
Course 02158

Barriers and Memory Models

Hans Henrik Løvengreen

DTU Compute

Phased Computation

• Let taski be some computation step for datapart i

• process Master

loop
co [i : 1..n]

do taski

oc
end loop

• process Worker [i : 1..n]

loop

do taski

wait for all tasks to complete ← BARRIER
end loop

Barrier with Shared Variables

Simple solution

• var count : integer := 0;

• process Worker [i : 1..n]

loop

do taski

〈 count := count + 1 〉;
await count = n

end loop

• Works only once

Barrier with Shared Variables

Cyclic barrier attempt

• var count : integer := 0;

• process Worker [i : 1..n]

loop

do taski

〈 count := count + 1 〉;
if count = n then count := 0;

await count = 0

end loop

• Race condition: May get stuck

Barrier with Shared Variables

Double barrier

• var count1, count2 : integer := 0;

• process Worker [i : 1..n]

loop

do taski

〈 count1 := count1 + 1 〉;
if count1 = n then count1 := 0;

await count1 = 0

〈 count2 := count2 + 1 〉;
if count2 = n then count2 := 0;

await count2 = 0

end loop

Barrier with Shared Variables

Coordinator-based

• var arrive[1..n] : int := 0;

continue[1..n] : bool := 0;

• process Worker [i : 1..n]

loop

do taski

arrive[i] := 1;

await continue[i] = 1;

continue[i] := 0;

end loop

process Coordinator

loop
for i : 1..n do
{ await arrive[i] = 1;

arrive[i] := 0 }
for i : 1..n do

continue[i] := 1;

end loop

• General principle: Process awaiting flag resets it

Loose Memory

P1 P2x = 0 y = 0

x := 1

y := 2

a := y

b := x

a > 0⇒ b > 0 FAILS

1

2

2

1 / 0

Caveats of Low-level Sharing

• Consider var x , y : int; x := 1; y := 2

• x and y may not be assigned as expected:

I The compiler may reorder the assignments
I The processor may reorder the store instructions
I The memory system may reorder the write operations
I The compiler/processor may keep values in registers

• Proper ordring must be ensured by synchronization instructions

Java low-level memory model

• Access to variables (except long and double) is atomic

• Joining a thread ensures that its memory operations are completed

• Monitor entry/exit synchronize memory operations

• Access to volatile variables is always synchronized

Linux Spin Locks

Linux 2.6.22

• static inline void __raw_spin_lock(raw_spinlock_t *lock)

{

asm volatile("\n1:\t"
LOCK_PREFIX " ; decb %0\n\t"

"jns 3f\n"

"2:\t"

"rep;nop\n\t"

"cmpb $0,%0\n\t"

"jle 2b\n\t"

"jmp 1b\n"

"3:\n\t"

: "+m" (lock->slock) : : "memory");

}

Linux Spin Locks

Linux 2.6.22

• var lock : integer := 1;

• Lock(lock):

〈 lock := lock − 1; r := lock 〉;
while r < 0 do
{ repeat

delay ;

until lock > 0;

〈 lock := lock − 1; r := lock 〉;
}

• Unlock(lock):

lock := 1;

lock := lock − 1; r := lock

r ≥ 0→
r < 0→ delay

lock > 0→

lock ≤ 0→

lock := 1

Linux Spin Locks

Linux 2.6.22

• /*

* Your basic SMP spinlocks, allowing only a single CPU anywhere

*

* Simple spin lock operations. There are two variants, one clears IRQ’s

* on the local processor, one does not.

*

* We make no fairness assumptions. They have a cost.

*

* (the type definitions are in asm/spinlock_types.h)

*/

Critical Region with Shared Variables

Ticket Algorithm

• var number , next : integer := 1;

turn[i : 1..n] : integer := 0;

process P[i : 1..n]

loop
〈 turni := number ; number := number + 1 〉;
〈 await turni = next 〉;
critical sectioni ;

〈 next := next + 1 〉;
noncritical sectioni ;

end loop

Linux Spin Locks

Linux 3.11

• static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)

{

register struct __raw_tickets inc = { .tail = 1 };

inc = xadd(&lock->tickets, inc);

for (;;) {

if (inc.head == inc.tail)

break;
cpu_relax();

inc.head = ACCESS_ONCE(lock->tickets.head);

}

barrier(); /* make sure nothing creeps before the lock is taken */

}

