Course 02158

Invariants

Hans Henrik Lgvengreen

DTU Compute

Invariants

e Let / be a state predicate over the global state of a concurrent program P
e [is an invariant of P if it holds at any time in any execution

o Safety properties can be expressed as invariants (+ history variables)
Syntax

May refer to the value of global variables, e.g. x =5 or —done.
May refer to the control state of each process, e.g. m; = I.
Abbreviations (for action a in process P;)

>

at!l = mi=1
A
ata = m; = preloc(a)
e For a statement S: aj;ay;... ;a,:
) A
inS = atayVata V...Va,
A
at$S = ata
A
after S = after a,

Invariance Notion

Inductive Invariance Technique

e Let there be given a concurrent program with atomic actions

A state predicate / is said to be inductive if

» | holds for the initial state.

» Any atomic action a of the program preserves [, i.e. for any state s for which / is
satisfied, it is either the case that:
a) a cannot be executed in s, or
b) the execution of a in state s results in a state s’ that again satisfies /.

If / is inductive, it is an invariant of the program.

To show a), known invariants and may be used.

If / fails to be inductive, it may be strenghtened.

Critical Region with Shared Variables

Fine-grained attempt Il (Back-off)

® var inl,in2 : bool := false;
process P;
loop
inl := true;
while in2 do { inl := false;
delay;
inl := true}
critical sectiony;
inl := false;
noncritical section
end loop

process P,
loop

in2 := true;
while inl do { in2 := false;
delay;
in2 := true}
critical sections;
in2 := false;

noncritical sections

end loop

Example: Back-off attempt

»
e >

inl := true .
inl := true

delay

inl := false

-
>

in2 := true .
in2 := true

delay

in2 := false

Invariance Using Auxiliary Invariant

Backoff attempt — Invariants

e Mutual Exlusion

1>

=(in crity A in crity)

e Local invariants

incrity = ing

>l

in crity = ino

Invariance Using Strengthened Invariant

S/
a
S
Z
R
Example: Peterson’s algorithm
® var trya, trys : boolean;
turn : (A, B);
trya = false;, tryg := false, turn := A;
process Pa process Pg
repeat repeat
Non-Crita; Non-Critg;
trya = true, tryp = true,
turn := B; turn = A;
Woa: while tryg A turn = B do ; We: while trys A turn = A do ;
Crita; Critg;
trya = false trys := false

forever forever

Example: Peterson’s algorithm

tryg = false

Peterson’s algorithm — Invariants

Mutual Exlusion

/
e |ocal invariants
h
b
e Value invariants
I3
e Auxiliary invariants
, £

1>

£ =(in Crita A in Critg)

A :
= in Wu..Critp = trya

1>

in Wg..Critg = tryg

turn = AV turn = B

in Wa A in Critg = turn = B

in Wg A in Crita = turn = A

Pre/post Notation

e Let a be a given action:

a:B—-x:=e

o Let (...) refer to the state after execution of a

e Action a preserves predicate /| iff
I ANB A atl A"effect of 3" = /I

where the effect is formally given by

x'=eAatm/,
y =y for all variables y different from x,
g =q for all control predicates g not involving [or m.

Pre/post Notation — Example

Peterson’s algorithm

A .)) . . :
e Prove: I, = inWju A in Critg = turn = B is an invariant

e Inititially: at Non-Crita = —inW, = |,

Process | Action Proof Argument
Pa turn .= B L/ turn’ = B
Pg turn := A —in Critg’ at Wg'

1/

—trya — —in Wy Cond., K
=in WA/ n WA/ =In WA
1,/

turn # A — | turn =B Cond.,
turn’ = B turn’ = turn
1,/

