Inge Li Gørtz

Applications

- Matchings
- Job scheduling
- Image segmentation
- Baseball elimination
- Disjoint paths
- Survivable network design

Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks
 - Solution 2: 5 trucks

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks
 - Solution 2: 5 trucks
- Example 2:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks
 - Solution 2: 5 trucks
- Example 2:

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks
 - Solution 2: 5 trucks
- Example 2:
 - 5 trucks (need to cross river).

• Network flow:

- Network flow:
 - graph G=(V,E).

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

• Value of flow f is the sum of flows out of s:

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

• Value of flow f is the sum of flows out of s:

$$v(f) = \sum_{v:(s,v)\in E} f(e) = f^{out}(s)$$

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

• Value of flow f is the sum of flows out of s:

$$v(f) = \sum_{v:(s,v)\in E} f(e) = f^{out}(s)$$

· Maximum flow problem: find s-t flow of maximum value

Algorithm

• Find path where we can send more flow.

Algorithm

• Find path where we can send more flow.

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Find path where we can send more flow.
- Send flow back (cancel flow).

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

• Can add extra flow: min(c₁ - f₁, f₂, c₃ - f₃, c₄ - f₄, f₅, f₆) = δ = bottleneck(P).

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min($c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6$) = δ = bottleneck(P).
- Ford-Fulkerson:

- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta = bottleneck(P)$.
- Ford-Fulkerson:
 - Find augmenting path, use it
 - Find augmenting path, use it
 - Find augmenting path, use it
 - •

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

 Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.

- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- Number of iterations:

- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- Number of iterations:
 - Always increment flow by at least 1: #iterations ≤ max flow value f*

- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- Number of iterations:
 - Always increment flow by at least 1: #iterations \leq max flow value f^{*}
- Time for one iteration:

- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- Number of iterations:
 - Always increment flow by at least 1: #iterations ≤ max flow value f*
- Time for one iteration:
 - Can find augmenting path in linear time: One iteration takes O(m) time.

- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- Number of iterations:
 - Always increment flow by at least 1: #iterations ≤ max flow value f*
- Time for one iteration:
 - Can find augmenting path in linear time: One iteration takes O(m) time.
- Total running time = $O(|f^*| m)$.

Residual networks

Residual networks

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow *from* S to T *minus flow from* T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$

- Flow across cut = flow *from* S to T *minus flow from* T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$

- Flow across cut = flow *from* S to T *minus flow from* T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_3) + (f_1 + f_3) = |f|$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_3) + (f_1 + f_3) = |f|$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_3) + (f_1 + f_3) = |f|$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_8) + (f_1 + f_8) = |f|$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_8) + (f_1 + f_8) = |f|$
 - $f_4 + f_5 f_6 = |f|$

- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_8) + (f_1 + f_8) = |f|$
 - $f_4 + f_5 f_6 = |f|$
- Flow across cut is |f| for all cuts => flow out of s = flow into t.

- Flow across cut is |f| for all cuts => flow out of s = flow into t.
- $|f| \le c(S,T)$:

- Flow across cut is |f| for all cuts => flow out of s = flow into t.
- $|f| \le c(S,T)$:
 - $|f| = f_4 + f_5 f_6 \le f_4 + f_5 \le c_4 + c_5 = c(S,T)$

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
maximum flow and (S,T) is a minimum cut.

- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
 maximum flow and (S,T) is a minimum cut.
 - Let f* be the maximum flow and the (S*,T*) minimum cut:

- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
 maximum flow and (S,T) is a minimum cut.
 - Let f* be the maximum flow and the (S*,T*) minimum cut:
 - $\bullet \ \left|f\right| \leq \left|f^{\star}\right| \leq c(S^{\star},T^{\star}) \leq c(S,T).$

- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
 maximum flow and (S,T) is a minimum cut.
 - Let f* be the maximum flow and the (S*,T*) minimum cut:
 - $\bullet \ \left|f\right| \leq \left|f^{\star}\right| \leq c(S^{\star},T^{\star}) \leq c(S,T).$
 - Since |f| = c(S,T) this implies $|f| = |f^*|$ and $c(S,T) = c(S^*,T^*)$.

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).
 - All backwards edges in minimum cut have 0 flow.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).
 - All backwards edges in minimum cut have 0 flow.

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).
 - All backwards edges in minimum cut have 0 flow.
 - => value of flow (S,T) = capacity of the cut.

• There is no augmenting path <=> f is a maximum flow.

- There is no augmenting path <=> f is a maximum flow.
 - *f* maximum flow => no augmenting path:

- There is no augmenting path <=> f is a maximum flow.
 - *f* maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.

- There is no augmenting path <=> f is a maximum flow.
 - *f* maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).
 - Edges from S to T: $f_1 = c_1$ and $f_2 = c_2$.

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).
 - Edges from S to T: $f_1 = c_1$ and $f_2 = c_2$.
 - Edges from T to S: $f_3 = 0$.

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).
 - Edges from S to T: $f_1 = c_1$ and $f_2 = c_2$.
 - Edges from T to S: $f_3 = 0$.
 - => $|f| = f_1 + f_2 f_3 = f_1 + f_2 = c_1 + c_2 = c(S,T)$.

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).
 - Edges from S to T: $f_1 = c_1$ and $f_2 = c_2$.
 - Edges from T to S: $f_3 = 0$.
 - => $|f| = f_1 + f_2 f_3 = f_1 + f_2 = c_1 + c_2 = c(S,T)$.
 - => f a maximum flow and (S,T) a minimum cut.

Removing assumptions

• Edges into s and out of t:

$$v(f) = f^{out}(s) - f^{in}(s)$$

• Capacities not integers.

Network Flow

• Multiple sources and sinks:

