
TECHNICAL UNIVERSITY OF DENMARK Page 1 of 5 pages

Written examination, December 9, 2024

Course: Concurrent Programming Course no. 02158

Aids allowed: All written works of reference

Exam duration: 4 hours

Weighting: PROBLEM 1: approx. 15 %
PROBLEM 2: approx. 15 %
PROBLEM 3: approx. 20 %

PROBLEM 4: approx. 30 %
PROBLEM 5: approx. 20 %

PROBLEM 1 (approx. 15 %)

Three processes PA,PB , and PC execute three operations A, B , and C respectively. The
operations are to be synchronized, which is accomplished by means of semaphores:

var SA,SB ,SC : semaphore;

SA := 2; SB := 0; SC := 0;

process PA;
repeat

P(SA);
A;
V(SB)

forever

process PB ;
repeat

P(SB);
B ;
P(SB);
V(SC )

forever

process PC ;
repeat

C ;
P(SC );
V(SA);
V(SA)

forever

Question 1.1:

Draw a Petri Net in which the three operations A, B , and C are synchronized in the same
way as in the above program. In the net, each operation should be represented by one or
more transitions.

Question 1.2:

Let the number of times the operations B and C have been executed be denoted by b and
c respectively. Define a predicate I which characterizes the reachable combinations of b
and c in the above program.

Question 1.3:

The operations are now to be executed by three sequential CSP-processes P1, P2, and P3

respectively:

process P1;
repeat

A

forever

process P2;
repeat

B

forever

process P3;
repeat

C

forever

Show how the processes may exchange void messages using CSP’s synchronous communi-
cation so that A, B , and C are synchronized in the same way as in the above, semaphore-
based program. [The operation to be executed by a process may occur more than once.]



Page 2 of 5 pages

PROBLEM 2 (approx. 15 %)

The questions in this problem can be solved independently of each other.

In a system, computations are carried out by submitting tasks to a thread pool with a fixed
number k of worker threads which repeatedly execute tasks from the pool’s task queue. The
system is executed on a machine with four uniform processors. The ordering of the tasks in
the queue is not known. It is assumed that there are no other activities in the system and that
overhead from thread pool management and scheduling can be ignored.

Question 2.1:

A given computation may be split into any positive number n of independent tasks each
demanding 1/n of the full computation time. The overhead of such splitting can be ignored.

(a) Assume that the computation is split into n = 5 tasks and that k = 3 worker threads are
allocated for the thread pool. Determine the resulting speedup.

(b) Suggest how many tasks n this computation should be split into and how many worker
threads k should be allocated for the thread pool in order to achieve the best possible
speedup on this system. Determine the speedup expected.

Question 2.2:

In this question, k = 3 worker threads are assumed to be allocated for the thread pool.

A computation with a sequential execution time of 24 seconds can be divided into five
independent tasks with corresponding execution times (in seconds).

A B C D E

1 3 5 7 8

A master thread performs the division into tasks, submits them to the thread pool and
awaits their execution. All of these operations are assumed to take negligible processing
time.

(a) Draw a worst-case task scheduling scenario and determine the resulting speedup.

(b) Explain why a speedup of 3 would be optimal for this thread pool and show that such a
speedup is feasible by drawing a task scheduling scenario.

(c) Although the execution order of tasks submitted right after each other is not known, the
master thread may influence the task scheduling by delaying the submission of some of the
tasks.

Assume that a task T is submitted by the operation submit(T ) and that sleep(d) makes
the master thread sleep for d seconds. State a sequence of submission and sleep operations
for which the best speedup, cf. (b), will be obtained.



Page 3 of 5 pages

PROBLEM 3 (approx. 20 %)

The questions in this problem can be solved independently of each other.

Question 3.1: A concurrent program is given by:

var x , y : integer := 0;

co x := x + 4 ‖ x := y + 1 ‖ y := y + 2 oc

(a) For each of the three processes, draw a transition diagram showing its atomic actions.

(b) Determine all possible final values of x for the program.

Question 3.2:

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 x < 2 ∧ y = 0 → x := x + 1 〉 forever

‖
repeat a2: 〈 y := x ; x := 0 〉 forever

‖
repeat a3: 〈 x ≥ 1 → y := x + 1 〉 forever

oc

(a) State for each of the following predicates P , Q , and R whether it is (in general) preserved
by each of the actions a1, a2, and a3:

P
∆
= x 6= y

Q
∆
= 0 ≤ x ≤ y

R
∆
= x + y ≥ 0

(b) Prove inductively that I
∆
= 0 ≤ x ≤ 2 is an invariant of the program.

(c) Draw the (reachable part of) the transition graph for the program. Only the (x , y) part
of the state has to be shown.

(d) Consider the following temporal logic properties:

F
∆
= ✷✸ (x + y > 4)

G
∆
= (✷ (x + y 6= 3)) ❀ y = 3

H
∆
= ✷✸ (y = 2)

J
∆
= x = 2 ❀ y = 2

Determine for each of F , G , H , and J whether it holds for the program under the assump-
tion of weak fairness. Do the same under the assumption of strong fairness.



Page 4 of 5 pages

PROBLEM 4 (approx. 30 %)

The questions in this problem can be solved independently of each other.

In a system, there is a synchronization component called a kitty which may be seen as a shared
object Kit holding a sum, s, which may be manipulated using two operations put and take

specified by:

object Kit ;

var s : integer := 0;

op put(k : integer) : 〈 s := s + k 〉;

op take() returns integer : {var r : integer ; 〈 s > 0 → r := s; s := 0 〉; return r}

end

[Note that k as well as s may be negative.]

Question 4.1:

(a) Implement Kit as a monitor.

(b) Define a predicate I expressing that calls of take do not wait unnecessarily and argue that
I is a monitor invariant.

Question 4.2:

The given component Kit is now to be implemented by a module specified by:

module Kit

op put(k : integer);
op take() returns integer ;

end

Write a server process for the module which services the operations by rendezvous in such
a way that it functions like the given component Kit .

Question 4.3:

Implement the operations of the given component Kit using semaphores for synchroniza-
tion. The technique of passing-the-baton should be applied for that.

Question 4.4:

Show how n processes, P1,P2, . . . ,Pn (n ≥ 1), may use the given component Kit to
establish a one-time barrier (i.e. a synchronization point, which is to be used only once).
The component may be brought into a desired state by calling put before the processes
are started.

Question 4.5:

(a) Show how a system of n (n ≥ 1) reader processes and a single writer process may use the
given component Kit for reader/writer synchronization. You may assume an initial call of
put to be made in order to bring the component into a desired state before the processes
are started.

(b) Discuss whether the solution is fair towards the readers and the writer respectively.



Page 5 of 5 pages

PROBLEM 5 (approx. 20 %)

The questions in this problem can be solved independently of each other.

In a system, it is possible to send messages of a given type Msg by synchronous broadcast to a
number of receivers through a communication module Broadcast given below. Receiver processes
call listen() to receive a message. Sender processes call send(m) to send a message m to the
receivers currently listening but limited to a maximum of Lim receivers, where Lim is a given
positive constant. A call of send(m) does not return until at least one receiver can receive the
message.

module Broadcast

op send(m : Msg);
op listen() returns Msg ;

body

process Control ;
var rem : integer ;
repeat

in send(m) and ?listen > 0 →
rem := min(?listen,Lim); // min is the minium function
while rem > 0 do

in listen() → rem := rem − 1; return m ni

ni

forever

end Broadcast ;

Question 5.1:

The module Broadcast is to be replaced with a monitor which provides the same operations
and behaves in the same way. Write such a monitor.

[The calls of send and listen, respectively, may be handled in any feasible order. You
may use the function length(c) which returns the actual number of processes waiting on a
condition queue c. It may be utilized that spurious wakeups are assumed not to occur in
the standard monitor definition.]

Question 5.2:

The behaviour of the module Broadcast should now be changed so that each message is sent
simultaneously to exactly K receivers (without any limitation). Initially the value of K
should equal the constant Lim. It must be possible to change the value of K dynamically
using a new operation set :

op set(v : posinteger); // posinteger is the type of positive integers.

Write a new module which implements this behaviour.


