
02158 CONCURRENT PROGRAMMING HHL 06–12–2019

Suggested Solutions for

Written Exam, December 10, 2019

PROBLEM 1

Question 1.1

A direct translation yields:

B

C

A

[By recognizing the cross-signalling between PA and PB as well as the back-and-forth
signalling between PB and PC to be true synchronizations, this may also be expressed as:]

A B C

Question 1.2

The following inequalities may be seen, e.g. by applying the semaphore invariant:

I
∆
= c ≤ a ≤ c + 3

Question 1.3

The above Petri Net is readily implemented using synchronous communications:

process P1;
repeat

A;
P2 ! ()

forever

process P2;
repeat

B ;
P1 ? ();
P3 ! ()

forever

process P3;
repeat

P2 ? ();
C

forever



02158 CONCURRENT PROGRAMMING Page 2

PROBLEM 2

Question 2.1

(a) Transition diagrams:

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

✍✌
✎☞
l3

❄

❄
a1: y := 1

❄
a2: t1 := x + y

❄
a3: x := t1 + 2

P1:

✍✌
✎☞
k0

✍✌
✎☞
k1

✍✌
✎☞
k2

✍✌
✎☞
k3

✍✌
✎☞
k4

❄

❄
b1: y := 4

❄
b2: t2 := x

❄
b3: t2 := t2 + y

❄
b4: y := t2 + 1

P2:

[Location and action labels not required. Note that a2 can be considered atomic.]

(b) [Rather than working through the 35 possible interleavings, we observe that the final value
of y may be set by either a1 (to 1) or b4. In the latter case, the value depends on readings
of x and y . If x has not been changed, it is 0 and y may be read as either 1 or 4 yielding
values 2 and 5 to y . If x has been changed, P1 may have read y as 1 giving x = 3. As
P2 may read y as 1 or 4, this yiels final values 5 and 8. Finally P1 may read y = 4 giving
x = 6 and P2 will then also read y = 4 yielding a final y-value of 11.]

It is found that the final value of y may be either of

1, 2, 5, 8, 11

Question 2.2

(a) I holds initially since x = 0 ∧ y = 0.

Checking all atomic actions:

a1: Since both x and y are non-negative before, so are the expressions x + y and y+1 and
hence 0 ≤ x ∧ 0 ≤ y holds after the action.

Before the action x ≤ 1 and y ≤ x + 1 implies y ≤ 2 and therefore x + y ≤ 3 why
x ≤ 3 holds after the action.

If y = x + 1, a1 increments x by at least 1 and y by 1 preserving the inequality
y ≤ x +1. If y < x +1, incrementing y by 1 and not decrementing x ensures y ≤ x +1
after the action.

a2: After the action, (x , y) = (1, 1) which satisfies I .

a3: By I and the condition, 0 ≤ y ≤ 3 before the action and hence 0 ≤ x ≤ 3 holds after
the action. As y becomes 0, also 0 ≤ y ≤ x + 1 is satisfied after the action.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.



02158 CONCURRENT PROGRAMMING Page 3

(b) Transition graph:

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 2)

(3, 0)

(3, 3)

s��✒

✻
a1

�
�
�✒a1

�
�
�✒a1

✟✟✟✟✟✟✯a1

✲a2
✠

a2

✒
a3

❅
❅
❅❘

a3
❄
a3

❆
❆
❆
❆
❆
❆
❆❯

a3

❄

a3

❄

a3

✛
a3 ✆✝✻ a3

✆✝
a3

(c) The predicate I ∧ y ≤ 3 is seen to encompass all the reachable states and is thus an
invariant of the program. However, as it allows states which is are not reachable (e.g.
(2, 1)), the predicate is not a characteristic invariant of the program.

(d) Assuming weak fairness

• F holds. [As control cannot remain at a state with outgoing transitions, any execu-
tion will lead to (0, 0) from where a1 takes the program to (0, 1).]

• G does not hold. [The only reachable states satisfying y = 2(x − 1) are (1, 0) and
(2, 2). These may be avoided by an execution following an outer cycle:

(0, 0)
a1−→ (0, 1)

a1−→ (1, 2)
a1−→ (3, 3)

a3−→ (3, 0)
a3−→ (0, 0)

a1−→ · · · (∗)

Since this execution path does not remain at a single state, it satisfies weak fairness.]

• H does not hold. [The cycle (∗) also avoids x = 2.]

• J does not hold. [From (0, 1) or (1, 1), the execution may follow the inner cycle

(0, 1)
a2−→ (1, 1)

a3−→ (1, 0)
a3−→ (0, 0)

a1−→ (0, 1)
a2−→ · · · (∗∗)

avoiding states where x ≥ 2.]

Assuming strong fairness

• F holds. [By weak fairness.]

• G holds. [As (0, 1) is reached infinitely often (cf. F ), a2 is enabled infinitely often
and hence (1, 1) is reached infinitely often. From (1, 1) either (1, 0) or (2, 2) must be
reached.]

• H holds. [As (1, 1) is reached infinitely often, if (1, 0) is to be avoided forever, the
execution must continue to (2, 2).]

• J does not hold. [In the sequence (∗∗) all actions are executed infinitely often and
hence also strong fairness is satisfied.]



02158 CONCURRENT PROGRAMMING Page 4

PROBLEM 3

Question 3.1

(a) The if-statement ensures that all pending calls of pass() will be accepted when a multiple
is reached.

(b) In the module header the declaration op set(l : integer); is inserted. The operation may
be implemented by adding the following branch to the outermost in-construct:

[] set(l : integer) and l ≥ 2 →
while count 6= 0 do

in incr() → count := (count + 1) mod k ni;
k := l

[It is not specified what calling set(l) with l < 2 should do. Here such calls just block.

As an alternative solution, set may be accepted only when count = 0 and then preventing
calls of incr() from being accepted when there are pending calls of of set when count = 0.]

Question 3.2

(a) Synchronization code for each process Pi [i : 1..n]:

...
ModCount .incr();
ModCount .pass();
...

The constant K0 must be defined to n.

(b) If the above synchronizaiton code is used for more than one synchronization point, it
cannot be guaranteed that all processes have called pass(), before incr() is called for the
next synchronization point rendering the processes stuck with a non-zero value of count .

This issue is solved by using two of these one-time barriers in each round:

...
ModCount1.incr();
ModCount1.pass();
ModCount2.incr();
ModCount2.pass();
...

For both module instances, K0 must be defined to n.



02158 CONCURRENT PROGRAMMING Page 5

Question 3.3

(a) The ModCount module is readily implemented as a monitor:

monitor ModCount

var count : integer := 0;
Zero : condition;

procedure incr() {
count := (count + 1) mod K0;
if count = 0 then signal all(Zero)

}

procedure pass() {
if count 6= 0 then wait(Zero)

}

end

(b) Calls of pass() should be waiting only if count is not zero:

I
∆
= waiting(Zero) > 0 ⇒ count 6= 0

I holds initially as Zero is empty. The queue size is only incremented when count is non-
zero and whenever count becomes zero, the condition queue is completely emptied. Hence
I is a monitor invariant.

(c) The solution is obviously not robust towards spurious wakeups, as the wait condition in
pass() is not rechecked. Changing the if-statement to a while-statement does remedy
this, but then the behaviour of ModCount is changed, as not all pending calls of pass()
are guaranteed to be released when the next multiple is reached.

A robust solution can be obtained by holding back calls of incr() and pass() while Zero is
being emptied:

monitor ModCount

var count , rem : integer := 0;
Zero,Hold : condition;

procedure incr() {
while rem > 0 do wait(Hold);
count := (count + 1) mod K0;
if count = 0 then { rem := length(Zero);

signal all(Zero) }
}

procedure pass() {
while rem > 0 do wait(Hold);
while count 6= 0 do wait(Zero);
if rem > 0 then { rem := rem − 1;

if rem = 0 then signal all(Hold) }
}

end



02158 CONCURRENT PROGRAMMING Page 6

A slightly simpler solution utilizes the round-counting idea for robustness:

monitor ModCount

var count , round : integer := 0;
Zero : condition;

procedure incr() {
count := (count + 1) mod K0;
if count = 0 then { round := round + 1;

signal all(Zero) }
}

procedure pass() {
var myround : integer := round ;
if count 6= 0 then

while myround = round do wait(Zero);
}

end


