
Weekplan: Introduction

Philip Bille Inge Li Gørtz

Reading

Introduction to Algorithms, 4th edition, Cormen, Rivest, Leisersons, and Stein (CLRS): Chapter 1.

Exercises

1 Find Peaks Let A= [2, 1, 3, 7, 3, 11, 1, 5, 7, 10] be an array. Solve the following exercises.

1.1 [w] Specify all peaks in A.

1.2 [w] Specify which peaks the two linear time algorithms find.

1.3 Specify the sequence of recursive calls the recursive algorithm produces. First, assume the algorithm visits the left
half of the array if both directions are valid. Then, specify all the possible sequences of recursive calls the algorithm
can make when picking any of the two valid directions.

2 [w] Valleys Propose a valley problem analogous to the peak problem. Give a precise definition of the valley problem,
including specifying the input and output.

3 Algorithms and Applications

3.1 Pick a data structure from your introductory programming course and discuss its strengths and limitations.

3.2 Suggest a real-world problem where only the optimal solution will do. Similarly, suggest a real-world problem
where an approximate solution suffices.

3.3 Suggest relevant measures of complexity of algorithms other than time. Suggest at least 3.

4 Properties of Peaks Let A be an array of length n≥ 1. Solve the following exercises.

4.1 Prove that there is always at least one peak in A.

4.2 What is the maximum number of peaks in A?

4.3 Suppose we change the definition of peak as follows: A[i] is a peak if A[i] is strictly larger than its neighbors. What
is the effect on the above properties? Can we still find a peak in O(log n) time with the recursive algorithm?

5 Peaks Solve the following exercises.

5.1 [†] Implement and test one of the two linear time algorithms for finding peaks.

5.2 [†] Implement the recursive algorithm for finding peaks (be careful not to go out of bounds)

5.3 Describe the worst-case inputs for each of the three peak algorithms.

5.4 Design an iterative version of the recursive algorithm for finding peaks. Write the pseudocode for the algorithm.

5.5 Prove that the recursive algorithm always finds a peak. Hint: Define an appropriate invariant that is valid in each
recursive call and use induction.
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6 Fun with Arrays Let Abe an array of integers of length n. Consider the following pseudocode.

ARRAYFUN(A, n)
for i = 0 to n− 1 do

for j = 0 to n− 1 do
if A[i] + A[ j] = 0 then

return true
end if

end for
end for
return false

Solve the following exercises.

6.1 Explain briefly and concisely what ARRAYFUN computes.

6.2 Analyze the running time of ARRAYFUN on an array of length n.

6.3 Suppose we change " j = 0" to " j = i+1". Briefly describe what ARRAYFUN now computes and analyze the running
time.

7 2D Peaks Let M be an n× n matrix (2D-array). An entry M[i, j] is a peak if it is no smaller than its N,E, S, and W
neighbors (i.e. M[i][ j] ≥ M[i − 1][ j], M[i][ j] ≥ M[i][ j − 1], M[i][ j] ≥ M[i + 1][ j] and M[i][ j] ≥ M[i][ j + 1]). We
are interested in efficient algorithms for finding peaks in A. Solve the following exercises.

7.1 Give a simple algorithm that takes O(n2) time.

7.2 [∗] Give an algorithm that takes O(n log n) time. Hint: Start by finding the maximum number in the center column
and use this to solve the problem recursively.

7.3 [∗∗] Give an algorithm that takes O(n) time. Hint: Construct a recursive solution that divides M into 4 quadrants.
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