
DTU Compute
Technical University of Denmark
Building 324
DK–2800 Lyngby
Denmark

HHL 2024–08–29

02158 CONCURRENT PROGRAMMING

FALL 2024

Auxiliary Exercises

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 1

Petri Nets

Exercise Petri.1

Five boats shuttle between two jetties, A and C, via a jetty B. Jetty A and C each has a
capacity of two boats, whereas jetty B has a capacity of three boats. Make a Petri Net
model of the boat traffic.

Exercise Petri.2

Four actions A, B , C , and D are to be synchronized as follows:

After execution of A, either B or C is executed. Concurrently with this, D is
executed. All of this is repeated forever.

(a) Draw a Petri-net in which the actions A to D are represented by transitions and synchro-
nized as described above.

(b) Which pairs of actions can be executed in parallel?

(c) Which interleavings (sequences of single transition firings) are possible for the first cycle
of the execution?

Exercise Petri.3

Make a Petri Net for following process:

Root Galettes

1 leek 2 large potatoes salt, pepper
2 carrots 1 egg yolk olive oil
1 parsnip (1 tsp Maizena)

The leek is rinsed and finely chopped. The root vegetables are peeled and cut
en julienne. Mix with egg yolk and optionally Maizena (cornflour). Season with
salt and pepper and fry in hot oil like small pancakes, a couple of minutes on
each side. Put on absorbing kitchen paper and serve.

Note: The paste is divided into 10 portions and there are two frying pans avail-
able.

Problem originally due to the Danish cook, Claus Meyer.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 2

Exercise Petri.4

Draw the Petri Net N = (P ,T ,F) where

P = {p1, p2, p3}
T = {t1, t2, t3}
F = {(p1, t1), (p1, t2), (p3, t2), (p2, t3), (t1, p2), (t2, p2), (t2, p3), (t3, p1)}

with the marking M0 = (2, 0, 1) (corresponding to (p1, p2, p3)).

Write all simultaneous firings possible from M0 using the notation M0

U
−→ M ′.

Exercise Petri.5

Write down the mathematical model for Figure 1.1 in [Basic].

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 3

Transition Systems

Exercise Trans.1

Find all interleavings of the two processes:

Pa : a1, a2, a3
Pb : b1, b2

Exercise Trans.2

Assume that two processes P1 and P2 consist of sequences of n1 and n2 actions respectively.
Find an expression for the number of possible interleavings of P1 and P2.

Exercise Trans.3

Find all interleavings of the three processes:

Pa : a1
Pb: b1, b2
Pc: c1

Exercise Trans.4

Assume that Pi is a process consisting of ni actions. Find an expression for the number
of interleavings of

P1,P2, . . . ,Pk

Exercise Trans.5

Draw transition diagrams for the two processes in the following program:

var x , y : integer ;
x := 1; y := 2;

co x := y + 1 ‖ y := x − 1 oc

Now, draw (the reachable part of) the transition graph for the full program. The nodes
should be states of the form (x , y , t1, t2, π1, π2), where ti are local variables and πi are the
control variables of the two processes.

From the graph, determine the possible final values of x and y .

Exercise Trans.6

Make a transition diagram for each of the two processes in Figure 2.2 in [Andrews].

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 4

Shared Variables

Exercise Share.1 (Lock-step problem)

Write, using shared variables only, to pieces of program, SYNCA and SYNCB , that syn-
chronize to processes PA and PB such that they proceed in lock-steps. More precisely, if
opA and opB are operations in PA and PB respectively, then the number of times these
two operations have been executed must differ by at most one.

process PA;
repeat

SYNCA;
. . .

opA;
. . .

forever

process PB ;
repeat

SYNCB ;
. . .

opB ;
. . .

forever

Exercise Share.2

In the following program, it is attempted to establish a critical region for two concurrent
processes by using two shared boolean variables C1 and C2:

var C1,C2 : boolean;

C1 := false; C2 := false;

process P1;
repeat

nc1: non-critical section1;
r1: repeat

a1: C1 := ¬C2;
until ¬C2;

cs1: critical section1;
e1: C1 := false

forever;

process P2;
repeat

nc2: non-critical section2;
r2: repeat

a2: C2 := ¬C1;
until ¬C1;

cs2: critical section2;
e2: C2 := false

forever;

(a) Draw the transition diagrams for P1 and P2.

(b) Show that the program does not ensure mutual exclusion.

(c) Assume that a1 and a2 are executed as atomic statements instead, i.e. a1: 〈C1 := ¬C2 〉
and a2: 〈C2 := ¬C1 〉.

Determine whether the algorithm now ensures mutual exclusion.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 5

Exercise Share.3

Consider the problem of establishing a critical region using a coordinator process addressed
in Andrews Ex. 3.12. A proposal for the form of the processes is:

process P [i : 1..n] =
repeat

non critical sectioni ;
enter [i] := true;
〈await in[i] 〉;
critical sectioni ;
in[i] := false

forever

(a) Write a proposal for the coordinator process.

(b) Express mutual exclusion among n process as an invariant.

(c) State and prove some auxiliary invariants of your program that may be combined to show
mutual exclusion.

Hint: What can be said about in[i] in the critical section? What is is known about the
state of the coordinator process when in[i] is true?

(d) Is your algorithm fair?

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 6

Theory (Safety and Liveness)

Exercise Theory.1

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 y < 2 → y := y + 1; x := y 〉 forever

‖
repeat a2: 〈 x = 0 → y := 0 〉 forever

‖
repeat a3: x := 0 forever

oc

Question 1.1:

(a) Prove inductively that I
∆
= 0 ≤ x ≤ y ≤ 2 is an invariant of the program.

(b) Draw the (reachable part of) the transition graph for the program. Since control
remains at the a-actions, only the (x , y) part of the state needs be shown.

(c) Determine whether ¬(x = 1 ∧ y = 2) is an invariant of the program.

Question 1.2:

(a) Argue that ✷✸x = 1 holds for the program under the assumption of weak fairness.

(b) Show that ✷✸x = 2 does not hold, even under the assumption of strong fairness.

Question 1.3:

(a) Assume that the action a2 cannot be considered atomic as a whole.

Draw the transition diagram representing a2 then and show that I is no longer an
invariant of the program.

(b) In the original program, assume that the action a1 is replaced by the refinement:

b1: await y < 2; c1: t := y ; d1: y := t + 1; e1: 〈 x := y 〉

where t is a local integer variable.

State a predicate H that implies I , holds initially, and is inductive for the program
(i.e. strong enough to be preserved by all atomic actions).

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 7

Semaphores

Exercise Sema.1

Three processes P1, P2, and P3 execute three operations A, B , and C respectively.

The operations are to be synchronized using semaphores as follows:

var SA,SB ,SC : semaphore;

SA := 0; SB := 0; SC := 0;

process PA;
repeat

A;
V(SC);
P(SA)

forever

process PB ;
repeat

B ;
V(SC);
P(SB)

forever

process PC ;
repeat

P(SC);
P(SC);
C ;
V(SA);
V(SB);

forever

Draw a Petri net in which the operations A, B , and C are synchronized the same way as
in the above program. In the net, the operations must occur as transitions.

Exercise Sema.2

Recall the problem and solution to Exercise Petri.2.

Now, the four operations/actions are to be executed by four sequential processes PA, PB ,
PC , and PD respectively. Write a program using semaphores to synchronize the four
processes such that the operations A to D are synchronized as in the Petri-net. (The
choice of which operation to execute, B or C , need not be fair, and can be left to the
semaphore mechanism.)

Exercise Sema.3

The meeting problem (barrier problem, lock-step problem) for two processes has been
solved in Section 3.6 in [Basic] using general semaphores.

(a) Show that this solutions does not work with binary semaphores.

(b) Solve the meeting problem for two processes using binary semaphores only. Use the
semaphore invariant to show that binary semaphores are sufficient.

Exercise Sema.4

Solve the meeting problem for three processes using semaphores.

Exercise Sema.5

Write a piece of code SYNCi that solves the meeting/barrier problem for an arbitrary
number of processes N using semaphores only.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 8

Monitors

In all the below exercises you should assume Signal-and-Continue (SC) semantics of condition
queues unless otherwise stated.

Exercise Mon.1

Write a monitor with two procedures SYNCA and SYNCB to be used by two processes PA

and PB respectively. The monitor should synchronize the two processes, i.e. make them
meet/wait for each other.

Exercise Mon.2

Now, the above problem is generalized to making N processes meet before any of them can
proceed (also known as the barrier problem). Write a monitor with a single procecedure
SYNC to be used by all the processes for the synchronization.

Exercise Mon.3

The general meeting problem from the preceeding exercise is now to be modified such that
the N processes not only meet but also “share the loot”. I.e. each process comes with a
number (given as a parameter to SYNC) and get the mean value of all numbers back (as
a return value). Write a monitor that solves this problem. Beware that due to the SC
semantics, processes may call the monitor again before all have got their share of the loot.

Hint: Use an extra ”pre-queue” where processes may be delayed while the sharing takes
place.

Exercise Mon.4

(a) Write a monitor with two operations sleep and wakeup that implements the synchronization
mechanism of Andrews Ex. 4.6. You should assume that spurious wakeups do not occur.

(b) Show how the monitor could be implemented if spurious wakeups might occur.

Hint: Use e.g. a modification of the ticket algorithm using a counter to hold the current
round.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 9

Exercise Mon.5

Let M be a positive constant. Consider the following specification of a chunk semaphore:

monitor ChunkSem;

var s : integer := 0;

procedure V () : 〈 s = 0 → s := s +M 〉;

procedure P() : 〈 s > 0 → s := s − 1 〉;

end;

(a) Implement the monitor.

(b) State and argue for a monitor invariant expressing the range of the variable s.

(c) State and argue for a monitor invariant expressing that calls of P() do not wait unnecce-
sarily.

(d) Suppose that M is small compared to the number of processes that may call P(). Does
your solution avoid unneccesary wakeups? If not, try to minimize the wakeups. Is the
property from (c) still a monitor invariant? If not, try to remedy this.

(e) Determine if your monitor (and invariants) would be robust towards spurious wakeups.

(f) Describe how you would have to implement the monitor in Java.

Exercise Mon.6

In Andrews Figure 5.7, a Timer monitor is implemented by a covering condition which is
true, ie. whenever the tod (time-of-day) is changed, all waiting processes are woken up.
This may be quite expensive.

Optimize the monitor such that the processes are only woken up when the next relevant
point of time is reached.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 10

CSP

From Concurrent Programming Exam, June 1994 (4-hours)

PROBLEM 3 (approx. 15 %)

Three CSP processes P1,P2, and P3 perform three operations A, B , and C respectively. The
operations are to be synchronized which is accomplished by communication among the processes:

process P1 =
repeat

P2 ! ();
A

forever

process P2 =
repeat

if P1 ? () → skip

[] P3 ? () → skip

fi;
B

forever

process P3 =
repeat

P2 ! ();
C

forever

Question 3.1:

Draw a Petri-net in which the three operations A, B , and C are synchronized the same way
as in the CSP program. In the net, the operations should be represented by transitions.

The operations are now to be executed by three sequential processes PA, PB , and PC :

process PA =
repeat

A
forever

process PB =
repeat

B
forever

process PC =
repeat

C
forever

Question 3.2:

Show how semaphores can be used to synchronize the three processes such that A, B , and
C are synchronized in the same way as in the CSP program.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 11

Rendezvous

Exercise Rendez.1

A monitor-implementation of a semaphore-like mechanism is given below. In the monitor,
posinteger is the type of all positive (> 0) integers.

monitor Event

var S : integer := 0;
Q : condition;

procedure Pass;
if S = 0 then wait(Q)

procedure Clear(var r : integer);
r := S ;
S := 0

procedure Release(v : posinteger);
S := S + v ;
signal all(Q)

end

(a) Define a module with the same interface as Event and implement it using rendezvous.
Make sure that you get an effect similar to signal all in Release.

(b) The Event monitor corresponds to the semaphore mechanism found in the (now bygone)
operating system OS/2. Show how to use (an instance e of) Event to implement a classical
semaphore s. Hint: V(s) can be implemented simply as e.Release(1).

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 12

Deadlocks

From Concurrent Programming Exam, December 1998 (4-hours)

PROBLEM 4 (approx. 10 %)

In a system there is one instance of a resource type A, two instances of a type B , and three
instances of a type C . The resources are used by four processes P1, P2, P3, and P4. The
processes have declared their maximal resource demands as shown below. Furthermore, it is
shown which resources have been allocated and which are requested at a certain moment.

Max
A B C

P1 1 2 0
P2 0 1 1
P3 1 0 3
P4 0 2 2

Allocation Request
A B C A B C

P1 1 0 0 0 0 0
P2 0 1 0 0 0 0
P3 0 0 1 0 0 1
P4 0 1 0 0 0 1

Question 4.1:

Draw a resource allocation graph corresponding to this situation. In the graph, the ex-
pected, not yet requested, resource needs should be indicated by dashed arrows.

Question 4.2:

(a) Show that the situation is safe.

(b) Determine whether P4 can be granted the requested C -instance according to the banker’s
algorithm.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 13

Parallel Computation

Exercise ParComp.1

In a system computations may be carried out by submitting tasks to a thread pool with
a fixed number of worker threads. The system is executed on a machine with 8 uniform
processors. It is assumed that there are no other activities in the system and that overhead
from the thread pool management and scheduling can be ignored.

A computation consists of five independent computation tasks with the following execution
times (in seconds):

A 1

B 2

C 2

D 5

E 6

Assume that two worker threads are allocated for the thread pool.

(a) Draw a task scheduling scenario in which the shortest possible execution time is
achieved for the computation. State the execution time and determine the speedup
obtained.

(b) Draw a task scheduling scenario in which the longest possible execution time is
achieved for the computation. State the execution time and determine the speedup
obtained.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 14

FURTHER SELECTED EXAM PROBLEMS

From Concurrent Systems Exam, December 2002 (4-hours)

PROBLEM 3 (approx. 15 %)

Below, a monitor implementation of a synchronization mechanism Gate is shown. The gate may
be opened or closed by an operation Set . Processes call Pass() to pass the gate and have to wait
if the gate is closed. A special operation Go(k) lets up to k of the currently waiting processes
pass through the gate.

monitor Gate

var open : boolean := false;
Queue : condition;

procedure Pass() {
if ¬open then wait(Queue);

}

procedure Set(b : boolean) {
open := b;
if open then signal all(Queue);

}

procedure Go(k : integer) {
for j in 1..k do signal(Queue);

}

end

Question 3.1:

(a) Define a predicate I expressing that calls of Pass() do not wait unnecessarily.

(b) Argue that I is an invariant of the monitor.

(c) Describe the effect of Go(k) if there are less than k calls of Pass() currently waiting.

Question 3.2:

The functioning of the given monitor Gate is now to be implemented by a module with
the following specification:

module Gate
op Pass();
op Set(boolean);
op Go(integer);

end

Write a server process for the module Gate that services the operations by rendezvous in
such a way that it functions like the given monitor Gate as seen from the calling processes.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 15

From Concurrent Systems Exam, December 2003 (2-hours)

PROBLEM 2 (approx. 30 %)

The questions in this problem can be solved independently of each other.

Question 2.1:

A process P uses three shared integer variables x , y , and z . The variable x is both read and
written by other processes, whereas y and z are only read by other processes. Determine
which of the following statements in P can be considered to be atomic.

a: x := x + 1
b: x := y + 1
c: y := x + 1

d : y := y + 1
e: x := y + z
f : z := y + z

Question 2.2:

A concurrent program is given by:

var x , y : integer := 0;

co x := y + 1 ‖ 〈 y := x + 2 〉; x := 2 oc

(a) Draw a transition diagram for each process.

(b) Determine all possible final states (x , y) of the program.

Question 2.3:

Let x and y be integer variables. Determine which of the predicates P , Q , and R are
preserved by which of the actions a1, a2, and a3, respectively:

P
∆
= x + y ≥ 0

Q
∆
= 0 ≤ y ≤ x

R
∆
= x 6= y

a1: y := 0

a2: 〈 y < 0 → y := x + 1 〉

a3: 〈 y = 0 → x := 0 〉

Question 2.4:

Let x and y be integer variables and let the temporal logic formula F be defined by:

F
∆
= (✷ y > x ≥ 0) ∧ (✷✸ x = 0) ∧ (x = 0 ❀ x 6= 0)

(a) Let states be given by pairs (x , y). Give an example of an execution for which F holds.
The execution should be given as a short sequence of states which is repeated forever.

Now, consider each of the following actions within a program:

a1: 〈await x = 0 〉
a2: 〈await y > 1 〉

a3: 〈await x = 0 ∨ y > 1 〉
a4: 〈await x = 0 ∧ y > 1 〉

Assume that control has reached the particular action and that F is valid for the program.

(b) Determine which of the actions will be eventually executed assuming weak fairness.

(c) Determine which of the actions will be eventually executed assuming strong fairness.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 16

From Concurrent Systems Exam, December 2003 (2-hours)

PROBLEM 3 (approx. 20 %)

Let N be a positive integer. The server-based module Batch given below implements a synchro-
nization mechanism that “collects” a batch of N items provided by calls of put() which may then
be “removed” by a call of unload().

module Batch
op put();
op unload();

body

process Control ;
var count : integer := 0;
repeat

while count < N do

in put() → count := count + 1 ni;
in unload() → count := 0 ni;

forever;

end Batch;

Question 3.1:

Assume N = 3. Suppose that, concurrently, unload() is called by two processes and put()
is called by five processes. Assuming no further calls, describe the overall effect of these
seven calls.

Question 3.2:

Now, the module Batch is to be replaced with a monitor which provides the same operations
and behaves in the same way. Write such a monitor.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 17

From Concurrent Systems Exam, December 2004 (2-hours)

PROBLEM 3 (approx. 25 %)

The server-based module Latch given below implements a simple synchronization mechanism.
The latch maintains a non-negative count which may be set to some value by set(k) and decre-
mented by down(). The operation await() returns only when the count has reached zero.

module Latch
op set(integer);
op down();
op await();

body

process Control ;
var count : integer := 0;
repeat

in set(k : integer) → if k ≥ 0 then count := k

[] down() → if count > 0 then count := count − 1

[] await() and count = 0 → skip

ni

forever;

end Latch;

Question 3.1:

The module Latch is to be replaced with a monitor which provides the same operations
and behaves in the same way. Write such a monitor.

Question 3.2:

In this question we consider Latch to be a type of which distinct instances can be declared.

A number of worker processes P1,P2, . . . ,Pn need to establish a barrier to synchronize
their rounds of work. The barrier is to be implemented by four Latch-instances and a
coordinator process Q .

The code for the processes is shown below:

var latch1, latch2, latch3, latch4 : Latch;

latch1.set(n); latch2.set(1);

process P [i : 1..n];
repeat

do worki ;
synchronize:

latch1.down();
latch2.await();
latch3.down();
latch4.await()

forever;

process Q ;
repeat
...

forever;

Write the body of the coordinator process Q such that the given synchronize code
implements barrier synchronization for P1,P2, . . . ,Pn .

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 18

From Concurrent Systems Exam, December 2006 (4-hours)

PROBLEM 2 (approx. 25 %)

In a system, a number of operations A1,A2, . . . ,An with corresponding successor operations
B1,B2, . . . ,Bn (n ≥ 1) plus an operation C are to be executed the following way:

(∗) A1,A2, . . . ,An are executed concurrently. When Ai is has finished, the corrresponding Bi

is executed. As soon as all of A1,A2, . . . ,An have finished, C can be executed concurrently
with the B -operations. When all the operations B1,B2, . . . ,Bn , and C have finished, the
execution starts all over again.

Question 2.1:

For a system with n = 2, draw a Petri Net in which the five operations A1, A2, B1, B2, and
C are synchronized as described by (∗). In the net, the operations should be represented
by transitions.

Question 2.2:

The operations are to be executed by n sequential processes P1,P2, . . . ,Pn plus a sequential
process Q . These processes have the form:

process P [i : 1..n];
repeat

Ai ;
Bi ;

forever

process Q ;
repeat

C ;
forever

Show how to synchronize these processes using semaphores so that the operations A1, . . . ,An ,
B1, . . . ,Bn and C become synchronized as described by (∗).

Question 2.3:

The processes P1,P2, . . . ,Pn and Q are now to be synchronized using a monitor Sync.

monitor Sync
...

end

process P [i : 1..n];
repeat

Ai ;
Bi ;

forever

process Q ;
repeat

C ;
forever

Write a monitor Sync providing appropriate synchronization procedures and show how
these procedures are to be used by the processes Pi (i = 1..n) and Q such that the
operations A1, . . . ,An , B1, . . . ,Bn and C are executed as described by (∗).

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 19

From Concurrent Systems Exam, December 2007 (4-hours)

PROBLEM 1 (approx. 25 %)

The implementation shown below of a critical region for two processes, P1 and P2, utilizes
a machine instruction which indivisibly reads and increments an integer variable and another
instruction which indivisibly decrements an integer variable. In the program these instructions
are denoted by statements of the form 〈Y := X ; X := X +1 〉 and 〈X := X −1 〉. The variables
C1, C2 and L are not changed in any other places than those shown.

var C1,C2,L : integer ;

C1 := 0; C2 := 0; L := 0;

process P1;
repeat

nc1: non-critical section1;
a1: 〈C1 := L; L := L+ 1 〉;
w1: await C1 = 0;
cs1: critical section1;
b1: 〈L := L− 1 〉;
d1: C2 := 0

forever;

process P2;
repeat

nc2: non-critical section2;
a2: 〈C2 := L; L := L+ 1 〉;
w2: await C2 = 0;
cs2: critical section2;
b2: 〈L := L− 1 〉;
d2: C1 := 0

forever;

Question 1.1:

Draw the part of the transition diagram for P1 which would represent a1 if the statements ai
were not atomic, but instead given as ordinary statement sequences {Ci := L; L := L+ 1}
(for i = 1, 2).

For i = 1, 2 the predicate Ri is defined by: Ri

∆
= at wi ∨ in csi ∨ at bi

Furthermore, the predicate H is defined by:

H
∆
= |R1|+ |R2| = L

where |·| denotes the numerical value of a boolean expression, ie. |true| = 1, |false| = 0.

Question 1.2:

Argue that H is an invariant for the given program.

You are informed that the following predicates F , G1, and G2 are invariants of the program:

F
∆
= 0 ≤ C1 ≤ 1 ∧ 0 ≤ C2 ≤ 1

G1

∆
= C1 = 1 ⇒ at w1 ∧ (R2 ∨ at d2)

G2

∆
= C2 = 1 ⇒ at w2 ∧ (R1 ∨ at d1)

Question 1.3:

(a) State which values the variables L, C1, and C2 may take in a state where at a1 ∧ R2 holds.

(b) Define a predicate I of the form

I
∆
= R1 ∧ R2 ⇒ ”boolean expression using C1 and C2”

which expresses what can be said about C1 and C2 when both processes are in their
R-sections. Argue that I is an invariant of the program.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 20

(c) Show, using the invariants, that mutual exclusion is ensured in the given program.

Question 1.4:

(a) Express as a temporal logic formula the property of resolution for the critical region.

(b) Argue that resolution holds for the critical region.

(c) Determine if starvation may occur in the given program and justify your answer.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 21

From Concurrent Systems Exam, December 2008 (4-hours)

PROBLEM 3 (approx. 40 %)

A region with variable capacity is a resource which may be acquired by a number of user processes
up to a certain capacity which may be changed dynamically. Access to the region is obtained
by calling the operation acquire() and release of the region is done by calling the operation
release(). The capacity of the region is initially given by the constant N (N ≥ 0). The capacity
may be changed dynamically by calling the operation set(k : natural) (where natural is the type
of non-negative integers) which will set the capacity to k . If the number of current users is
greater than k , a call of set(k) will block until the number of users equals k .

The server-based module VarReg given below implements such a variable capacity region:

module VarReg
op acquire();
op release();
op set(k : natural);

body

process Control ;
var users : integer := 0;

max : natural := N ;
repeat

in acquire() and users < max → users := users + 1
[] release() → users := users − 1
[] set(k : natural) →

max := k ;
while users > max do

in release() → users := users − 1 ni

ni

forever;

end VarReg ;

The questions in this problem are all related to the VarReg module, but can be solved

independently of each other.

Question 3.1:

It is desired to add an operation get users() returns integer which should return the
current number of region users. The operation may be called at any time and should
return immediately.

Describe the changes which should be made to the VarReg module in order to implement
such an operation.

Question 3.2:

A system with exactly one writer process and m (m > 0) reader processes are to be
synchronized using the given module VarReg .

Show how this may be accomplished by stating the required initial capacity N as well as
the pre and post protocols for reading and writing.

02158 Concurrent Programming Fall 2024 Auxiliary Exercises Page 22

Question 3.3:

In a system there are three instances of a resource type A, one instance of type B and two
instances of type C . The resources are used by three processes P1, P2, and P3.

The three resource types are controlled by a copy of the VarReg module each, called RegA,
RegB , and RegC . The modules are initialized with the constants NA = 3, NB = 1, and
NC = 2 respectively, but are otherwise identical to VarReg . The resource instances are
acquired and released by using the acquire() and release() operations on the respective
modules. The set() operation is not used in this system.

The processes have the following form where . . . indicates use of the acquired resources:

process P1;
RegC .acquire();
RegA.acquire();

→ . . .

RegB .acquire();
. . .

RegA.release();
RegB .release();
RegC .release();

process P2;
RegA.acquire();
. . .

RegB .acquire();
→

RegC .acquire();
. . .

RegA.release();
RegB .release();
RegC .release();

process P3;
RegA.acquire();

→ . . .

RegC .acquire();
RegA.acquire();
. . .

RegA.release();
RegA.release();
RegC .release();

At a given moment, the processes have reached the locations indicated with arrows (→). In
particular, P2 has ended the call of RegB .acquire(), but has not yet called RegC .acquire().

(a) Draw a resource allocation graph corresponding to the situation at the given moment. In
the graph, the expected future resource claims should be indicated by dashed arrows.

(b) Explain why this situation would normally be called safe.

(c) Demonstrate that deadlock may occur from the given situation.

(d) Show with a brief argument how the system can made generally deadlock free by exchanging
neighbour acquisitions.

Question 3.4:

Specify the effect of the operations acquire(), release(), and set(k) in terms of conditional
atomic actions acting upon the state variables users, max and possibly auxiliary variables.

Hint: The effect of set(k) must be stated as two consecutive atomic actions.

Question 3.5:

The given module VarReg is to be replaced by a monitor which provides the same opera-
tions and behaves in the same way.

(a) Write such a monitor.

(b) State a monitor invariant expressing that calls of acquire() do not wait unnecessarily.

