
Philip Bille

Introduction to Data Structures
• Data Structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

Introduction to Data Structures
• Data Structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

Data Structures
• Data structure. Method for organizing data for efficient access, searching, manipulation, etc.

• Goal.

• Fast.

• Compact

• Terminology.

• Abstract vs. concrete data structure.

• Dynamic vs. static data structure.

Introduction to Data Structures
• Data Structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

Stack
• Stack. Maintain dynamic sequence (stack) S supporting the following operations:

• PUSH(x): add x to S.

• POP(): remove and return the most recently added element in S.

• ISEMPTY(): return true if S is empty.

PUSH(28)

28

3

4

18

16

3

4

18

16 POP() POP() PUSH(7)

3

4

18

16

7

4

18

16

4

18

16

Queue
• Queue. Maintain dynamic sequence (queue) Q supporting the following operations:

• ENQUEUE(x): add x to Q.

• DEQUEUE(): remove and return the earliest added element in Q.

• ISEMPTY(): return true if Q is empty.

8 4 15

8 4 15 1

8 4 15 1 22

4 15 1 22

15 1 22

15 1 22 6

ENQUEUE(1)

ENQUEUE(22)

DEQUEUE()

DEQUEUE()

ENQUEUE(6)

Applications
• Stacks.

• Virtual machines

• Parsing

• Function calls

• Backtracking

• Queues.

• Scheduling processes

• Buffering

• Breadth-first searching

Stack Implementation
• Stack. Stack with capacity N

• Data structure.

• Array S[0..N-1]

• Index top. Initially top = -1

• Operations.

• PUSH(x): Add x at S[top+1], top = top + 1

• POP(): return S[top], top = top - 1

• ISEMPTY(): return true if top = -1.

• Check for overflow and underflow in PUSH and POP.

16 18 4 3 28

top

N = 10

Stack Implementation
• Time

• PUSH in O(1) time.

• POP in O(1) time.

• ISEMPTY in O(1) time.

• Space.

• O(N) space.

• Limitations.

• Capacity must be known.

• Wasting space.

16 18 4 3 28

top

N = 10

Queue Implementation
• Queue. Queue with capacity N.

• Data structure.

• Array Q[0..N-1]

• Indices head and tail and a counter.

• Operations.

• ENQUEUE(x): add x at Q[tail], update count and tail cyclically.

• DEQUEUE(): return Q[head], update count and head cyclically.

• ISEMPTY(): return true if count = 0.

• Check for overflow and underflow in DEQUEUE and ENQUEUE.

8 4 15 1 22

head

N = 10

tail

count = 5

Queue Implementation
• Time.

• ENQUEUE in O(1) time.

• DEQUEUE in O(1) time.

• ISEMPTY in O(1) time.

• Space.

• O(N) space.

• Limitations.

• Capacity must be known.

• Wasting space.

8 4 15 1 22

head

N = 10

tail

count = 5

Stacks and Queues
• Stack.

• Time. PUSH, POP, ISEMPTY in O(1) time.

• Space. O(N)

• Queue.

• Time. ENQUEUE, Dequeue, ISEMPTY in O(1) time.

• Space. O(N)

• Challenge. Can we get linear space and constant time?

16 18 4 3 28

top

N = 10

8 4 15 1 22

head

N = 10

tail

count = 5

Introduction to Data Structures
• Data Structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

Linked Lists
• Linked lists.

• Data structure to maintain a dynamic sequence of items.

• Recursive data structure. A linked list is either:

• Empty

• A reference to a node that has a reference to a linked list.

• Node.

• An object that stores the item (or reference to the item) and the reference to a linked list.

Linked Lists

class Node:
 def __init__(self, item, next):
 self.item = item
 self.next = next

a = Node(7, None) 7
None

b = Node(42, None)
c = Node(18, None)

a.next = b
b.next = c

A rectangle for
each object

Item values within
rectangle

References as
arrows or None

a

7
None

a
42

None

b
18

None

c

7
a

42
b

18
None

c

Linked Lists

tmp = head
head = Node(35, tmp)

7
head

42 18
None

head = head.next 7
head

42 18
None

35
head

42 18
None

Linked Lists

35
head

42 18
None

x = head
while x != None:
 print(x.item)
 x = x.next

Linked Lists
• Linked lists.

• Data structure to maintain a dynamic sequence of items.

• Space.

• A list of n items uses O(n) space.

• Time.

• Insert at the head of the list in O(1) time.

• Delete at the head of the list in O(1) time.

• Traverse the list in O(n) time.

35
head

42 18 16 23 55
None

Linked Lists
• Exercise. Consider how to implement stack and queue with linked lists efficiently.

• Stack. Maintain dynamic sequence (stack) S supporting the following operations:

• PUSH(x): add x to S.

• POP(): remove and return the most recently added element in S.

• ISEMPTY(): return true if S is empty.

• Queue. Maintain dynamic sequence (queue) Q supporting the following operations:

• ENQUEUE(x): add x to Q.

• DEQUEUE(): remove and return the earliest added element in Q.

• ISEMPTY(): return true if S is empty.

Linked Lists
• Stacks and queues using linked lists

• Stack.

• Time. PUSH, POP, ISEMPTY in O(1) time.

• Space. O(n)

• Queue.

• Time. ENQUEUE, DEQUEUE, ISEMPTY in O(1) time.

• Space. O(n)

Linked Lists
• Linked list. Flexible data structure to maintiain sequence of elements.

• Other linked data structures: cyclic lists, trees, graphs, …

15

208

14

13

113

1

root

8
null null

20

null

1

null null

3

null

14

null

11

null null

13

null
15

Introduction to Data Structures
• Data Structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

Stack Implementation with Array
• Challenge. Can we implement a stack efficiently with arrays?

• Do we need a fixed capacity?

• Can we get linear space and constant time?

Dynamic Arrays
• Goal.

• Implement a stack using arrays in O(n) space for n elements.

• As fast as possible.

• Focus on PUSH. Ignore POP and ISEMPTY for now.

• Solution 1

• Start with array of size 1.

• PUSH(x):

• Allocate new array of size + 1.

• Move all elements to new array.

• Delete old array.

Dynamic Arrays
• PUSH(x):

• Allocate new array of size + 1.

• Move all elements to new array.

• Delete old array.

• Time. Time for n PUSH operations?

• ith PUSH takes O(i) time.

• ⇒ total time is 1 + 2 + 3 + 4 + … + n = O(n2)

• Space. O(n)

• Challenge. Can we do better?

Dynamic Arrays
• Idea. Only copy elements some times

• Solution 2.

• Start with array of size 1.

• PUSH(x):

• If array is full:

• Allocate new array of twice the size.

• Move all elements to new array.

• Delete old array.

Dynamic Arrays
• PUSH(x):

• If array is full:

• Allocate new array of twice the size.

• Move all elements to new array.

• Delete old array.

• Time. Time for n PUSH operations?

• PUSH 2k takes O(2k) time.

• All other PUSH operations take O(1) time.

• ⇒ total time < 1 + 2 + 4 + 8 + 16 + … + 2log n + n = O(n)

• Space. O(n)

Dynamic Arrays
• Stack with dynamic array.

• n PUSH operations in O(n) time and space.

• Extends to n PUSH, POP og ISEMPTY operations in O(n) time.

• Time is amortized O(1) per operation.

• With more clever tricks we can deamortize to get O(1) worst-case time per operation.

• Queue with dynamic array.

• Similar results as stack.

• Global rebuilding.

• Dynamic array is an example of global rebuilding.

• Technique to make static data structures dynamic.

Stack and Queues

† = amortized

Data structure PUSH POP ISEMPTY Space

Array with capacity N O(1) O(1) O(1) O(N)

Linked List O(1) O(1) O(1) O(n)

Dynamic Array 1 O(n) O(1)† O(1) O(n)

Dynamic Array 2 O(1)† O(1)† O(1) O(n)

Dynamic Array 3 O(1) O(1) O(1) O(n)

Introduction to Data Structures
• Data Structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

