
02158 CONCURRENT PROGRAMMING HHL 04–12–2018

Suggested Solutions for

Written Exam, December 11, 2018

PROBLEM 1

Question 1.1

A direct translation of the CSP program to a Petri Net yields:

B

C

A

[This net cannot be further reduced.]

Question 1.2

As A and C are seen to synchronize with each other for each round and as A and C may
actually be executed concurrently (if P2 executes B and then synchronizes with P3), the
following predicate is a characteristic invariant of the program:

I
∆
= |a − c| ≤ 1

Question 1.3

The selective synchronization by P2 with P1 and P3 can standarly be realized with a pair of
semaphores. Likewise, the synchronization of A and C can be obtained by cross-signalling:

var SA,SB ,SC ,SAC : semaphore;

SA := 0; SB := 0; SC := 0; SAC := 0;

process PA;
repeat

A;
P(SAC);
V(SB)
V(SC);
P(SA)

forever

process PB ;
repeat

B ;
V(SAC);
P(SB)

forever

process PC ;
repeat

P(SAC);
V(SB);
C ;
V(SA);
P(SC)

forever

02158 CONCURRENT PROGRAMMING Page 2

PROBLEM 2

Question 2.1

(a) The statement pairs are checked for critical references with respect to each other:

Pair Mutually atomic Rationale [not required]

a, b NO Two critical references in a.
a, c YES Only one critical reference in each statement.
a, d NO Both reading and writing of x in a are critical.
b, c NO In c, writing y and reading x are both critical.
b, d YES Only one critical reference in d .
c, d YES In c, only the reading of x is critical.

[Being executed indivisibly, all reads and writes in statement b together only count as a
single critical reference.]

(b) Transition diagrams:

✍✌
✎☞
k0

✍✌
✎☞
k1

❄

❄
b1: x := y + 2

b:

✍✌
✎☞
l0

✍✌
✎☞
l1

✍✌
✎☞
l2

❄

❄
c1: t := x

❄
c2: y := t + 3

c:

[Location and action labels not required.]

(c) Going through the three possible interleavings of the atomic actions, the possible final
values of (x , y) are found to be:

(2, 5), (2, 3), (5, 3)

Question 2.2

(a) I holds initially since x = 0 ∧ y = 0 ⇒ x = y .

Checking all atomic actions:

a1: By cases of I :
Case y = x : In terms of the old values the new sum is y + (3− x), but as x = y , this
equals 3. Thus I is preserved.
Case x + y = 3: The new value of y is 3 minus the old value of x , but this must then
be equal to the old value of y . Thus, both variables are assigned the old value of y
and hence I holds.

a2: Executed only if x = y and since both variables are incremented by 1, this property is
preserved and therefore I holds.

a3: This action always sets (x , y) to (3, 0) and thus the x + y = 3 case of I holds.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

02158 CONCURRENT PROGRAMMING Page 3

(b) Transition graph:

(0, 0)

(0, 3)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(3, 0)

(3, 3)

s✲

✻

a1

✲a1

❄

a1

✛
a1

✻
a1

✲a1

❄
a1

✛
a1

�
�
�✒
a2

�
�
�✒
a2

�
�
�✒
a2

❅
❅
❅❘

a3

■
a3

(c) Defining

H
∆
= 0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 3

it is seen that H ∧ I becomes a characteristic invariant. [In fact, H
∆
= 0 ≤ x ≤ 3 suffices.]

(d) Assuming weak fairness

• F does not hold. [From the state (0, 0) the execution may go to state (1, 1) and
from there follow any combination of the two inner cycles:

(1, 1)
a1−→ (1, 2)

a1−→ (2, 2)
a1−→ (2, 1)

a1−→ (1, 1) −→ · · · (∗)

and
(1, 1)

a2−→ (2, 2)
a1−→ (2, 1)

a1−→ (1, 1) −→ · · · (∗∗)

Since any such execution path does not remain at a single state, it satisfies weak
fairness. In all cases, x = 3 will never occur.]

• G holds. [From ✸✷ (x 6= 1) it follows that at some point the inner cycles are left
and then the execution must follow the outer cycle:

(0, 0)
a1−→ (0, 3)

a1−→ (3, 3)
a1−→ (3, 0)

a1−→ (0, 0)
a1−→ · · · (∗∗∗)

where x will become 0. (Actually, infinitely often.)]

• H does not hold. [The only reachable state for which x + y ≥ 5 is (3, 3) and by the
argument for F , x = 3 might never occur under weak fairness.]

• J does not hold. [From the states with x = 2, (2, 2) and (2, 1), the outer cycle (∗∗∗)
may be reached immediately and then followed forever, avoiding x = 1.]

Assuming strong fairness

• F holds. [The execution cannot any longer stay in the inner cycles (∗) and (∗∗) as
a3 will then be enabled infinitely often and hence must be taken leading to the state
(3, 0).]

• G holds. [By weak fairness.]

02158 CONCURRENT PROGRAMMING Page 4

• H does not hold. [In the cycle

(0, 0)
a2−→ (1, 1)

a2−→ (2, 2)
a1−→ (2, 1)

a3−→ (3, 0)
a1−→ (0, 0) −→ · · ·

all actions are executed and hence strong fairness is satified. However, the state (3, 3)
is never reached.]

• J holds. [From (2, 2) and (2, 1), the only way to avoid the state (1, 1) would be to
enter and remain in the outer loop (∗∗∗). However, in this, a2 would be infinitely
often enabled without being taken violating strong fairness.]

PROBLEM 3

Question 3.1

(a) [The monitor will let the first writer start writing and then queue up the first reader on
the head condition queue and the second reader on the tail condition queue where it will
be followed by the second writer and the third reader. When the first writer is done, the
first two readers are allowed to read while the second writer is moved to the head queue.
The third reader is still in the tail queue where it is joined by the fourth reader. Thus:]

r = 2 ∧ w = 0 ∧ waiting(head) = 1 ∧ waiting(tail) = 2

(b) Initially, I holds trivially because tail is empty. In lock , calls only wait on tail if heading
is true. Also, heading is set to false only when tail is empty. Hence I is preserved in lock

and as it is trivially preserved by unlock , I is an invariant of the monitor.

(c) The following should be an invariant of the monitor:

For any (single) call lock(write) waiting in head either w > 0 or write is true
while r > 0.

Question 3.2

In the declaration part of the monitor, a limit variable lim is added:

lim : posinteger := L;

The operation setLimit is defined as:

procedure setLimit(k : posinteger) {
if lim ≤ r < k then signal(head);
lim := k ;

}

In lock , the given wait condition must be weakened to take the limit into account:

while w > 0 ∨ (write ∧ r > 0) ∨ r ≥ lim do { . . . };

Finally, the signalling in unlock must be extended:

if r = 0 ∨ r = lim − 1 then signal(head)

[The conditions constrain the signalling such that superflous wakeups will take place only
in the very special situation that a writer is waiting in head and the number of active
readers has exactly reached the current limit.]

02158 CONCURRENT PROGRAMMING Page 5

Question 3.3

(a) In basic read/write locking, lock calls are accepted whenever the conditions are legal:

module RWLock

op lock(write : boolean);
op unlock();

body

process BasicControl ;
var r ,w : integer := 0;
repeat

in lock(write) and w = 0 ∧ (write ⇒ r = 0) →
if write then w := w + 1 else r := r + 1

[] unlock() → if w > 0 then w := w − 1 else r := r − 1
ni

forever;

end RWLock ;

(b) To handle lock calls in FCFS order these must be accepted without filtering on the write

parameter. If actually a write, all reader activity must cease before ending the rendezvous.

module RWLock

op lock(write : boolean);
op unlock();

body

process FCFS Control ;
var r ,w : integer := 0;
repeat

in lock(write) and w = 0 → while write ∧ r > 0 do

in unlock() → r := r − 1 ni;
if write then w := w + 1

else r := r + 1
[] unlock() → if w > 0 then w := w − 1 else r := r − 1

ni

forever;

end RWLock ;

