
Signe Tudent s101010

Exercise 1.1

We construct an undirected graph where the vertices are persons, and the edges are friendships.

Exercise 1.2

Algorithm We construct the graph G for the party and determine whether it is bipartite. If it is, we output "yes, there
is a partition;" if not, we output "no, there is no partition."

Correctness By definition, it is possible to partition the persons into two teams, T1 and T2, if and only if the corre-
sponding graph is bipartite. Hence, the algorithm is correct.

Analysis We use O(x + y) time to construct the graph and O(x + y) time to determine if it is bipartite. In total, we use
O(x + y) time.

Exercise 1.3

Algorithm We construct the graph G for the party, run a DFS on G from p0, and count the number of visited vertices.
If the number of visited is at least k, we output "yes, we can reach at least k persons," if not, we output "no, we cannot
reach k persons."

Correctness A person p′ is reachable from a person p if and only if there is a path between p to p′ in G. A DFS from p0
finds all vertices connected to p0. Hence, counting these determines the number of vertices reachable from p0. Hence,
the algorithm is correct.

Analysis We use O(x + y) time to construct the graph and O(x + y) time to do the DFS. In total, we use O(x + y) time.

Exercise 1.4

We construct the graph G for the party and assign a weight on each edge that is the strength of the corresponding
friendship. We now binary search for the smallest weight s in the range [1, 10x2] such that the graph Gs consisting of all
edges of weight no more than s is connected. Each step of the binary search proceeds as follows:

1. Construct graph Gs.

2. Run DFS on Gs from p0.

3. If Gs is connected we lower s and otherwise we increase s.

We output the smallest s determined by the binary search.

Correctness The graph Gs consists of the edges with weight ≤ s from G. Thus, Gs corresponds to the party with all
friendships of strength ≤ s. The algorithm is correct since we output the smallest s such Gs is connected.

Analysis Each binary search step uses O(x + y) time. We binary search over a range of size 10x2, and thus use
O(log(10x2)) = O(log x) binary search steps. In total, we use O((x + y) log x) time.

1


