
02158 CONCURRENT PROGRAMMING HHL 03–12–2021

Suggested Solutions for

Written Exam, December 7, 2021

PROBLEM 1

Question 1.1

(a) The speedup cannot exceed the number of processors nor worker threads, hence 2 is the
upper limit determined by the number of threads.

(b) Similarly, here 4 is the upper limit determined by the number of processors.

Question 1.2

(a) With the given execution times, a perfect fit is possible:

t1

t2

t3

C B

D A

E
✲

0 5 10

The resulting exeucition time is 5 seconds yielding a speedup of 15
5

= 3.

(b) To suffer a speedup less than 2, the execution time would have to be greater than 15
2

=
7.5 seconds. This is the case in the following scenario:

t1

t2

t3

B A

C E

D
✲

0 5 10

where the execution time becomes 8 seconds..

(c) The tasks could be submitted in reverse alphabetical order: E , D , C , B , and A. Any
other sequence ending in B , A is also feasible.



02158 CONCURRENT PROGRAMMING Page 2

PROBLEM 2

Question 2.1

(a) Transition diagrams:

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

✍✌
✎☞
l3

❄

❄
a1: x := 2

❄
a2: t1 := x

❄
a3: y := t1 + 3

P1:

✍✌
✎☞
k0

✍✌
✎☞
k1

✍✌
✎☞
k2

✍✌
✎☞
k3

❄

❄
b1: t2 := x

❄
b2: t2 := t2 + y

❄
b3: x := t2 + 1

P1:

[Left-to-right evaluation assumed. Location and action labels not required.]

(b) The final values of x can be found by going through the 20 possible interleavings. Alter-
natively, we may observe that the value is detmined by either a1 or b3. In the case of b3
the value further depends on the ordering of a1/b1 and of a3/b2. Either way, the possible
values are found to be

1, 2, 3, 6, 8

Question 2.2

P is preserved by a and c. By a, sinde the guard ensures that y > 0. Not by b if y is
negative. Byc as x is incremented.

Q is preserved by all three actions. Obviously by a. By b as the zero-ness of y is preserved.
Finally the guard of c ensures that x = 0 is preserved (if y 6= 0).

R is preserved by b and c. Not by a as it may violate 0 < x . By b as it makes y more
positive and by c, as the guard is not satisfied for R.

Question 2.3

(a) Transition graph:

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(2, 1)

(2, 2) (3, 2)

✲ ✲
a1

�
�
�✒
a1

�
�
�✒
a1

❅
❅
❅❘

a1

✲a1

❆
❆
❆❆

❆
❆
❆❆❯

a1

✛ a2

✛ a2

☎a2✞

❄

✻
a3

■
a3

✒
a2

✒
a2

✠

a3



02158 CONCURRENT PROGRAMMING Page 3

(b) Assuming weak fairness

• F does not hold. Among the reachable states, the condition (x + y = 0) is satisfied
only for (0, 0). However, since this state must be left due to weak fairness and cannot
be entered again, F cannot hold.

• G holds. The condition y = 2 can occur in the states (0, 2), (2, 2), and (3, 2). From
(2, 2) and (2, 3) the state (0, 2) must eventually be reached and from there (1, 0) is
reached.

• H does not hold. States with y = 2 may be avoided by the infinite execution

(0, 0)
a1−→ (1, 0)

a1−→ (2, 1)
a2−→ (0, 1)

a1−→ (1, 0)
a1−→ · · · (∗)

satisfying weak fairness since a3 is not continously enabled and hence does not have
to be executed.

• I does not hold. The state (2, 2) is the only reachable state satisfying (x + y = 4).
Hence it follows from above.

Assuming strong fairness

• F does not hold. Strong fairness does not change the fact that (0, 0) cannot be
reentered, once left.

• G holds. Since G holds for weak fairness, it also holds for strong fairness.

• H holds. In order to avoid a state with y = 2 the execution would have to follow
the execution (∗) (possibly taking some extra a2 loops in (0, 1)). However, in such
an execution, a3 is infinitely often enabled without being taken thus violating strong
fairness. Therefore states satifying y = 2 must be visited infinitely often.

• I does not hold. The state (2, 2) can be avoided by the infinite execution

(0, 0)
a1−→ (1, 0)

a1−→ (2, 1)
a1−→ (3, 2)

a3−→ (3, 2)
a2−→ (0, 2)

a1−→ (1, 0)
a1−→ · · ·

This satisfies strong fairness since all tree actions are executed infinitely often.

PROBLEM 3

Question 3.1

A2 A3A1

B1 B3B2



02158 CONCURRENT PROGRAMMING Page 4

Question 3.2

In order to control the ending barrier one of the processes, Pn , is appointed coordinator for
the barrier synchronization. Otherwise, the solution reflects the synchronization pattern
shown in the Petri Net.

var SA[1..n − 1] : semaphore; — Ai+1 done
SB [1..n − 1] : semaphore; — Bi done
SC [1..n − 1] : semaphore; — OK to restart Pi

All semaphores are initialized to 0

process P [i : 1..n − 1];
repeat

Ai ;
if i > 1 then V(SA[i − 1]);
P(SA[i ]);
Bi ;
V(SB [i ]);
P(SC [i ])

forever

process Pn ;
repeat

An ;
V(SA[n − 1]);
Bn ;
for j in 1..n − 1 do P(SB [j ]);
for j in 1..n − 1 do V(SC [j ])

forever

[It is possible to use common semaphore SB instead of SB [1..n].]

Question 3.3

monitor Synch

var adone[1..n] : boolean := false; — A done flags
done : integer := 0; — No. of B ’s done
TryA : condition; — Await some new A done
Alldone : condition; — Await all B ’s done

procedure doneA(i : integer) {
adone[i ] := true;
if i > 1 then

if adone[i − 1] then signal all(TryA)
if i < n then

while ¬adone[i + 1] do wait(TryA);
}

procedure doneB() {
done := done + 1;
if done < n then wait(Alldone)

else { done := 0;
for j in 1..n do

adone[j ] := false;
signal all(Alldone) }

}

end

[The solution uses a covering condition for TryA. A more efficient solution could use an
array of condition queues to be signalled individually.]



02158 CONCURRENT PROGRAMMING Page 5

PROBLEM 4

Spørgsm̊al 4.1

(a) limit = 500 means that the packing process has called fill and is waiting for the bag to be
filled with (at least) 500 grammes of candies. sum = 215 says that candy processes with
a total of 215 grammes of candies have been allowed to pour and count = 3 means that
three of these have not yet finished doing so.

(b) As count is initialized to 0 and the candy processes always call start() before end(), for
each decrement of count in end() it will always have been incremented once in start().
Hence I follows.

(c) The packing process should wait only if the filling is not yet (completely) finished:

IQ
∆
= waiting(Filled) > 0 ⇒ sum < limit ∨ count > 0

Proof:

– IQ holds initially as Filled is empty.

– If IQ holds at the beginning of start , nothing has changed if the process waits. If the
while-loop is passed, sum is incremented (possibly violating sum < limit), but also
count is incremented making count > 0 true. Hence IQ is preserved by start .

– In end the decrement of count may make count = 0 but if also sum ≥ limit the
condition Filled will be signalled and as as most one process can be waiting, the
queue will be emptied. Hence IQ is preserved by end .

– In fill , the clearance of sum ensures that sum < limit will hold at the wait. After the
wait, the condition queue is empty and IQ is preserved.

As IQ holds initially and is preserved by all operations, it is a monitor invariant.

(d) Only the wait in fill is vulnerable. It may be protected by the condition found in (c):

procedure fill(g : posinteger) {
...
while sum < limit ∨ count > 0 do wait(Filled)
...

}



02158 CONCURRENT PROGRAMMING Page 6

Question 4.2

As the number of candy processes needed cannot be determined before the capacity of the
bag is known, one is forced to accept a call of fill and then hold the rendezvous until the
bag has been filled:

module Pack

op start(w : posinteger);
op end();
op fill(g : posinteger);

body

process Control ;
var sum : integer := 0;

count : integer := 0;
repeat

sum := 0;
in fill(g : posinteger) →

while sum < g ∨ count > 0 do

in start(w : posinteger) and sum < g→ sum := sum + w ;
count := count + 1

[] end() → count := count − 1
ni;

ni

forever;

end Pack ;

[Unlike the monitor solution, this task will block for calls of end until fill is called. In the
given process system, this does not matter, though.]

Question 4.3

(a) The pouring should be started when the candy processes that have called start together
have enough candies to fill the current bag. Only the necessary number of candy processes
should be started if enough candy is already pending when fill is called.

(b) A solution can be obtained by introducing an extra condition queue Go holding back the
P processes untill they have candies enough for filling the current bag.

monitor MixPack ;

var sum, limit , count := 0;
BagReady ,Filled ,Go : condition;

procedure start(w : posinteger) {
while sum ≥ limit do wait(BagReady);
sum := sum + w ;
count := count + 1;
if sum < limit then {signal(BagReady ); wait(Go) }

else signal all(Go)

}

Prodecures end() and fill() as before

end



02158 CONCURRENT PROGRAMMING Page 7

Alternatively, the amount of candy not yet dispensed can be kept in a variable pending .
When the bag is ready and enough candy is pending, the pouring starts until the bag
capacity is met. Then, pending is reduced with the dispensed amount.

monitor MixPack ;

var sum, limit , pending , count := 0;
BagReady ,Filled : condition;

procedure start(w : posinteger) {
pending := pending + w ;
while sum ≥ limit ∨ pending < limit do wait(BagReady );
sum := sum + w ;
count := count + 1;
if sum < limit then signal(BagReady )

else pending := pending − sum

}

procedure end() {
count := count − 1;
if sum ≥ limit ∧ count = 0 then signal(Filled )

}

procedure fill(g : posinteger) {
limit := g ;
sum := 0;
if pending ≥ g then signal(BagReady );
wait(Filled);
limit := 0

}

end

[It is assumed that the candy processes together can provide enough candies to fill any
(realistic) bag. If this is not the case, the pouring should be started as soon as all candy
processes are present, even if they will not be able to fill the bag.]

(c) Blocking all the calls of start until a sufficient amount of candy is ready calls for accessing
the parameters of several calls in the invocation queue for start . This cannot be expressed
by the standard rendezvous construct and hence a server-based solution is not immediately
feasible.

If the number n of candy processes is fixed (and not too big), a syntactical nesting of n
in start() → . . . ni constructs may be used though. Alternatively, the nesting may be
obtained dynamically by wrapping the in construct within a recursive procedure.



02158 CONCURRENT PROGRAMMING Page 8

PROBLEM 5

Question 5.1

(a) One of the remaining two instances can be granted to P1 which may then finish after which
P2 can finish. Therefore, the situation is safe.

(b) The number of available instances is 8− (r1 + r2). The number of remaining instances to
be claimed P1 and P2 is given by 4 − r1 and 6 − r2 respectively. Finally the situation is
safe if just one of the processes can get all its remaining instances:

(6− r2) ≤ 8− (r1 + r2) ∨ (4− r1) ≤ 8− (r1 + r2) ⇔ 6 ≤ 8− r1 ∨ 4 ≤ 8− r2
⇔ r1 ≤ 2 ∨ r2 ≤ 4

Hence
Safe

∆
= r1 ≤ 2 ∨ r2 ≤ 4

Question 5.2

process Adm;
var r1, r2 : integer := 0;
do r1 < 2 ∨ r2 ≤ 4; P1 ! acquire() → r1 := r1 + 1
[] r1 ≤ 2 ∨ r2 < 4; P2 ! acquire() → r2 := r2 + 1
[] P1 ? release() → r1 := r1 − 1
[] P2 ? release() → r2 := r2 − 1
od;

The boolean guards ensure that the situation remains safe.

[It is assumed that the processes will not ask for more instances than their claimed maxi-
mum number.]


