
TECHNICAL UNIVERSITY OF DENMARK Page 1 of 6 pages

Written examination, December 6, 2023

Course: Concurrent Programming Course no. 02158

Aids allowed: All written works of reference

Exam duration: 4 hours

Weighting: PROBLEM 1: approx. 15 %
PROBLEM 2: approx. 15 %
PROBLEM 3: approx. 20 %

PROBLEM 4: approx. 35 %
PROBLEM 5: approx. 15 %

PROBLEM 1 (approx. 15 %)

In a system, computations are carried out by submitting tasks to a thread pool with a fixed
number of worker threads which repeatedly execute tasks from the pool’s task queue. The system
is executed on a machine with six uniform processors which are scheduled evenly between all
active threads when seen over a period of time. The ordering of the tasks in the queue is not
generally known. It is assumed that there are no other activities in the system and that overhead
from thread pool management and scheduling can be ignored.

Question 1.1:

(a) Determine an upper limit for the speedup which may be achieved for a computation if five
worker threads are allocated for the thread pool.

(b) In this sub-question we consider a time-consuming computation which may be split into t =
2n (for some integer n ≥ 1) independent tasks each demanding 1/t of the full computation
time. Due to the nature of the computation problem, only such splitting into a power of
two number of tasks is feasible.

Suggest how many tasks t this computation should be split into and how many worker
threads k should be allocated for the thread pool in order to achieve the best possible
speedup on this system. Determine the speedup expected. State any assumptions you
might have to add.

Question 1.2:

In this question, four worker threads are assumed to be allocated for the thread pool.

A computation with a sequential execution time of 22 seconds can be divided into six
independent tasks with corresponding execution times (in seconds).

A B C D E F

1 2 3 4 5 7

A master thread performs the division into tasks, submits them to the thread pool and
awaits their execution. All of these operations are assumed to take negligible processing
time.

(a) Draw a worst-case task scheduling scenario and determine the resulting speedup.

(b) Assume that the ordering of the task queue is known to be first-in-first-out (FIFO). State
a sequence in which the master thread could submit the tasks to the thread pool in order
to guarantee a speedup of at least 3.



Page 2 of 6 pages

PROBLEM 2 (approx. 15 %)

Three processes PA,PB , and PC execute three operations A, B , and C respectively. The
operations are to be synchronized, which is accomplished by means of semaphores:

var SA,SB ,SC : semaphore;

SA := 0; SB := 0; SC := 0;

process PA;
repeat

A;
P(SA);
V(SB)

forever

process PB ;
repeat

V(SA);
V(SC );
P(SB);
P(SB);
B

forever

process PC ;
repeat

P(SC );
V(SB);
C

forever

Question 2.1:

Draw a Petri Net in which the three operations A, B , and C are synchronized in the
same way as in the above program. In the net, the operations should be represented by
transitions.

Question 2.2:

Let the number of times the operations A and C have been executed be denoted by a and
c respectively. Define a predicate I which characterizes the reachable combinations of a
and c in the above program.

Question 2.3:

The operations are now to be executed by three sequential CSP-processes P1, P2, and P3

respectively:

process P1;
repeat

A

forever

process P2;
repeat

B

forever

process P3;
repeat

C

forever

Show how the processes may exchange void messages using CSP’s synchronous communi-
cation so that A, B , and C are synchronized in the same way as in the above, semaphore-
based program.



Page 3 of 6 pages

PROBLEM 3 (approx. 20 %)

The questions in this problem can be solved independently of each other.

Question 3.1:

A concurrent program is given by:

var x , y : integer := 0;

co x := y + 2; y := 1 ‖ y := 3; 〈 x := x + 1 〉 oc

(a) For each of the two processes, draw a transition diagram showing its atomic actions.

(b) Determine all possible final states (x , y) of the program.

Question 3.2:

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 x ≤ 1 → y := y + 2(1− x ); x := x + 1 〉 forever

‖
repeat a2: 〈 y = 2 → x := x + 1; y := 3 〉 forever

‖
repeat a3: 〈 x := y ; y := 0 〉 forever

oc

(a) Determine for each of the following predicates P , Q , and R whether it is (in general)
preserved by each of the actions a1, a2, and a3:

P
∆
= 0 ≤ y ≤ x

Q
∆
= x = y

R
∆
= 0 < x + y

(b) Draw the (reachable part of the) transition graph for the program. Only the (x , y) part of
the state has to be shown.

(c) Determine whether the predicate I defined by

I
∆
= y ≥ 2 ⇒ (1 ≤ x ≤ y)

is an invariant of the program.

(d) Consider the following temporal logic properties:

F
∆
= ✷✸ (x = 2)

G
∆
= x = 2 ❀ x = 3

H
∆
= x + y = 4 ❀ x + y = 6

J
∆
= ✷✸ (y = 3)

Determine for each of F , G , H , and J whether the property holds for the program under
the assumption of weak fairness. Do the same under the assumption of strong fairness.



Page 4 of 6 pages

PROBLEM 4 (approx. 35 %)

The questions in this problem can be solved independently of each other.

Below, a monitor implementation of a generalized semaphore synchronization mechanism is
shown. The mechanism has two operations which generalize the usual semaphore operations:
pass(k : posinteger) and release(k : posinteger) where posinteger is the type of positive integers.

monitor GenSem

var s : integer := 0;
queue : condition;

procedure pass(k : posinteger) {
while s < k do wait(queue);
s := s − k

}

procedure release(k : posinteger) {
s := s + k ;
signal all(queue)

}

end

Question 4.1:

Specify the effect of the operations pass(k) and release(k) in the form of conditional atomic
actions acting upon the state variable s.

Question 4.2:

(a) Prove that I
∆
= s ≥ 0 is a monitor invariant of GenSem.

(b) Let paramsop(c) be a notation for the vector of parameters p of those calls of operation
op(p) which are currently waiting on condition queue c (in queuing order). Furthermore,
for a non-empty vector of values v , let min(v) and max(v) denote the minimum and
maximum value in v respectively.

Define a monitor invariant J expressing that calls of pass do not wait unnecessarily. The
expression paramspass (queue) is expected to occur in J .

(c) Explain why signal all in release cannot be replaced by signal in order to avoid unnecessary
wakeups.

(d) Assume that the condition queue operations for prioritized waiting, wait(c, rank) and
minrank(c), are available. Using these, show how the monitor may be modified in order
to reduce unnecessary wakeups.

The problem is continued on the next page



Page 5 of 6 pages

Question 4.3:

The functioning of the given monitor GenSem is now to be implemented by a module with
the following specification:

module GenSem;
op pass(k : posinteger);
op release(k : posinteger);

end

Write a server process for the module GenSem which services the operations by rendezvous
in such a way that it functions like the given monitor GenSem as seen from the calling
processes.

Question 4.4:

In a system n (n ≥ 1) reader processes and m (m ≥ 1) writer processes are to be synchro-
nized using the given module GenSem.

(a) Show how this may be accomplished by stating any operations which should be applied
initially as well as the pre and post protocols for reading and writing.

(b) Discuss whether the solution is fair towards readers and writers respectively.

Question 4.5:

(a) Show how n processes, P1,P2, . . . ,Pn (n ≥ 1), may use the given monitor GenSem to
establish a one-time barrier (i.e. a synchronization point, which is to be used only once).
If needed, the monitor may be brought into a desired state by calling its operations before
the concurrent processes are started.

(b) Discuss whether your solution proposed for (a) can be used as a normal barrier (i.e. be
used for repeated synchronization among the n processes).

Question 4.6:

The given monitor GenRes does not guarantee that all calls of pass are served. In particular
a call of pass(k) may be overtaken by later, less demanding calls if the semaphore value s

remains below the required k .

We now want a monitor FCFS GenSem with the same operations as GenSem, but for
which calls of pass are served in strictly first-come-first-served order.

Implement such a monitor.

[You may assume that condition queues are FIFO and spurious wakeups do not occur.]



Page 6 of 6 pages

PROBLEM 5 (approx. 15 %)

In a system certain critical decisions need to be carefully considered. This is done by letting a
decision problem described by a data type D be forwarded to a panel of advisors for approval
before action is taken.

The advisory panel consists of n (n ≥ 1) concurrent advisor processes each of which is able to
make a judgment of a problem using a specific approach (utilizing AI, applying rules, consulting
a human expert, etc.).

To coordinate the decision making, a module Resolve is used. The module provides the following
interface:

module Resolve

op decide(D) returns boolean;
op get(integer) returns (D , integer);
op result(boolean, integer);

end

The operation decide(d) is called when a decision on the problem described by d has to be made.
The operations get and result are called by the advisor processes in order to obtain a problem
for judgment and return the result of that.

The calls of decide should be handled one by one. After having given the problem a number
(see below), the server should pass it on to any advisors calling get that have not yet made a
judgment of this problem. As soon as the constant number m (1 ≤ m ≤ n) of the advisors have
returned an approval result for this problem, the call of decide should return. The decide-call
should return true if and only if at least 2/3 of the m advisors have approved the problem.

In order to keep problems separated, these should be consecutively numbered by the coordinator
starting with 1. An advisor calls get(l) with the number l of the last problem considered in order
not to get that problem again (if it is still being decided). The result of get(l) is a new problem
and its number. This number is used when returning the result. Thus, advisors repeatedly call
the operations as follows:

process Advisor [i : 1..n];
var d : D ;

no, last : integer := 0;
approval : boolean;

repeat

(d ,no) := Resolve.get(last);
make judgment of d using approach i and obtain decision in approval

Resolve.result(approval ,no); last := no;
possibly do other work and prepare for next judgment

forever;

It must always be possible for an advisor to return a result. If the problem has already been
decided, the result should be discarded.

Question 5.1:

Write a server process for the module Resolve which services the operations by rendezvous
in such a way that it functions as specified above.


