- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ , and Ω -notation.
- Experimental analysis of algorithms

Philip Bille

- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ , and Ω -notation.
- Experimental analysis of algorithms

Goal. Determine and predict computational resources and correctness of algorithms.

Examples.

- Does my route finding algorithm work?
- How quickly can I answer a query for a route?
- Can it scale to 10k queries per second?
- Will it run out of memory with large maps?
- How many cache-misses does the algorithm generate per query? And how does this affect performance?
- · Primary focus.
 - Correctness, running time, space usage.
 - Theoretical and experimental analysis.

Running time

- · Running time. Number of steps an algorithm performs on an input of size n.
- · Steps.
 - Read/write to memory (x := y, A[i], i = i + 1, ...)
 - Arithmetic/boolean operations (+, -, *, /, %, &&, ||, &, |, ^, ~)
 - Comparisons (<, >, =<, =>, =, ≠)
 - Program flow (if-then-else, while, for, goto, function call, ..)
- Terminology. Running time, time, time complexity.

Running time

- Worst-case running time. Maximal running time over all inputs of size n.
- Best-case running time. Minimal running time over all inputs of size n.
- Average-case running time. Average running time over all inputs of size n.
- Terminology. Time = worst-case running time (unless otherwise stated).
- Other variants. Amortized, randomized, deterministic, non-deterministic, etc.

Space

- Space. Number of memory cells used by the algorithm
- Memory cells.
 - Variables and pointers/references = 1 memory cells.
 - Array of length k = k memory cells.
- · Terminology. Space, memory, storage, space complexity.

- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ , and Ω -notation.
- Experimental analysis of algorithms

Asymptotic Notation

- Asymptotic notation.
 - O, Θ , and Ω -notation.
 - Notation to bound the asymptotic growth of functions.
 - · Fundamental tool for talking about time and space of algorithms.

• Definition. f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n.

- Example. $f(n) = O(n^2)$ if $f(n) \le cn^2$ for large n.
- $5n^2 = O(n^2)$?
 - $5n^2 \le 5n^2$ for large n.
- $5n^2 + 3 = O(n^2)$?
 - $5n^2 + 3 \le 6n^2$ for large n.
- $5n^2 + 3n = O(n^2)$?
 - $5n^2 + 3n \le 6n^2$ for large n.
- $5n^2 + 3n^2 = O(n^2)$?
 - $5n^2 + 3n^2 = 8n^2 \le 8n^2$ for large n.
- $5n^3 = O(n^2)$?
 - $5n^3 \ge cn^2$ for all constants c for large n.

- Definition. f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n.
- Definition. f(n) = O(g(n)) if exists constants c, $n_0 > 0$, such that for all $n \ge n_0$, $f(n) \le cg(n)$.

- Notation.
 - O(g(n)) is a set of functions.
 - Think of = as \in or \subseteq .
 - $f(n) = O(n^2)$ is ok. $O(n^2) = f(n)$ is not!

- f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n.
- · Exercise.
 - Which are true? (log^k n is (log n)^k)
 - $3n + 2n^3 n^2 = O(n^2)$
 - $3n^2 + \log n = O(n^3)$
 - $5n^7 + 2^n + = O(n^7)$
 - $n \log^3 n = O(n^2 \log n)$
 - $4n^2 + \log n = O(n^3)$
 - $n(n+3)/1000 + 10000 \log^4 n = O(n^2)$

Ω -notation

- Definition. $f(n) = \Omega(g(n))$ if $f(n) \ge cg(n)$ for large n.
- Definition. $f(n) = \Omega(g(n))$ if exists constants c, $n_0 > 0$, such that for all $n \ge n_0$, $f(n) \ge cg(n)$

Θ-notation

• Definition. $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Asymptotic Notation

- f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n.
- $f(n) = \Omega(g(n))$ if $f(n) \ge cg(n)$ for large n.
- $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- Exercise. Which are true? (log^k n is (log n)^k)
 - $n \log^3 n = O(n^2)$
 - $2^n + 5n^7 = \Omega(n^3)$
 - $n^2(n 5)/5 = \Theta(n^2)$
 - 4 $n^{1/100} = \Omega(n)$
 - $n^3/300 + 15 \log n = \Theta(n^3)$
 - $2^{\log n} = O(n)$
 - $\log^2 n + n + 7 = \Omega(\log n)$

Asymptotic Notation

- Basic properties.
 - Any polynomial grows proportional to it's leading term.

$$a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d = \Theta(n^d)$$

All logarithms are asymptotically the same.

$$\log_a(n) = \frac{\log_b n}{\log_b a} = \Theta(\log_c(n)) \qquad \text{for all constants } a, b > 0$$

Logarithms grow slower than any polynomials.

$$\log(n) = O(n^d)$$
 for all $d > 0$

Polynomials grow slower than any exponentials.

$$n^d = O(r^n)$$
 for all $d > 0$ and $r > 1$

Typical Running Times

```
for i = 1 to n < \Theta(1) time operation >
```

```
for i = 1 to n
for j = 1 to n
< \theta(1) time operation >
```

```
for i = 1 to n
for j = i to n
< \theta(1) time operation >
```

Typical Running Times

$$T(n) = \begin{cases} T(n/2) + \Theta(1) & \text{if } n > 1 \\ \Theta(1) & \text{if } n = 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(n/2) + \Theta(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(n/2) + \Theta(1) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

$$T(n) = \begin{cases} T(n/2) + \Theta(n) & \text{if } n > 1 \\ \Theta(1) & \text{if } n = 1 \end{cases}$$

- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ , and Ω -notation.
- Experimental analysis of algorithms

Experimental Analysis

- · Challenge. Can we experimentally estimate the theoretical running time?
- Doubling technique.
 - Run program and measure time for different input sizes.
 - · Examine the time increase when we double the size of the input.
- Example.
- Input size x 2 and time x 4.
- → Algorithm probably runs in quadratic time.

•
$$T(n) = cn^2$$

•
$$T(2n) = c(2n)^2 = c2^2n^2 = c4n^2$$

•
$$T(2n)/T(n) = 4$$

n	time	ratio
5000	0	-
10000	0,2	-
20000	0,6	3
40000	2,3	3,8
80000	9,4	4
160000	37,8	4

- Analysis of algorithms
 - Running time
 - Space
- Asymptotic notation
 - O, Θ , and Ω -notation.
- Experimental analysis of algorithms