Network Flows

Inge Li Gørtz

Applications

- Matchings
- Job scheduling
- Image segmentation
- Baseball elimination
- Disjoint paths
- Survivable network design

Network Flow

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
- Solution 1: 4 trucks

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
- Solution 1: 4 trucks

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
- Solution 1: 4 trucks
- Solution 2: 5 trucks

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
- Solution 1: 4 trucks
- Solution 2: 5 trucks

- Example 2:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
- Solution 1: 4 trucks
- Solution 2: 5 trucks

- Example 2:

Network Flow

- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
- Solution 1: 4 trucks
- Solution 2: 5 trucks

- Example 2:
- 5 trucks (need to cross river).

Network Flow

Network Flow

- Network flow:

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

$$
\sum_{v:(v, u) \in E} f(v, u)=\sum_{v:(u, v) \in E} f(u, v)
$$

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

$$
\sum_{v:(v, u) \in E} f(v, u)=\sum_{v:(u, v) \in E} f(u, v)
$$

- Value of flow f is the sum of flows out of s :

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

$$
\sum_{v:(v, u) \in E} f(v, u)=\sum_{v:(u, v) \in E} f(u, v)
$$

- Value of flow f is the sum of flows out of s :

$$
v(f)=\sum_{v:(s, v) \in E} f(e)=f^{\text {out }}(s)
$$

Network Flow

- Network flow:
- graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Special vertices s (source) and t (sink).
- s has no edges in and t has no edges out.
- Every edge (e) has a (integer) capacity $c(e) \geq 0$.
- Flow:

- capacity constraint: every edge e has a flow $0 \leq f(e) \leq c(e)$.
- flow conservation: for all $u \neq s$, t : flow into u equals flow out of u.

$$
\sum_{v:(v, u) \in E} f(v, u)=\sum_{v:(u, v) \in E} f(u, v)
$$

- Value of flow f is the sum of flows out of s :

$$
v(f)=\sum_{v:(s, v) \in E} f(e)=f^{\text {out }}(s)
$$

- Maximum flow problem: find s-t flow of maximum value

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(c_{1}-f_{1}, f_{2}, c_{3}-f_{3}, c_{4}-f_{4}, f_{5}, f_{6}\right)=\delta=\operatorname{bottleneck}(P)$.

Augmenting Paths

- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta=\operatorname{bottleneck}(\mathrm{P})$.
- Ford-Fulkerson:

Augmenting Paths

- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity
- backwards edges have positive flow

- Can add extra flow: $\min \left(\mathrm{c}_{1}-\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{c}_{3}-\mathrm{f}_{3}, \mathrm{c}_{4}-\mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right)=\delta=\operatorname{bottleneck}(\mathrm{P})$.
- Ford-Fulkerson:
- Find augmenting path, use it
- Find augmenting path, use it
- Find augmenting path, use it
\qquad

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity
- backwards edges have positive flow

Analysis of Ford-Fulkerson

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values $f(e)$ are integers.

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values $f(e)$ are integers.
- Number of iterations:

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values $f(e)$ are integers.
- Number of iterations:
- Always increment flow by at least 1: \#iterations $\leq \max$ flow value f^{\star}

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values $f(e)$ are integers.
- Number of iterations:
- Always increment flow by at least 1: \#iterations $\leq \max$ flow value f^{\star}
- Time for one iteration:

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values $f(e)$ are integers.
- Number of iterations:
- Always increment flow by at least 1: \#iterations $\leq \max$ flow value f^{\star}
- Time for one iteration:
- Can find augmenting path in linear time: One iteration takes $O(m)$ time.

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values $\mathrm{f}(\mathrm{e})$ are integers.
- Number of iterations:
- Always increment flow by at least 1: \#iterations $\leq \max$ flow value f^{*}
- Time for one iteration:
- Can find augmenting path in linear time: One iteration takes $O(m)$ time.
- Total running time $=\mathrm{O}\left(\left|f^{\star}\right| \mathrm{m}\right)$.

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Capacity of cut: total capacity of edges going from S to T .

$$
c(S, T)=8
$$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut: = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{6}=$?

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{6}=$?
- $f_{4}+f_{5}-f_{1}-f_{2}=0$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $f_{4}+f_{5}-f_{1}-f_{2}=0$
- $f_{2}-f_{6}-f_{3}=0$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $f_{2}-f_{6}-f_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$
- $\left(\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}\right)+\left(\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}\right)+\left(\mathrm{f}_{1}+\mathrm{f}_{3}\right)=|\mathrm{f}|$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$
- $\left(\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}\right)+\left(\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}\right)+\left(\mathrm{f}_{4}+\mathrm{f}_{3}\right)=|\mathrm{f}|$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $f_{2}-f_{6}-f_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$
- $\left(\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}\right)+\left(\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}\right)+\left(\mathrm{f}_{4}+\mathrm{f}_{3}\right)=|\mathrm{f}|$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $f_{2}-f_{6}-f_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$
- $\left(\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}\right)+\left(\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{8}\right)+\left(\mathrm{f}_{4}+\mathrm{f}_{3}\right)=|\mathrm{f}|$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$
- $\left(f_{4}+f_{5}-f_{1}-f_{2}\right)+\left(f_{2}-f_{6}-f_{6}\right)+\left(f_{1}+f_{3}\right)=|f|$
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{6}=|\mathrm{f}|$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut = flow from S to T minus flow from T to S .
- Flow across cut: $f_{4}+f_{5}-f_{6}=$?
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{1}-\mathrm{f}_{2}=0$
- $\mathrm{f}_{2}-\mathrm{f}_{6}-\mathrm{f}_{3}=0$
- $\mathrm{f}_{1}+\mathrm{f}_{3}=|\mathrm{f}|$
- $\left(f_{4}+f_{5}-f_{1}-f_{2}\right)+\left(f_{2}-f_{6}-f_{6}\right)+\left(f_{1}+f_{3}\right)=|f|$
- $\mathrm{f}_{4}+\mathrm{f}_{5}-\mathrm{f}_{6}=|\mathrm{f}|$
- Flow across cut is $|f|$ for all cuts $=>$ flow out of $s=$ flow into t.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut is $|f|$ for all cuts $=>$ flow out of $s=$ flow into t.
- $|\mathrm{f}| \leq \mathrm{c}(\mathrm{S}, \mathrm{T})$:

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Flow across cut is $|f|$ for all cuts $=>$ flow out of $s=$ flow into t.
- $|\mathrm{f}| \leq \mathrm{c}(\mathrm{S}, \mathrm{T})$:
- $|f|=f_{4}+f_{5}-f_{6} \leq f_{4}+f_{5} \leq c_{4}+C_{5}=c(S, T)$

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Suppose we have found flow f and cut (S, T) such that $|f|=c(S, T)$. Then f is a maximum flow and (S, T) is a minimum cut.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Suppose we have found flow f and cut (S, T) such that $|f|=c(S, T)$. Then f is a maximum flow and (S, T) is a minimum cut.
- Let f^{*} be the maximum flow and the $\left(\mathrm{S}^{*}, \mathrm{~T}^{*}\right)$ minimum cut:

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Suppose we have found flow f and cut (S, T) such that $|f|=c(S, T)$. Then f is a maximum flow and (S, T) is a minimum cut.
- Let f^{*} be the maximum flow and the $\left(\mathrm{S}^{*}, \mathrm{~T}^{*}\right)$ minimum cut:
- $|f| \leq\left|f^{*}\right| \leq c\left(S^{*}, T^{*}\right) \leq c(S, T)$.

s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- Suppose we have found flow f and cut (S, T) such that $|f|=c(S, T)$. Then f is a maximum flow and (S, T) is a minimum cut.
- Let f^{*} be the maximum flow and the $\left(\mathrm{S}^{*}, \mathrm{~T}^{*}\right)$ minimum cut:
- $|f| \leq\left|f^{\star}\right| \leq c\left(S^{*}, T^{*}\right) \leq c(S, T)$.
- Since $|f|=c(S, T)$ this implies $|f|=\left|f^{\star}\right|$ and $c(S, T)=c\left(S^{\star}, T^{*}\right)$.

Finding minimum cuts

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- All forward edges in the minimum cut are "full" (flow = capacity).

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- All forward edges in the minimum cut are "full" (flow = capacity).

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- All forward edges in the minimum cut are "full" (flow = capacity).
- All backwards edges in minimum cut have 0 flow.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- All forward edges in the minimum cut are "full" (flow = capacity).
- All backwards edges in minimum cut have 0 flow.

Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- All forward edges in the minimum cut are "full" (flow = capacity).
- All backwards edges in minimum cut have 0 flow.
- => value of flow $(\mathrm{S}, \mathrm{T})=$ capacity of the cut.

Use of Max-flow min-cut theorem

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S, T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S, T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S,T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S, T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.
- t not in S (since there is no augmenting s-t path).

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow $=>$ no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S, T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.
- t not in S (since there is no augmenting s-t path).
- Edges from S to $T: f_{1}=c_{1}$ and $f_{2}=c_{2}$.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow $=>$ no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S, T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.
- t not in S (since there is no augmenting s-t path).
- Edges from S to $T: f_{1}=c_{1}$ and $f_{2}=c_{2}$.
- Edges from T to $\mathrm{S}: \mathrm{f}_{3}=0$.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow $=>$ no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S,T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.
- t not in S (since there is no augmenting s-t path).
- Edges from S to $T: f_{1}=c_{1}$ and $f_{2}=c_{2}$.
- Edges from T to $S: f_{3}=0$.
$\cdot=>|f|=f_{1}+f_{2}-f_{3}=f_{1}+f_{2}=c_{1}+c_{2}=c(S, T)$.

Use of Max-flow min-cut theorem

- There is no augmenting path $<=>\mathrm{f}$ is a maximum flow.
- f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
- no augmenting path => exists cut (S, T) where $|\mathrm{f}|=\mathrm{c}(\mathrm{S}, \mathrm{T})$:
- Let S be all vertices to which there exists an augmenting path from s.
- t not in S (since there is no augmenting s-t path).
- Edges from S to $T: f_{1}=c_{1}$ and $f_{2}=c_{2}$.
- Edges from T to $S: f_{3}=0$.
- $=>|f|=f_{1}+f_{2}-f_{3}=f_{1}+f_{2}=c_{1}+c_{2}=c(S, T)$.
- => f a maximum flow and (S, T) a minimum cut.

Removing assumptions

- Edges into s and out of t :

$$
v(f)=f^{\text {out }}(s)-f^{i n}(s)
$$

- Capacities not integers.

Network Flow

- Multiple sources and sinks:

