (processors,
cores) to work simultaneously on activities within the same process.

Some operating systems and languages use a hybrid multilevel scheduling in which a number
of native threads are used by a thread library to implement threads. For instance, the Solaris
operating system uses light-weight processes (OS threads) to implement user-level threads.

It may be noticed that Linux has stuck to a single concept: processes, but has allowed these to
share resources such that they act as “threads”.

For a more thorough discussion of processes and threads, you may consult a standard operating
systems text such as [TB24].

By today’s standards, the term thread is usually understood to represent an OS thread.

A characteristics of OS threads is that operations that must await certain conditions to be true
(e.g. availability of input data) will block the execution of the thread until the conditions are
satisfied.

2.2 Beyond threads

One concurrency paradigm is to allocate a dedicated thread for each larger piece of work to be
executed. E.g. a server may apply a thread-per-request model for request made by independent
clients.

Although threads are lighter than processes, both user-level and OS threads require some re-
sources. In particular, due to the sequential nature of thread code, each thread needs a stack
on which to store the activation records (parameters and return address) and local variables of
currently active procedure/method calls. In most systems, the worst-case stack size must be
fully allocated before the thread is started, and many run-time systems by default allocate 1
MB of memory for each thread stack. This limits the numbers of such threads to the order of
thousands on current desktop computers.
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Certain applications, eg. high-end servers and telecommunication systems, may demand a much
higher number of concurrent activities. E.g. a web-server may have to service ten-thousands
of overlapping requests, waiting for contents to be fetched from databases or other servers. For
such systems a simple thread-per-request model does not scale well.

Therefore, during the last decade, some systems and language run-time systems have introduced
an even finer and more light-weight notion of concurrent activity. This has basically been
accomplished in two ways:

Tasks and threadpools
Separating the work from the concurrent entity executing it.

Light-weight concurrency
Providing more light-weight thread notions.

These approaches are elaborated below.

2.2.1 Tasks and threadpools

Rather than creating a thread for each small piece of concurrent activity (like a database query),
the actual work may be separated from the entity executing it.

This idea is present in the notion of thread pools where a limited number of worker threads
repeatedly execute a number of smaller work items usually known as tasks2.

Typically, a task is defined as a closure (i.e. a function with a context) represented by a task
object. Such tasks may be submitted to (executed on, started on) a thread pool forming a task
queue. Each thread of the thread pool will repeatedly pick a task from the task queue and
execute it by calling the associated closure function.

The number of worker threads may be statically determined upon thread pool creation or dy-
namically adjusted according to various parameters.

There may be many options for controlling the task queue as well as the thread pool. E.g.
threads may be created by the thread pool machinery on demand up to a certain limit. Or the
task queue may be of limited size. Also the ordering of the queue may be controllable.

For generality, we in this note take the abstract view that a thread pool may internally decide
on the queue organization as well the actual number of worker threads; and further that any
number of tasks may be submitted to the pool. Therefore, any two tasks submitted to the thread
pool may be executed concurrently. Thus tasks should be seen as a fine-grained concurrency
notion.

Often, the effect or result of a task is needed by other activities. In some thread pool imple-
mentations, the result of a task is represented by a special object, typically known as a future
(or promise) returned when submitting a task. The result may then be awaited by operations
typically named get() or join(). In other implementations, the idea of a future result is built
into the task notion itself.

2Beware that some languages (e.g. Ada) use the term task in the same sense as a thread. Also, some operating
systems (e.g. Linux) internally use task to denote a kernel thread.
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Also the future mechanism (whether explicit or built-in) may provide means for cancelling the
task. If the task is still in the task queue, this amounts to removing it, remembering its cancelled
status. If the task has been selected for execution, the implementation may try let the execution
recognize the cancellation wish, e.g. by setting a flag to be interrogated by the task code or by
using a language based mechanism like interrupts.

The notions of tasks and thread pools have been included as libraries in many languages, e.g.
Java and C#.

Structured concurrency

Often a computation may naturally be described as a number simple tasks that must be executed
in a certain order where a sub-task may be dependent on the result of one (or more) predecessor
tasks. One example is a nested fork-join pattern. To support such structured concurrency,
more advanced thread pools may allow continuation tasks to be attached to existing tasks.
Continuation tasks will typically be given by (lambda) functions which will become eligible for
execution when the predecessor task has finished with a result which is then passed as argument
to the function.

To ease the usage of continuation tasks, the C# language has introduced a special async/await
syntax making the chaining of tasks become similar to normal, synchronous, sequential compo-
sition. This syntax has later been incorporated into other languages.

2.2.2 Light-weight concurrency

Rather than separating work items from execution entities some languages have recently in-
troduced notions where work items are considered concurrent entities by themselves. E.g. a
function may be defined as a “mini-process” to be executed concurrently.

Examples of such notions are go-routines in Go, co-routines in Kotlin and virtual threads in
Java.

Although these notions are often implemented by tasks executed on thread-pools, the program-
mer needs not be aware of this, but may merely think of these as small concurrent processes in
the general sense.

2.3 Example

As we have seen, the notions of processes and threads are used in different senses at various
levels of the system. Also the term “thread” is now also applied at the hardware level. In Figure
2, we give an example illustrating the various notions.

The figure shows two programs being executed on a hyper-threaded computer consisting of
one core with two hardware threads (aka. hyper-threads or logical processors) each capable of
executing its own independent sequence of instructions, but sharing certain execution units of
the core, especially the arithmetic/logical unit (ALU) with each-other.

Each program is executed by an operating system process. The processes may communicate via
inter-process communication (IPC) (e.g. pipes). In the left process three (program) threads have
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Figure 2: Process and thread notions

been created while the right process comprises two threads. In the right process, the program
threads are implemented one-to-one by OS threads, whereas in the left process, the program are
being scheduled on two OS threads using a run-time library.

The four operating system threads are being scheduled by switching the executions of the two
logical processor among the four OS threads. In the situation shown, the two logical processors
execute threads in different processes.

As seen, term “thread” should be used carefully. In these notes, the term will always refer to
the thread notion of the given programming language. In most cases, this will be implemented
one-to-one by an operating system thread. If not, this will be emphasized.

3 Pthreads

Pthreads (POSIX threads) is a prescription for the introduction of light-weight processes (threads)
within the POSIX standardization work for Unix systems. The Pthreads standard was fixed in
1995 as the POSIX.1003.1c standard.

The standard describes a number of system calls that (more or less) must be present in order
for an implementation to comply with the standard.

Any implementation must provide threads and synchronization of these. As described above,
threads are light-weight processes that share an address space. A traditional Unix process may
comprise one or more threads.

An elementary presentation of Pthreads may be found in [NBF96]. As a thorough introductions
to multi-threaded programming using Pthreads, [KSS96] and [But97] are recommended.

3.1 Thread creation

The code of a thread must be provided by a function P with the C type void* P(void* arg).
I.e. the thread gets an argument which is a pointer to “something” and like-wise it may return
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a pointer to “something”. It is up to the program to utilize this.

The thread is created and started dynamically by calling

pthread_create(t,attr,P,arg)

where t is (the address of) a thread handle variable where an identification of the new thread
is put, P is the function that defines the thread, attr is a (pointer to) user-definable attributes
such as stack size etc., and arg is (the address of) an argument that will be passed to P . If one
is satisfied with default attribute values, attr may be set to NULL.

Any call of pthread_create generates a unique thread handle that must be stored in a variable
of the type pthread_t. This value may be used to identify the thread in different calls, e.g. to
await the termination of a particular thread.

3.2 Termination

A thread terminates when the function P is ended with return or calls pthread_exit. The
return value (the pointer to something) is kept until some other thread retrieves it (see below).

A thread request another thread to terminate by calling pthread_cancel. Cancellation in
Pthreads is complex and will not be dealt with here. See [But97].

To await the termination of a thread with handle t the following is used:

pthread_join(t,r)

where r is the (address of) a variable where the “result” of the thread can be put. (If NULL is
used for r , the result is ignored.)

3.3 Example

A program that starts three instances of a function P and awaits their termination could take
the following form:

#include <pthread.h>

void P(void *arg) {

...

}

int main(...) {

pthread_t p1, p2, p3;

pthread_create(&p1, NULL, P, "Huey");

pthread_create(&p2, NULL, P, "Dewey");

pthread_create(&p3, NULL, P, "Louie");

pthread_join(p1, NULL);

pthread_join(p2, NULL);

pthread_join(p3, NULL);

}
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4 Java

Java is an object-oriented language originally developmed by Sun Microsystems for programming
consumer electronics. The language, however, has since gained widespread use as a general
programming language.

From a concurrent programming view, Java is interesting because it from its very beginning
has had an integrated process concept in the form of threads. Threads share resources within a
Java program, including shared data represented by shared objects. A Java program is initially
executed by a main-thread executing the programs main-routine.

An introductory description of threads and their synchronization in Java is found in [OW97].
Advanced usage of Java concurrency is covered extensively in [GPB+06].

4.1 Thread creation

Threads are created through thread objects belonging to the standard class Thread. Each thread
object is assigned a “virtual processor” (the thread proper) that can be accessed and controlled
through the operations of the thread object. E.g. the execution of a thread belonging to a thread
object t is started by calling the start operation of the object: t.start(). Since a thread is
uniquely defined through the thread object it is associated with, we often identify the two and
talk about the thread t .

The code that describes the thread behaviour is determined through a parameterless procedure
named run. Since a procedure cannot be declared by itself in Java, it must be defined in a
separate class, and an object of this class must be provided when the thread object is created3.

Declaration and start of a thread thus take the following form:

class MyThreadCode implements Runnable {

public void run() {

... // Code of thread

}

}

Runnable c = new MyThreadCode();

Thread t = new Thread(c);

t.start();

Here ”implements Runnable” indicates that objects of the class have a run() procedure. First,
a code object c is created and passed as a parameter when creating the thread object t. Now
the thread object remembers that the code is to be found in the c object such that the call of
t.start() starts up a thread that begins executing c.run().

Instead of creating a separate code object, it can be combined with the thread object. This is
accomplished by making a specialization4 of the class Thread with the run-procedure wanted.
Declaration and start then become a little simpler:

3As of Java 1.8, a lambda expression may be used for the Runnable object
4Really just an overwriting of the Thread-class’ given, empty run()-procedure.
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class MyThread extends Thread {

public void run() {

... // Code of thread

}

}

Thread t = new MyThread();

t.start();

As the thread object is not passed any external code object it will by default use itself as code
object such that it becomes t.run() that is being executed as result of t.start().

Since one usually does not need a separate code object, the simpler form will be used in the
sequel.

Thread implemenation

Whereas the first Java Virtual Machines provided a user-space thread library (known as green
threads), it is now understood that a Java thread is associated with an underlying native thread.

4.2 Termination

A Java thread terminates (dies) when its run procedure ends. To await the termination of a
thread t , the operation t.join() is provided. This operations may return with an Interrupted-
exception (see below) why calls of join must appear within an exception handler.

A Java program terminates when all user threads5 have terminated. Thus, the program needs
not terminate when the main thread reaches the end of the main-routine. Any thread, however,
may terminate the program prematurely by calling System.exit(...).

An original operation t.stop() for forcing termination of a thread t has become “deprecated”
since it is difficult to use safely. If a thread needs to be stopped, it may instead be interrupted
by setting a flag it may react to (see section 4.5).

Thread life-cycle

A Java Thread goes through a number for states (or phases) during its existence. When created,
the thread is non-terminated and non-alive. When started, it becomes alive.

During the alive phase, the thread may be ready to execute, running or blocked.

Once terminated (by returning from run()), the thread is no longer alive and will remain so as
a thread cannot be restarted.

5A user thread is a thread that is not marked as a “daemon” by calling t.setDaemon(true)
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4.3 Examples

It is not possible to pass arguments directly to run, but one may declare and set values in the
class to which run belongs.

Below we see a program that starts three concurrent threads of the same type but with different
arguments and awaits their termination:

public class C {

class P extends Thread {

String name;

public P(String n) {

name = n;

}

public void run() {

...

}

public static main(String[] argv) {

Thread p1 = new P("Huey");

Thread p2 = new P("Dewey");

Thread p3 = new P("Louie");

p1.start(); p2.start(); p3.start();

try {p1.join(); } catch (Exception e) {}

try {p2.join(); } catch (Exception e) {}

try {p3.join(); } catch (Exception e) {}

}

}

The private variables of a thread can be declared as local variables in run. If a thread needs to
access shared objects, these must be accessed via global variables or, like parameters, be passed
to the object that run is associated with. If e.g. two threads t1 and t2 are going to use a shared
object x, it can be implemented in the following way:

class Shared { ...}

class MyThread extends Thread {

private Shared s;

public MyThread (Shared x) {

s = x;

}

void run() {

... s.op() ...
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}

}

Shared x = new Shared(); // Create shared object

Thread t1 = new MyThread(x);

Thread t2 = new MyThread(x);

t1.start(); t2.start();

4.4 Thread cancellation

Often in multi-threaded GUI-based applications, activities carried out by dynamically started
threads (e.g. file-download) are to be cancelled. Rather than forcing a thread to die using
the deprecated t.stop() method, the thread should be requested to terminate itself using the
operations:

t.interrupt() Sets the interrupt mark of the thread t
Thread.interrupted() Tests/resets the interrupt mark of the current thread.

The interrupt mark of a thread is a flag that the thread may poll using the interrupted()

method when convenient (and safe) to do so. Hereby the thread may terminate itself in a more
structured way than possible if it was forced to terminate. If the thread is waiting when the
mark is set, it will be reactivated with an InterruptedException. Similarly, if the flag is set
when the threads arrives at a operation that may block the thread, the InterruptedException

is thrown (and the flag reset).

4.5 Other thread operations

A few other useful thread operations:

Thread.sleep(n) Waits for (at least) n milliseconds.
Thread.currentThread() Returns the Thread object of the calling thread

There are also the operations t.suspend() and t.resume() that may be used to temporarily
cease the activity of a thread. However, like the stop operation, suspend and resume have
proven so error-prone that their use is no longer recommended.

4.6 Thread Pools

Since version 5 of the Java platform, it has offered various forms of thread pools.

In Java, an Executor is any class with an execute(r) method, where r is a Runnable object.

An ExecutorService is an extension of Executor corresponding to a standard thread pool
notion. Tasks for execution on the task pool are provided by the basic types Runnable with
a method run() not returning any result or Callable<V> with a method call() returning a
value of type V. Objects of these types may be provided by lambda expressions.

Tasks are submitted to a thread pool tp using:

11



tp.submit(t) Submits a Runnable r for background execution
tp.submit(c) Submits a Callable<V> c for background execution

In both cases, the submission returns a Future object associated with the task and collecting
its result. A Future object f has operations:

f.get() Awaits and returns the result of the task
f.get(t , u) Do. but with time-out after t units u of time
cancel() Attempts to cancel the task

The cancel() method makes an attempt of cancelling the task, but if the task has been dis-
patched for execution by a worker thread, this may not be feasible.

Java provides no default or built-in thread pool. Hence Java programs must create and use
thread pools explicitly. For this, the class ThreadPoolExecutor may be used. It is a very
general thread pool implementation controlled by a number of parameters. Eg. a call of the
constructor ThreadPoolExecutor(n,m, t , u, q) creates a thread pool where:

n default number of threads (known as core threads)
m maximum number of threads
t , u idle threads are reclaimed after t units u of time
q task queue to use

The class Executors provides a number of static factory methods for standard thread pools.
E.g.

Executors.newFixedThreadPool(n)
Executors.newCachedThreadPool()

Executors.newSingleThreadExecutor()

A thread pool created by newFixedThreadPool(n) allocates a fixed number n of worker threads
for the execution. A newCachedThreadPool() allocates threads as needed by tasks, but let them
linger for while when done, waiting for new tasks.

An executor created by newSingleThreadExecutor() allocates one (and only one) worker
thread. This, however, does not correspond to a thread pool proper, but rather resembles
the notion of a server which consistently maintains its own state.

Shutdown

A task pool tp provides methods for shutting it down, in case it is no longer needed:

tp.shutdown() Reject further tasks
tp.shutdownNow() Do. and tries to cancel task under execution
tp.awaitTermination(t , u) Awaits that all task have completed (with timeout)

However, in many use cases, thread pools are supposed to last until the program is closed (where
the shutdown methods may be used).
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Scheduled Execution

In addition to immedate task execution, a scheduled thread pool allows task to be submitted for
execution at a later time or to be repeatedly submitted for execution. E.g. a scheduled thread
pool stp created by Executors.newScheduledThreadPool(n) provides methods like:

stp.schedule(r , t , u) Schedules the runnable r to enter the task queue
after t units u of time

stp.scheduleAtFixedRate(r , t , p, u) Schedules the runnable r to enter the task queue
after t units u of time and then repeatedly
every p units u of time

Fork/Join Pool

In the standard ExecutorService tasks are submitted to the thread pool by external threads
for immediate or scheduled execution. Hence, if one tasks needs the result of another task, the
result will have to be awaited by an external thread (e.g. the main thread) which will then
create a task using this result and submit that to the thread pool.

Many computations naturally follow a fork/join pattern, where a computation splits up into
sub-computations whose results are again combined. This splitting may be done recursively.
Such computations do not fit the basic thread pool pattern well. Although a task may create
sub-tasks, awaiting these with the get() method blocks the worker thread and effectively oppose
the idea of using thread pools.

Since version 7, however, the Java platform has provided a framework supporting fork/join
computations. It comprises a specialized thread pool called a ForkJoinPool used by special
tasks of the type ForkJoinTask. These tasks provide some dedicated execution methods:

t.compute() The computation function of the task
t.fork() Submits the task to the current fork/join pool
t.join() Awaits and returns the result of the task

Typically fork/join tasks are recursive: In the compute() method, sub-tasks are created and
submitted using subi.fork() and then their results awaited using subi.join().

Most fork/join computations are run on a system provided default fork/join pool obtained with
ForkJoinPool.commonPool(). This pool uses work stealing queues — one for each worker
thread. When a (fork/join) task creates new tasks submitted to thread pool using fork(), these
are inserted into the queue of the current thread using a last-in-first-out principle. This way the
thread will work on tasks which are closely related leading to improved performance. If a task
queue is exhausted, tasks from be “stolen” from the queues of other threads.

If a task needs the result of a forked sub-task t , it will call t.join()6. If the sub-task has not
yet been dispatched for execution, the calling worker thread may execute it itself. This way
results from sub-tasks may be efficiently transferred to parent tasks without the need of external
threads.

6Notice that this method is similar to, but different from, the join() method on threads.
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4.7 Virtual Threads

As described in Section 2.2, thread pools were to tackle situations where the thread-per-request
model would not scale well.

Rather than adopting the async/await syntax for coping with massively concurrent systems,
the Java language has an ongoing project, called Loom, which aims at defining a much more
light-weight concurrency notion known as virtual threads.

A virtual thread should be thought of as a standard Java thread, but is not implemented one-
to-one by a native thread. Instead, the thread uses a light-weight implementation which allows
for millions of threads to be created. Thus, with virtual threads, the thread-per-request model
becomes feasible and efficient.

Currently, virtual threads are only available as an early-access pre-release build of Java 19. For
futher details, see [Loo].

5 .NET and C#

The .NET platform is an execution environment developed by MicroSoft corporation. Like the
JVM (Java virtual machine), its major component is a virtual machine executing a byte-code
instruction language. The virtual machine is known as CLR (Common Language Runtime) and
the byte-code as CIL (Common Intermediate Language).

Whereas the Java byte-code and the JVM was designed specifically as a target for the Java high-
level language, CIL has been developed to be the target code of many different programming
languages and parts written in different languages can be combined into a single program. On
the other hand, the object-oriented language C# was developed to address all the functionalities
of the .NET platform and is considered the language of choice for most .NET applications.
C#has many similarities with Java.

Another major component of the platform is the .NET Framework Class Library providing lot
of functionality, dealing especially with interfacing to networks, web-servers and databases.

Major parts of .NET platform specification have been standardized within the ECMA and
ISO organizations [Ecm02a, Ecm02b] and based on this, alternative implementations for non-
MicroSoft platforms have been developed, see e.g. [Mon].

As in Java, concurrency is an inherent notion within the .NET framework as well as the C#

language. Since especially the concurrency part of .NET seems strongly inspired by Java, we
here chosen to present the .NET thread notions by the way they appear in C#, compared to
Java.

5.1 Thread creation and termination

A C#program comprises a number of concurrent threads executing within a shared execution
context.

The built-in classes for C#that support concurrency are found in the namespace System.Threading

namespace7

7A namespace corresponds to a Java package
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In Java, the code to be executed by a thread is defined by a method called run() within some
object and a reference to this object is passed to the thread-object. In C# a new notion of
delegates is used in a similar way.

In general a delegate is a dedicated object that refers to a method in some other object. The
actual reference is bound when the delegate object is created.8 Each threads is represented by
an instance of the Thread class. When the thread object is created, it is passed a reference to a
delegate instance of the type ThreadStart that again points to a parameterless method in some
object. By calling the Start() method on the thread object, a virtual processor is allocated
and starts executing the method pointed to by the delegate.

A typical creation of a thread in C#could look like:

class MyThreadCode {

public void WorkToBeDone() {

... // Code of thread

}

}

MyThreadCode c = new MyThreadCode({ parameters});

Thread t = new Thread(new ThreadStart(c.WorkToBeDone));

t.Start();

Here new ThreadStart(c.WorkToBeDone) creates a delegate object pointing to WorkToBeDone

in object c. The effect is that the thread t will start executing the WorkToBeDone concurrently
with the main thread.

5.2 Thread control

The life cycle of a C# thread resembles that of a Java thread. Initially, the thread is unstarted.
When started by the Start() method, it becomes running (no distinction is made between being
ready to execute or actually executing). From the running state, it may enter the a waiting state,
e.g. by calling Sleep() or Join(). When the threads reaches the end of its thread body, it
enters the stopped state.

A thread may be suspended and resumed. However, as in Java, this should only be used for
scheduling experiments and not as a synchronization method.

As in Java, a thread may be cancelled in two ways. The Abort() method will stop a thread im-
mediately, throwing an ThreadAbortException. This should be used with utmost care in order
to clean up the effects of the thread. Similar to Java, a more controlled way of stopping a thread
is by calling Interrupt(). If the thread is in the waiting state, an InterruptedExecption will
be thrown. Otherwise, an interrupt mark is set and the exception will be throw whenever the
thread performs an operation that may wait.

Threads also have operations for setting thread priorities and operations that may control low-
level access to shared variables.

The mechanism specific for synchronization are covered in [Løv16].

8Compatible delegates may actually be combined, but that would make little sense for thread bodies.
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5.3 Other thread related notions

The need for isolating parts of a program due to security or robustness issues (like running an
applet within a browser) was in Java addressed by the notion of thread groups. In .NET a
similar notion is that of application domains. Usually a program runs in a single application
domain, but may create new ones and load these with new parts of the program (using a unit
of code known as assemblies, typically a single file). Various protection parameters may be set
up for each application domain.

6 C++

Althouth C++ has been standardized since 1998, concurrency has not been part of this. Instead,
users of C++ have relied on platform specific libraries like Pthreads for concurrent programming
or used cross-platform libraries like Boost or Qt.

With the C++-11 standard of 2011, the language has become concurrency aware in a platform
independent way.

A thorough presentation of the concurrency related aspects of the C++-11 standard is presented
in [Wil12] including a large number of application examples.

6.1 C++ Threads

Threads in C++ are created and controlled via objects of the std::thread class found in the
<thread> library. A thread is dynamically created by declaring a thread object, passing a
callable item in the constructor. The callable item may be a named function, a lambda function
or an object with a callable operator. Parameters to the callable may be passed as well. The
effect is that a thread is immediately started executing the code of the callable item and this
thread becomes owned by the thread object.

Indirectly the thread that declared the thread object becomes the owner of newly started thread.
The owner may await termination of the new thread by calling t.join() on the thread object.
Once joined, however, the association between the thread object and the thread disappears and
subsequent calls of t.join() will result in run-time errors.

Beware that although the thread notion superfically may resemble that of other languages like
Java and C#, the C++ threading model is more complex and there are a number of subtle
differences that one should observe. Eg. that a thread may be joined only once. Consult [Wil12]
for a comprehensive presentation of these issues.

6.2 Example

Our standard example may be implemented by:

#include <string>

#include <threads>

void p(string &name) {
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...

}

int main(...) {

std::thread p1 (p, "Huey");

std::thread p2 (p, "Dewey");

std::thread p3 (p, "Louie");

p1.join();

p2.join();

p3.join();

}

7 Python

Python is a popular interpreted programming language. It is characterized by having a very
dynamic type system and a large number of libraries. The language is well documented at its
web site [Pyt].

The concurrency notions have evolved over many years. The current framework for concurrent
execution is the module threading which provides a notion of threads, closely following the
Java thread model.

Thus, as in Java, a thread may be created by extending the Thread class and overwriting a
run() with the code to be executed concurrently. The concurrent execution of an instance of
this class is then started by calling a start() method on the thread object. Also it is possible
to join with a thread, ie. awaiting its termination.

The standard implementation of Python, CPython, maps Python threads one-to-one with un-
derlying operating system threads. However, due to the interpreted execution, access to the
common interpreter data structures (including object reference counts) are confined to a global
critical region controlled by the so-called global interpreter lock (GIL). This implies that the
execution cannot exploit an underlying multiprocessor (multicore) architecture.

In order for a CPU bound Python program to run faster on a parallel architecture, other libraries
must be used, eg. the multiprocessing module which enables Python execution to take place
using several operating system processes. The interface to the Process class has carefully been
defined to mimic that of the Thread class.

7.1 Example

The standard example follows the Java structure, but using a simpler syntax:

import threading

class P (threading.Thread):

def __init__(self, name):

threading.Thread.__init__(self)
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self.name = name

def run(self):

...

p1 = P("Huey!")

p2 = P("Dewey!")

p3 = P("Louie!")

p1.start()

p2.start()

p3.start()

p1.join()

p2.join()

p3.join()

8 Erlang

Erlang is a programming language developed by the Ericsson company for use in their telecom-
munication equipment. The language has been designed with emphasis on simplicity, concur-
rency and robustness. In recent years, the language has received renewed interest as a candidate
for scalable computing.

Erlang is basically a dynamically typed functional language enhanced with concurrency and
message passing. This implies that activities are programmed by functions that typically call
themselves recursively in order to provide an indefinite behaviour. Functions may be executed
(strictly evaluated) as an independent activity by spawning a new process to do the evaluation.
Each spawned processes generates a unique process identifier which works as a handle for di-
recting messages to this process (see other parts of these notes) as well as for setting up an
exit-handler for the process. This closely follows the general actor model of concurrency.

Erlang processes are comparable to threads, but are typically even more light-weight. They are
implemented at user-level by scheduling one or more underlying operating system threads. Also,
a system of Erlang processes may be distributed over several computation nodes enabling simple
scaling of programs.

The identifiers of processes may be stored in a kind of registry such that they may be looked
up by name. [This shared data structure is somewhat in conflict with the rest of the philosophy
though.]

The language itself has extended with several libraries including Open Telecom Platform (OTP)
which provides interfacing to networks, databases etc.

Information about Erlang can be found at erlang.org. An introduction to programming in
Erlang can be found in [Arm07].

8.1 Example

Below we show an Erlang program which creates three sub-processes and await their termination.
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-module(donald).

-export([main/0]).

p(Name,Uncle) ->

...

Uncle ! {self(),’DONE’}.

main() ->

Me = self(),

A = spawn(fun () -> p("Hewey", Me) end),

B = spawn(fun () -> p("Dewey", Me) end),

C = spawn(fun () -> p("Louie", Me) end),

receive {A,’DONE’} -> {} end,

receive {B,’DONE’} -> {} end,

receive {C,’DONE’} -> {} end.

In this example, three instances of the function P are spawned as processes which will run con-
currently with the main function. Erlang has no direct means of awaiting process termination9,
so here this is accomplished by explicit sending of termination messages from the sub-processes.
The details of the message passing will be covered in other parts of these notes.

9 Scala

Scala is new language on the scene offering a combination of functional and object oriented
programming.

With roots in the Java world, it provides a syntactically simple, extensible language which may
be compiled to the Java Virtual Machine and seamlessly run together with Java libraries.

The core Scala language does not define a built-in notion of concurrency. It is possible to
access the underlying Java thread model with shared state, but this is considered error-prone.
However, it is possible to make library-based language extensions and several of such ones have
been developed for concurrent programming (see below).

Information about the Scala language can be found at scala-lang.org. For an introduction,
covering the Actor library, see [OSV08]

9.1 The Scala Actors Library

The Scala Actors library is an attempt of providing the notion of communicating actors as a con-
currency programming model. The library is heavily inspired by the built-in Erlang concurrency
notions.

As in Erlang, sub-processes (called actors) are spawned and their identity stored. This may
then be used to send messages to private mailbox of the actor. The actor may selectively receive
and handle messages from its mailbox.

9Erlang does have a notion of links which can be used to generate termination messages automatically upon
process exit. See the Erlang documentation for details
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There are several notions of message passing available. These, however, are covered in a separate
note.

Normally actors are implemented one-to-one by underlying OS threads. However, for certain
constrained actor behaviour (known as reactions), they may be scheduled efficiently at user-level
using a limited number of underlying OS threads.

The standard implementation of actors does not allow communication to extend a single Java
Virtual Machine. However, a recent library called Akka addresses the issues of actors commu-
nicating transparently over a network of distributed JVMs.

9.2 Example

Below we show a Scala program which creates three processes and await their termination.

import scala.actors.Actor

case class Done(a: Actor)

class Nephew(name: String, uncle: Actor) extends Actor {

def act() = {

...

uncle ! Done(this)

}

}

class Uncle extends Actor {

def act() = {

val A = new Nephew("Hewey",this)

val B = new Nephew("Dewey",this)

val C = new Nephew("Louie",this)

A.start(); B.start(); C.start()

receive {case Done(A) =>}

receive {case Done(B) =>}

receive {case Done(C) =>}

}

}

object Donald {

def main(args: Array[String])= {

val donald = new Uncle().start

}

}

Here each sub-process is represented by the act() method of an Actor class. Much like in Java,
this is instantiated and started in order to run the process concurrently.

As in Erlang, there is less need for joining with a started process, since it should not modify
shared state. However, as in the Erlang example, we may emulate a join by waiting for a
dedicated termination message from the sub-process. Here, the message is of the form Done(pid)
where pid is the identity of the sub-process. This message types must be declared as a (case)
class. Finally, a global Donald object (corresponding to a static class) acts as the program entry
actvating the first actor.

20



10 Rust

Rust a recent language which tries to address memory and concurrency issues such as dangling
pointers and unprotected concurrent access to shared data through its type system.

The languages combines functional and imperative paradigms with elements of object-oriented
programming using a c-like concrete syntax. Is is a compiled language aiming at being the
langauge of choice for efficient systems programming (replacing C/C++).

Rust is well documented on the language home page [Rus] although the language itself it still
in a stabilizing phase. The initial development of the language was done under the auspices of
the Mozilla project.

For concurrency, Rust offers a simple version of traditional threads. A piece of sequential Rust
code in the form of a parameterless function may be executed by its own thread by passing it to
the spawn function of the thread package. The result of this is a handle to the result the thread
may yield. This is like a future which may be awaited and retrieved by the method t.join().

Unlike Java, a Rust program terminates whenever the main thread terminates. Currently there
are no means of cancelling a thread.

The interesting part about Rust concurrency is the way data shared among concurrent threads is
handled. Using a sophisticated type system, the language tries to avoid common issues like race
conditions. This aspect, however, is covered in the synchronization part of these notes [Løv16].

10.1 Example

Our usual example may be expressed by the following Rust program:

use std::thread;

fn p(name: &str) {

...

}

fn main() {

let p1 = thread::spawn(|| p("Huey"));

let p2 = thread::spawn(|| p("Dewey"));

let p3 = thread::spawn(|| p("Louie"));

p1.join().unwrap();

p2.join().unwrap();

p3.join().unwrap();

}

A few langauge notes:

The || in the spawn function is not something indicating parallel execution. It is part of the
(dubious) notation for lambda expressions (closures) in Rust which generally takes the form
|params| expression only here, the function has no parameters.

The unwrap() method call on the (void) result of join ensures that if the thread ended in a fatal
situation (known as panic), this will make the main thread panic too. If left out, a compiler
warning about unused results will appear.
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11 Go

Go is a newer language which attempts to provide limited set of simple notions sufficient efficient
systems programming.

The language has high focus on concurrency introducing its own notion of a light-weight thread,
called a goroutine (a pun on the old term co-routine). Goroutines are meant to interact by
message passing although shared state is also feasible.

The Go language is documented on the home page [Go]. Even though the development is
anchored at Google, the language is anchored at the Google company.

Any function can be started as a concurrent goroutine by prefixing its call with the keyword go.
Also anonyous function expressions (lambda-expressions) may be started concurrently this way.

Conceptually each goroutine is a light-weight concurrency unit executing independently of each
other. Goroutines are typically implemented by tasks scheduled on an pool of OS threads, but
the programmer would not be aware of this.

Go does not provide handles to started goroutines, so there is no way to join with a goroutine
waiting for its termination. Instead an explicit termination communication protocol may be
established or a synchronization mechanism like the provided WaitGroup may be used.

11.1 Example

Our usual example may be expressed by the following Go program:

package main

import "fmt"

import "sync"

var wg sync.WaitGroup

func p(name string) {

defer wg.Done()

for i := 0; i < 10; i++ {

fmt.Printf("I am %s\", name)

}

}

func main() {

wg.Add(3);

go p("Huey")

go p("Dewey")

go p("Louie")

wg.Wait()

fmt.Println("Enough, thanks!")

}
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Here the go actions spawns new go-routines concurrently executing the p instances. To wait
for their termination, a WaitGroup instance wg initialized to 3 is used. The defer construct
exeutes the Done() operation when the p function ends, thereby decrementing the WaitGroup
counter by 1. When the counter reaches 0, the main program may pass the wg.Wait() operation,
terminating the program properly.

12 Other languages

There are numerous other languages for which processes/threads are integrated concepts. Among
the historically most prominent ones, we mention:

Concurrent Pascal was the Danish operating systems pioneer Per Brinch Hansen’s proposal for
at language with integrated concurrency notions. The communication is based upon monitors.
Long time before DOS/Windows he demonstrated how a single-user operating systems could be
written almost entirely in Concurrent Pascal.

Concurrent Pascal has been in industrial use, but now it is only of historical interest.

Modula-3 was developed by the former company Digital and Olivetti for the purpose of struc-
tured systems programming (i.e. as an alternative to C). The syntax is (as in Modula-2) Pascal-
like. The language has a notion of threads and syntactically supports a Ptheads-like monitor
concept. The language has been in industrial use, but lost to the emergence of Pthreads and
Java.

Concurrent ML is an ML library that extends the functional language ML with a thread
concept. Threads communicate through synchronous communication.

Ada was originally defined in 1980 by the US Department of Defense for use within the US
military systems. Later several revsions of the language have appeared (Ada-95, Ada-12, Ada-
15).

Ada has an integrated process notion called tasks. An Ada-program may create a number of tasks
to be executed concurrently and share the resources of the program. Thus, tasks correspond to
threads in the other languages.

The good description and discussion of Ada’s concurrent programming facilities is found in
[BW95].
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