Network Flows

Inge Li Gartz

Applications

« Matchings

+ Job scheduling

+ Image segmentation

« Baseball elimination

* Disjoint paths
 Survivable network design

Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1

Network Flow

« Truck company: Wants to send as many trucks as pOSSIb|e from s to t. Limit
of number of trucks on each road.

- Example 1:

« Solution 1: 4 trucks

« Solution 2: 5 trucks

- Example 2:

« 5 trucks (need to cross river).

Network Flow

« Network flow:

« graph G=(V,E).

« Special vertices s (source) and t (sink).

- s has no edges in and t has no edges out.

« Every edge (e) has a (integer) capacity c(e) = 0.

* Flow:
+ capacity constraint: every edge e has a flow 0 < f(e) < c(e).
+ flow conservation: for all u # s, t: flow into u equals flow out of u.

Z f(’U, u) — Z f(uav)

vi(v,u)eE vi(u,v)eE

* Value of flow f is the sum of flows out of s:

()=), fle)=f"s)

vi(s,v)EE

+ Maximum flow problem: find s-t flow of maximum value

Algorithm

 Find path where we can send more flow.

Algorithm

 Find path where we can send more flow.

- Send flow back (cancel flow).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +0 +6 -6 -6
S @—r@« o - >@< < @t
f1 < C1 fo>0 fs< c3 fa<ca fs>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

Augmenting Paths

« Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3 - f3, ca - f4, f5, f6) = & = bottleneck(P).

+ Ford-Fulkerson:
« Find augmenting path, use it
+ Find augmenting path, use it

« Find augmenting path, use it

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S @— @« ® > @ @

<
f1 < C1 fo>0 fs< c3 fa<ca fs>0 fe>0

@t

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values f(e)
are integers.

* Number of iterations:
- Always increment flow by at least 1: #iterations < max flow value f*
- Time for one iteration:
 Can find augmenting path in linear time: One iteration takes O(m) time.

» Total running time = O(|f*| m).

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
T

S :
e —

oy
-

- Capacity of cut: total capacity of edges going from S to T.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

1/2

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

Flow across cut = flow from S to T minus flow from T to S.

Flow across cut: f4 + fs - fg = ?
c f4+fs-f1-fo=0
« fo-fe-f3 =0
« f1+f3 = |f|
o (fa+ fs- f1 - fo) + (fo - fo -) + (Bt + F6) = |fl
* fa+ f5- fo = |f|

Flow across cut is |f| for all cuts => flow out of s = flow into t.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut is |f| for all cuts => flow out of s = flow into t.
fl < c(S,T):

fl=fa+fs-foe<fa+fs <ca+ cs=c(S,T)

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

+ Suppose we have found flow f and cut (S,T) such that [f| = ¢(S,T). Then fis a
maximum flow and (S,T) is a minimum cut.

* Let f* be the maximum flow and the (S*,T*) minimum cut:
o |f| < [f*] < c(S*,T%) <c(S,T).
« Since |f| = ¢(S,T) this implies [f| = |f*| and ¢(S,T) = ¢(S*,T%).

FiInding minimum cuts

« Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

« When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- All forward edges in the minimum cut are “full” (flow = capacity).
- All edges in minimum cut have 0 flow.

- => value of flow (S,T) = capacity of the cut.

Use of Max-flow min-cut theorem

« There is no augmenting path <=> f is a maximum flow.
« f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
* no augmenting path => f maximum flow
 no augmenting path => exists cut (S,T) where |f| = ¢(S,T):
 Let S be all vertices to which there exists an augmenting path from s.
« t not in S (since there is no augmenting s-t path).
- Edges from Sto T: f1 = ¢4 and f2 = co.
- Edges from T to S: f3 = 0.
« =>|fl=f1 +fo-fa=f1 + fo=c1+ c2 = c(S,T).
- =>f a maximum flow and (S,T) a minimum cut.

f1

>

Removing assumptions

- Edges into s and out of t:

v(f) = f(s) = f"(s)

- Capacities not integers.

Network Flow

- Multiple sources and sinks:

