
TECHNICAL UNIVERSITY OF DENMARK Page 1 of 3 pages

Written examination, December 10, 2019

Course: Concurrent Programming Course no. 02158

Aids allowed: All written works of reference

Exam duration: 2 hours

Weighting: PROBLEM 1: approx. 30 %
PROBLEM 2: approx. 30 %

PROBLEM 3: approx. 40 %

PROBLEM 1 (approx. 30 %)

Three processes PA,PB , and PC execute three operations A, B , and C respectively. The
operations are to be synchronized, which is accomplished by means of semaphores:

var SA,SBA,SBC ,SC : semaphore;

SA := 0; SBA := 0; SBC := 0; SC := 0;

process PA;
repeat

A;
V(SBA);
P(SA)

forever

process PB ;
repeat

B ;
V(SA);
P(SBA);
V(SC);
P(SBC)

forever

process PC ;
repeat

P(SC);
V(SBC);
C

forever

Question 1.1:

Draw a Petri Net in which the three operations A, B , and C are synchronized in the
same way as in the above program. In the net, the operations should be represented by
transitions.

Question 1.2:

Let the number of times the operations A and C have been executed be denoted by a and
c respectively. Define a predicate I which characterizes the reachable combinations of a
and c in the above program.

Question 1.3:

The operations are now to be executed by three sequential CSP-processes P1, P2, and P3

respectively:

process P1;
repeat

A

forever

process P2;
repeat

B

forever

process P3;
repeat

C

forever

Show how the processes may exchange void messages using CSP’s synchronous communi-
cation so that A, B , and C are synchronized in the same way as in the above, semaphore-
based program.

Page 2 of 3 pages

PROBLEM 2 (approx. 30 %)

The questions in this problem can be solved independently of each other.

Question 2.1:

A concurrent program is given by:

var x , y : integer := 0;

co y := 1; x := x + y + 2 ‖ y := 4; y := x + y + 1 oc

(a) For each of the two processes, draw a transition diagram showing its atomic actions. You
may assume left-to-right evaluation of expressions.

(b) Determine all possible final values of y for the program.

Question 2.2:

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 x ≤ 1 ∧ y ≥ x → (x , y) := (x + y , y + 1) 〉 forever

‖
repeat a2: 〈 y = 1 → x := 1 〉 forever

‖
repeat a3: 〈 y ≤ 3 → x := y ; y := 0 〉 forever

oc

(a) Prove inductively that following predicate I is an invariant of the program:

I
∆
= 0 ≤ y ≤ x + 1 ∧ 0 ≤ x ≤ 3

(b) Draw the (reachable part of the) transition graph for the program. Only the (x , y) part of
the state has to be shown.

(c) Determine whether the predicate I ∧ y ≤ 3 is a characteristic invariant of the program
(i.e. exactly describes the set of reachable (x , y) states).

(d) Consider the following temporal logic properties:

F
∆
= ✷✸ (y = 1)

G
∆
= ✷✸ (y = 2(x − 1))

H
∆
= ✸✷¬(x = 1 ∧ y = 0) ⇒ ✸ (x = 2)

J
∆
= y = 1 ❀ x ≥ 2

Determine for each of F , G , H , and J whether the property holds for the program under
the assumption of weak fairness. Do the same under the assumption of strong fairness.

Page 3 of 3 pages

PROBLEM 3 (approx. 40 %)

The questions in this problem can be solved independently of each other.

Below, a server-based implementation of a synchronization mechanism ModCount is shown. It
comprises an integer counter which may be incremented by the operation incr(). Processes may
call the operation pass() in order to wait for the counter to reach a multiple of a given constant
K0 ≥ 2. [Internally, the counter is just counted modulo K0.]

module ModCount

op incr();
op pass();

body

process Control ;
var count : integer := 0;

k : integer := K0;
repeat

in incr() → count := (count + 1) mod k

[] pass() and count = 0 → skip

ni;
if count = 0 then for i in 1..?pass do in pass() → skip ni

forever

end ModCount ;

Question 3.1:

(a) Explain which effect is obtained by the if-statement.

(b) Show how to extend the module ModCount with an operation set(l : integer) which (for
l ≥ 2) sets l as the new value of k , but not before the counter has reached a multiple of
the current k . Until then, the call of set(l) must block.

Question 3.2:

(a) Show how n processes, P1,P2, . . . ,Pn (n ≥ 2), can use the given module ModCount to
establish a one-time barrier (i.e. a synchronization point, which is to be used only once).
The constant K0 may be defined to an appropriate value.

(b) Explain why the solution proposed for (a) cannot be used as a normal barrier (i.e. be used
for repeated synchronization among the n processes) and show how the processes may use
two instances the module, ModCount1 and ModCount2, to achieve the effect of a normal
barrier.

Question 3.3:

The given module ModCount is to be replaced with a monitor which provides the same
operations and behaves in the same way.

(a) Write such a monitor.

(b) Define a predicate I expressing that calls of pass() do not wait unnecessarily and argue
briefly that I is an invariant of the monitor.

(c) Discuss whether your solution to (a) would be robust towards spurious wakeups. If not,
write a version of the monitor that is so.

[If needed, you may use the function length(c) which returns the actual number of processes
waiting on a condition queue c.]

