
Course 02158

Message Passing Variants

Hans Henrik Løvengreen

DTU Compute

Message Passing — Examples

• The Message Passing Interface (MPI) library

• The synchronous channel communication of the Go language

• The rendezvous notion in Ada

• The actor model of Erlang and Scala

• The tuple space model of Linda

• The Protocol Buffer (ProtoBuf) IDL for message encoding

• The ZeroMQ (ZMQ) message passing library

• The MQTT IoT message passing library



Message Passing Interface (MPI) — History

Background ∼ 1990

• Many vendors of ”supercomputers” with similar software

• A group of 80 people (vendors and researchers) formed MPI Forum

• Goal: A uniform way of programming distributed memory systems

• June 1994: Version 1.0

• API and protocols for interaction (ca. 130 functions)

Status

• De facto standard for programming distributed memory systems

• Official bindings for: C, C++, FORTRAN

• Unofficial bindings for: .NET, Java, Python, ...

• OpenMPI is a very common, open source implementation

• Current major versions: 3.1 (2015), 4.1 (2021), 5.0 (2023) . . .

MPI — Key Notions

Processes

• An MPI application consists of a set of communicating processes

• Processes are (usually) single-threaded
— Single Program Multiple Data (SPMD)

Communicators

• A communicator is communication universe with a set of processes

• Each process within a communicator has a unique rank (0...)

• The full set of started processes belong to MPI COMM WORLD

• Processes within a communicator may communicate using:
I Point-to-point communication
I Collective communication



MPI — Point-to-Point Communication

Operations

• In s: MPI Send(bufps , counts , types , dest, tags , comms)

• In r : MPI Recv(bufpr , countr , typer , source, tagr , commr , statusp)

• Type codes: MPI INT, MPI CHAR, MPI BYTE, . . .

• source and tagr may be wildcards: MPI ANY TAG, MPI ANY SOURCE (∗)

Communication

• If operations match: commr = comms , dest = r ,
source = s or source = ∗,
tagr = tags , or tagr = ∗,

types = typer
• Then: counts elements are copied from bufps to bufpr .

• If counts > countr an error occurs.

• From statusp, the source s, tags , and counts may be retrieved.

MPI — Point-to-Point Semantics

General

• Communication is reliable

• Communication between a given sender and a given receiver is ordered

• No fairness guarantee — starvation may occur

Standard mode

• MPI may buffer the message (or not).

• Both MPI Send and MPI Recv are blocking

• When MPI Send returns, its buffer may be reused

Alternatives

• Other modes: Synchronous, buffered, non-blocking, ...

• Many auxiliary operations, e.g. MPI Probe()



Example: Hello MPI World

int main(void) {

char greeting[MAX_STRING]; /* String storing message */

int comm_sz; /* Number of processes */

int my_rank; /* My process rank */

MPI_Init(NULL, NULL);

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

...

MPI_Finalize();

}

Example: Hello MPI World

if (my_rank != 0) {

sprintf(greeting, "Greetings from process %d of %d!",

my_rank, comm_sz);

/* Send message to process 0 */

MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0,

MPI_COMM_WORLD);

} else {

printf("Greetings from process %d of %d!\n", my_rank, comm_sz);

for (int q = 1; q < comm_sz; q++) {

/* Receive message from process q */

MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q,

0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("%s\n", greeting);

}

}



Collective Communication

Basis

• Barrier:
...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

...

MPI Barrier(c);
...

• To be called by all in communicator c

Extensions

• Broadcast

• Scattering

• Gathering

• Reduction

Collective Communication — Allgather

Operation

• MPI Allgather(bufps , counts , types , bufpr , countr , typer , comm)

• To be called by all in communicator — senders/receivers

• Only bufpr acts as output (for all)— all others as input

• Must all agree on types = typer , counts = countr , comm

Effect



Collective Communication — Gather + processing = Reduce

Operation

• MPI Reduce(bufps , bufpr , count, type, op, dest, comm)

• To be called by all in communicator — senders and receiver

• Only bufpr acts as output (for dest)— all others as input

• Op codes: MPI SUM, MPI PROD, MPI MAX, MPI MIN, . . .

• Must all agree on type, count, op, dest, comm

Effect

MPI on Hybrid Architectures

• Cluster

• DTU HPC clusters: Eg. 30 nodes with 12+12 cores



The Go Language

• Language developed by Google released in 2012

• Idea: Powerful language based on simple concepts

• Concurrency notions based on CSP

• Large set of libraries — especially for networking

• Aimed at handling many simultaneous events and scaling well

• Open source at golang.org

Applications

• Used in many Google components

• Used for parts of DropBox, NetFlix, Uber, Twitch, . . .

• Basis for the Docker virtual container environment

Go: Sequential language

• Statically typed, compiled imperative language with C-like concrete syntax

• Simple types: byte, bool, int, intX , string, . . .

• Composite types: Arrays, structures, maps

• Go has both alias types and defined types

• Recently generic types have been added

• x := e; . . . abbreviates var x = e; . . .

• Generic loop construct: for

• Variables may be allocated on the stack or on the heap (new)

• Structure types may have accociated methods ∼ classes



Go: Concurrency

Goroutines

• Asynchronous execution of function calls: go f (...)

func p(name string) {

for i := 0; i < 10; i++ {

fmt.Printf("I am %s\n", name)

}

}

func main() {

go p("Huey")

go p("Dewey")

go p("Louie")

}

• A goroutine is a very lightweight process notion

• Internally, goroutines are scheduled on a thread pool (no need to known)

Go: Communication

Channels

• Channels are typed fixed-size buffered message carriers

• A channel variable holds a reference to a channel (object) (initially nil)

• A synchronous channel is created by: make(chan T)

• A buffered channel with capacity N is created by: make(chan T, N)

• A channel ch may be closed preventing further sends: close(ch)

• Channel parameters may be constrained to sending or receiving only

Communication operations

• Send value of expresion e to channel ch: ch<- e (ch ! e)

• Receive value from ch in variable x: x = <-ch (ch ? x)

• A nil channel is never ready to communicate

• A closed channel ch returns null values

• Test for closedness: x, ok = <-ch



Go: Communication — example

• func sender(ch chan<- int) {

for i := 0; i < 10; i++ { ch<- i }

close(ch)
}

func main() {

var votes = make(chan int)

go sender(votes)

var sum = 0;

for {

var x, ok = <-votes

if !ok { break }

fmt.Println("Got ", x); sum += x

}

fmt.Println("No more votes. Tally: ", sum)

}

Go Selection

• Choice among posssible communications

select {
case x := <- ch1 :

SL1

case y := <- ch2 :

SL2

case <- time.After(5 ∗ time.Second) :

SL3

}
• Both send and receive guards — no boolean guards

• Randomized choice among enabled communications

• If none enabled: Blocks unless default branch

• Timeout may be emulated by a timed channel communication



CSP: N element buffer

West Copy East

buf

N

• process Copy

var buf[N] : char;

in, out, count : integer := 0;

do count < N; West ? buf[in] →
count := count+ 1; in := (in+ 1) mod N

[] count > 0; East ! buf[out] →
count := count− 1; out := (out+ 1) mod N

od

Go: Buffer Server

• type Buf struct { depositc, fetchc chan T; }

• func when(b bool, c chan T) chan T { if b {return c} else {return nil} }

• func (buf *Buf) init() {

buf.depositc = make(chan T)

buf.fetchc = make(chan T)

go func () {

buffer:= make([]T, N)

in, out, count := 0, 0, 0

for {

select {

case buffer[in] = <- when(count < N, buf.depositc):

in = (in + 1) % N; count++

case when(count > 0, buf.fetchc) <- buffer[out]:

out = (out + 1) % N; count--

}}}()

}



Go: Synchronization

• Go discourages use of shared variables — but does not forbid them

• Access to shared variables may be synchronized via channel communication

• Alternative means for synchronization of goroutines are in the sync package

Sync package

• WaitGroup to await a group of goroutines to have terminated

• Once may be used for iniitialization

• Mutex and Condition

• Thread-safe versions of datastructures

WaitGroup

• wg.Add(n) Add atomically n to wait count

• wg.Done() Decrement wait count by 1

• wg.Wait() Block until wait count is 0

Go: Synchronization — WaitGroup example

• var wg sync.WaitGroup

func p(name string) {

defer wg.Done()

for i := 0; i < 10; i++ {

fmt.Printf("I am %s\n", name)

}

}

func main() {

wg.Add(3);

go p("Huey")

go p("Dewey")

go p("Louie")

wg.Wait()

}



Go: Barrier Monitor

• type Barrier struct { count int; release *sync.Cond }

func (b *Barrier) init() {

b.count = 0

b.release = sync.NewCond(&sync.Mutex{})

}

func (b *Barrier) sync() {

b.release.L.Lock()

defer b.release.L.Unlock()

b.count++

if b.count==N {

b.count = 0; b.release.Broadcast(); printBar()

} else {

b.release.Wait() // NO Spurious wakeups in Go!!

}

}



The Ada Language

History

• Developed for US DoD around 1980

• Named after Ada Augusta Lovelace (1815–1852) — World’s first programmer

• First compilers around 1985 (price 100.000$ — not for universities)

• Has primarily been used within avionics and space

Ada Characteristics

• Imperative language with modules and exceptions (but no classes!)

• Rich syntactic concurrency support (tasks, rendezvous, protected objects)

• Real-time support

• Strongly typed, mnay constructs, verbose

• Some run-time systems run without underlying OS

Ada: Bounded Buffer

• task Buffer is
entry Append(I: in Integer);

entry Take(I: out Integer);

end Buffer;



Ada: Bounded Buffer

• task body Buffer is
B: Buffer_Array;

In_ptr, Out_ptr, Count := 0;

begin
loop

select
when Count < Index’Last =>

accept Append(I: in Integer) do
B(In_ptr) := I;

end Append;

Count := Count + 1; In_ptr := In_ptr + 1;

or
when Count > 0 =>

accept Take(I: out Integer) do
I := B(Out_ptr);

end Take;

Count := Count - 1; Out_ptr := Out_ptr + 1;

end select
end loop

end Buffer

Ada: Protected Object

• protected Semaphore is
entry P;

procedure V;

private
S: Integer := 0;

end Semaphore;

• protected body Semaphore is

entry P when S > 0 is
begin
S := S - 1;

end;

procedure V is
begin
S := S +1;

end;

end Semaphore;



The Erlang Language

History

• Developed by Ericsson during 1980’ies

• Open Source version of compiler/libraries in 2000

• Used especially for telephone switches

Erlang Characteristics

• Functional language with concurrency

• Asyncronous (buffered) communication

• Distributes readily

• Small contex switch times

• Not hard real-time

• Runs on top of (RT-)OS

Actor Model

B

A

D

C



The Scala Language

• Multi-paradigm langauge developed at EPFL since 2001

• Lead by Martin Odersky (Java compiler, Java generics)

• Predecessors: Pizza, Funnel

• Open source, active community

• Famous industrial application: Twitter distribution engine.

Aims

• Expressive, expandable langaguage (contrast to. eg. Java, C#)

• Consise, flexible syntax

• Production quality (static typing, interoperability, JVM, .NET?)

• Simple support for concurrency

Recent adoption

• Basis for the chisel hardware description languge (for FPGA programming)

Scala Example: Resource Allocator

• class TypedAllocator[T](pool : Seq[T]) extends Actor{
trait AllocatorReq

case class Acquire() extends AllocatorReq

case class Release(r : T) extends AllocatorReq

val free =new ListBuffer[T]

def act() = {
free ++= pool

loop {
receive {

case Acquire() if !free.isEmpty => reply(free.remove(0))

case Release(r) => free+ = r

}
}

}
}



Scala Example: Resource Allocator — usage

• Interface wrappers:

def acquire() : T = (this !? Acquire()).asInstanceOf[T]

def release(r : T) = this ! Release(r)

• class Client(manager : TypedAllocator[Res]) extends Actor{
def act() = {

valres = manager.acquire()

res.use()

manager.release(res)

}
}

• val manager = newallocator.TypedAllocator[Res](resseq)

manager.start

for (i <− 1 to 5) {new Client(manager).start}

The Tuple Space Model

Put

Take

Read

• Most known tuple space implementation: Linda


