Exercise 1.1

We construct an undirected graph where the vertices are persons, and the edges are friendships.

Exercise 1.2

Algorithm We construct the graph G for the party and determine whether it is bipartite. If it is, we output "yes, there is a partition;" if not, we output "no, there is no partition."

Correctness By definition, it is possible to partition the persons into two teams, T_{1} and T_{2}, if and only if the corresponding graph is bipartite. Hence, the algorithm is correct.

Analysis We use $O(x+y)$ time to construct the graph and $O(x+y)$ time to determine if it is bipartite. In total, we use $O(x+y)$ time.

Exercise 1.3

Algorithm We construct the graph G for the party, run a DFS on G from p_{0}, and count the number of visited vertices. If the number of visited is at least k, we output "yes, we can reach at least k persons," if not, we output "no, we cannot reach k persons."

Correctness A person p^{\prime} is reachable from a person p if and only if there is a path between p to p^{\prime} in G. A DFS from p_{0} finds all vertices connected to p_{0}. Hence, counting these determines the number of vertices reachable from p_{0}. Hence, the algorithm is correct.

Analysis We use $O(x+y)$ time to construct the graph and $O(x+y)$ time to do the DFS. In total, we use $O(x+y)$ time.

Exercise 1.4

We construct the graph G for the party and assign a weight on each edge that is the strength of the corresponding friendship. We now binary search for the smallest weight s in the range [1, $10 x^{2}$] such that the graph G_{s} consisting of all edges of weight no more than s is connected. Each step of the binary search proceeds as follows:

1. Construct graph G_{s}.
2. Run DFS on G_{s} from p_{0}.
3. If G_{s} is connected we lower s and otherwise we increase s.

We output the smallest s determined by the binary search.

Correctness The graph G_{s} consists of the edges with weight $\leq s$ from G. Thus, G_{s} corresponds to the party with all friendships of strength $\leq s$. The algorithm is correct since we output the smallest s such G_{s} is connected.

Analysis Each binary search step uses $O(x+y)$ time. We binary search over a range of size $10 x^{2}$, and thus use $O\left(\log \left(10 x^{2}\right)\right)=O(\log x)$ binary search steps. In total, we use $O((x+y) \log x)$ time.

