Course 02158

Invariants

Hans Henrik Løvengreen

DTU Compute

Invariants

- Let I be a *state predicate* over the global state of a concurrent program P
- I is an invariant of P if it holds at any time in any execution
- Safety properties can be expressed as invariants (+ *history variables*)

Syntax

- May refer to the value of *global variables*, e.g. x = 5 or $\neg done$.
- May refer to the *control state* of each process, e.g. $\pi_i = I$.
- Abbreviations (for action a in process P_i)

at
$$I \stackrel{\Delta}{=} \pi_i = I$$

at $a \stackrel{\Delta}{=} \pi_i = preloc(a)$

• For a statement $S: a_1; a_2; \ldots; a_n$:

in
$$S \stackrel{\triangle}{=} at a_1 \lor at a_2 \lor ... \lor a_n$$

at $S \stackrel{\triangle}{=} at a_1$
after $S \stackrel{\triangle}{=} after a_n$

Invariance Notion

Inductive Invariance Technique

- Let there be given a concurrent program with atomic actions
- A state predicate / is said to be *inductive* if
 - ▶ / holds for the initial state.
 - ▶ Any atomic action a of the program preserves I, i.e. for any state s for which I is satisfied, it is either the case that:
 - a) a cannot be executed in s, or
 - b) the execution of a in state s results in a state s' that again satisfies l.
- If I is inductive, it is an invariant of the program.
- To show a), known invariants and may be used.
- If I fails to be inductive, it may be strenghtened.

Critical Region with Shared Variables

Fine-grained attempt III (Back-off)

```
process P_2
loop

in2 := true;

while in1 do \{ in2 := false;

delay;

in2 := true \}

critical section<sub>2</sub>;

in2 := false;

noncritical section<sub>2</sub>

end loop
```

Example: Back-off attempt

Invariance Using Auxiliary Invariant

Backoff attempt — **Invariants**

Mutual Exlusion

$$I \stackrel{\Delta}{=} \neg (\textit{in crit}_1 \land \textit{in crit}_2)$$

Local invariants

$$I_1 \stackrel{\triangle}{=} in crit_1 \Rightarrow in_1$$

$$I_2 \stackrel{\Delta}{=} in \ crit_2 \Rightarrow in_2$$

Invariance Using Strengthened Invariant

Example: Peterson's algorithm

```
• var tryA, tryB : boolean;
       turn: (A, B);
   try_A := false; try_B := false; turn := A;
   process P_A
                                                   process P_B
     repeat
                                                      repeat
        Non-Crit_A;
                                                        Non-Crit_B;
        try_A := true;
                                                        try_B := true;
        turn := B;
                                                        turn := A;
        while try_B \wedge turn = B \text{ do }; W_B:
W_A:
                                                        while try_A \wedge turn = A do;
        Crit_A;
                                                        Crit_{B};
        try_A := false
                                                        try_B := false
     forever
                                                     forever
```

Example: Peterson's algorithm

Peterson's algorithm - Invariants

Mutual Exlusion

$$I \stackrel{\Delta}{=} \neg (in \ Crit_A \land in \ Crit_B)$$

Local invariants

$$I_1 \stackrel{\triangle}{=} in W_A..Crit_A \Rightarrow try_A$$

 $I_2 \stackrel{\triangle}{=} in W_B..Crit_B \Rightarrow try_B$

Value invariants

$$I_3 \stackrel{\Delta}{=} turn = A \lor turn = B$$

Auxiliary invariants

$$I_a \stackrel{\Delta}{=} in W_A \wedge in Crit_B \Rightarrow turn = B$$
 $I_b \stackrel{\Delta}{=} in W_B \wedge in Crit_A \Rightarrow turn = A$

Pre/post Notation

• Let *a* be a given action:

- Let (...)' refer to the state after execution of a
- Action a preserves predicate / iff

$$I \wedge B \wedge at l \wedge$$
 "effect of a " $\Rightarrow I'$

where the effect is formally given by

$$x' = e \wedge at \ m',$$

 $y' = y$ for all variables y different from x ,
 $q' = q$ for all control predicates q not involving l or m .

Pre/post Notation — **Example**

Peterson's algorithm

- Prove: $I_a \stackrel{\Delta}{=} in W_A \wedge in Crit_B \Rightarrow turn = B$ is an invariant
- Inititially: at Non-Crit_A \Rightarrow $\neg in W_A$ \Rightarrow I_a

Process	Action	Proof	Argument
P_A	turn := B	l _a '	turn' = B
P_B	turn := A	¬in Crit _B ′ Ia′	at $W_B{}^\prime$
	$\neg try_A ightarrow$	$\neg in W_A$ $\neg in W_A'$ I_a'	Cond., I_1 in $W_A' = in W_A$
	$\mathit{turn} \neq A \rightarrow$	$turn = B$ $turn' = B$ I_{a}'	Cond., I_3 turn' = turn