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Abstract

This paper presents a novel wearable device: the
SPHERE Wearable 3. The Wearable 3 is a wrist-worn sen-
sor node tailored for low maintenance residential health and
behaviour monitoring. It features multiple inertial measure-
ment sensors, as well as a heart-rate sensor, capacitive but-
ton, and OLED screen. The Wearable 3 builds on our expe-
rience with previous generations of wearable sensing nodes
while adding novel features, including interactive elements.
‘We present a novel two-way communication based on a cus-
tomized implementation of the Bluetooth Low Energy (BLE)
protocol to connect the Wearable 3 with a gateway device,
and describe various optimizations of energy consumption.
The Wearable 3 is currently being deployed in residential
homes in Bristol, UK, as part of a project aiming to collect
diagnostic data from early-stage Alzheimer’s patients.

1 Introduction

Internet of Things (IoT) poses to revolutionize the health-
care provision with the advances in sensing technology and
microelectronics. This is especially important as our health
systems are challenged by increasing chronic illness. The
long-term sustainability of health care must be improved by
early detection of medical conditions to enable cost-effective
and personalized treatment.

With the rapid development of wearable technolo-
gies [10], monitoring their own well-being can encourage
people to facilitate timely interventions, as well as enable
better diagnostics and research through long-term activity
monitoring. One example of this is the SPHERE project.
SPHERE (a Sensor Platform for Healthcare in a Residential
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Environment) is an interdisciplinary research collaboration
that aims to monitor the everyday behaviour of the users in
their home environment [7].

However, such a long-term activity monitoring in a resi-
dential environment requires that the wearables have low en-
ergy consumption and achieve efficient channel utilization.
The devices are also expected to require minimum mainte-
nance (such as recharging or replacement of batteries). In
this paper we preset the Wearable 3: the third version of the
SPHERE Wearable sensor nodes. The Wearable 3 extends
our previous work [7, 8] on SPW-1 (SPHERE Wearable 1)
and SPW-2 (SPHERE Wearable 2) and builds up on our ex-
perience when applying these nodes for human monitoring
in the home environment. Our contributions are:

e We describe the system architecture of the SPHERE
Wearable 3;

e We demonstrate better energy consumption per radio
utilization;

o We demonstrates better channel utilization with bidirec-
tional information exchange;

e We quantify the performance of the new wearable.

The Wearable 3 is currently used as part of the SPHERE mul-
timodal sensor platform [5] in residential installations in the
CUBOID project. The objective of CUBOID is to develop
novel behavioural analysis algorithms for dementia-related
diagnostic signatures, enabling early diagnostics and new
therapies of people with early-stage Alzheimer’s disease. To
this end, it is especially important the the Wearable 3 is easy-
to-use as well as aesthetically pleasing.

2 Related Work

The research community has conducted a large number
of experiments regarding wearable devices for activity mon-
itoring.

The advancement in microelectronics and the recent de-
velopments in commercial wearable devices (e.g., Nike+ Fu-
elband SE, Jawbone UP etc.) have led to an explosive growth
in number of wearables used as fitness trackers and smart-
watches. In [11], a literature survey on the legitimacy, suit-
ability and adequacy of wearable technology in the fields



of personal health informatics, behaviour change, and medi-
cal support is presented. The wearable devices are equipped
with advance sensors (e.g., accelerometers, GPS, heart rate
monitors etc.) for personal health monitoring or fitness sup-
port.

However, a new framework for these wearable gadgets
is required because of the limited access of the raw data.
The new framework will overcome the limited use of such
devices for research or medical applications. Their lack of
interoperability with other healthcare systems and their lim-
ited expandability to new sensor technologies will be opened
through the new platform. Additionally, research for the new
framework will help to manage the need for regular recharg-
ing of these devices depending on the target groups that are
uncomfortable with or physically unable of managing mod-
ern technologies. For example, gadgets with typical battery
lifetime of less than a week can hampers their fitness for
highly sensitive users.

An Ambient Assisted Living (AAL) platform called Ver-
ity is presented in [13] based on psychological signal moni-
toring that helps to provide original health evidence from the
human body using accelerometer and a piezo-resistive sen-
sor. A Mobile healthcare (mHealth) system depending on
biomedical signal monitoring was introduced in in [2] for
telemedicine using smartphones and wearable devices. The
proposed Data Acquisition Module (DAQ) collects and for-
ward biomedical signals over the Internet for monitoring. A
real time monitoring system (PsychoFIZZ) to examine psy-
chological behaviours using various on body sensors (e.g.,
piezo-resistive, epidermal electrocardiogram (ECG) sensors
etc.) is presented in [3] and developed a generic filter li-
brary for the system. The system communicates with multi-
ple Digital Sample Units (DSUs) by filtering and interpreting
the data to enhance the performance of the system.

Another AAL platform based on a wrist-worn accelerom-
eter by applying Relief-F filter-based approach to select ac-
celerometer features for activity recognition is presented
in [9]. The wearable accelerometer is able to identify ba-
sic activities, such as sitting, walking, running and jumping
but did not report how to recognize standing and sleeping.

A combination of accelerometer and electromyography
was considered in [4] to perform identification of basic activ-
ities of the elderly and patients. The proposed method uses
Zigbee wireless protocol to send the information of the force
and accelerometer sensors that claimed 98 % recognition ac-
curacy. The force sensor fusion is used to detect, locate,
and track elderly people and the accelerometer decision were
merged efficiently to detect the basic activity such as stand-
ing, sitting, walking, falling, lying down, and the transitions
between their activities. The drawback with this method is, it
is costly and consumes a large amount of power for the large
numbers of accelerometer and force sensors.

3 System Architecture
The Wearable 3 features the following main components:
e Highly energy-efficient MC3635 accelerometer, with
14Hz, 28 Hz, 54 Hz and 105 Hz sampling rates

o ICM-20948 nine-axial inertial measurement unit with
high-speed sampling accelerometer, gyroscope and
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Figure 1. Logic analyzer and Rocketlogger connection
schematic.

magnetometer
e OLED screen
e Capacitive touch button
o 8 MB flash memory
e BQS51013B Qi wireless charger

e CC2650 System-on-Chip with BLE and IEEE 802.15.4

radio.
The Wearable 3 runs the Contiki-NG and Texas Instruments

RTOS operating systems.

Fig. 1 shows the setup for experiments. A USBee SX
24Msps logic analyzer was used to measure GPIO pin
changes triggered in software. Rocketlogger [12] volt-
age and current readings together with GPIO changes were
recorded. All devices were powered by isolated power sup-
plies and data was collected over isolated Ethernet switches.
The logic analyzer provided accurate timings for the dif-
ferent states of the radio at different packet lengths during
reception and transmission. The accuracy was verified to
1% error when the byte transmission duration was calcu-
lated very close to the theoretical 1Msps or 125 Kbps or 8us.
For the Rocketlogger the voltage channels can provide very
accurate readings. However current readings exhibit some
variability and inaccuracy during transients. This was ac-
counted for when generating results by oversampling and
providing confidence intervals for the results. The on-board
FPC connector to provide access to GPIO signals and volt-
age rails which enabled the data collections and debugging in
general. The logic analyzer was connected using extension
boards to that connector and set at 24 Msps. Using sigrok
and averaging over multiple frames using the timings be-
tween GPIO transitions were measured. The analyzing and
averaging of the data was undertaken on the exported Value
Change Dump (VCD) files. The Rocketlogger data was set
to generate in excess of 10 million samples at 64 Ksps having
more than 500 thousand traces of transmission or reception.
The large quantities of traces were collected to mitigate two
limitations. The first one is that Rocketlogger was not syn-
chronized with the debug signals on the GPIOs. The second



one, is that the sampling rate of the Rocketlogger is much
lower than the logic analyzer. Those traces will have differ-
ent time drift with the debug signals. Thus for every trace the
samples trail were taken with a different time offset from the
debug signals. By averaging out over those complete traces
both limitations are accounted for. Our previous work is fo-
cused on SPW-1 and SPW-2, the first and second wearable
platform of SPHERE, which are presented in Section 3.1.
Section 3.2 extends our previous work, introducing the third
wearable platform of SPHERE, named Wearable 3.

3.1 SPHERE Previous Generation Wearable
Devices

There were two previous generations prior to the device
presented in this paper. Generation one, SPW-1 was based
on a different microcontroller the nRF51822. The main dif-
ference of that particular IC to the current one is the presence
of a single ARM Cortex MO processor compared to a combi-
nation of a Cortex M0 and M3 in both the second generation
SPW-2 and the third generation Wearable 3. Also, the radio
is limited to a single standard the BLE. Furthermore, there
is an additional accelerometer in the first two generations,
which by design they were placed at a distance of 30 mm.
They were used to simulate gyroscope functionality by cal-
culating the difference between the two accelerometer values
at a particular sample by accounting to the distance between
them. The sampling frequency of the first two generations
was limited 400 Hz, and the supported measurement ranges
were £2g, +4g, +8g.

Initially the device was powered by non-rechargeable
batteries with the accompanying power regulation. Then
for better maintainability and uptime a switch was made
to wirelessly charged Lithium-Polymer (LiPo) batteries to-
gether with better energy efficiency power management cir-
cuitry. A noticeable increase in the efficiency at sleep state
was obtained when the battery regulation was switched from
LTC3388 to TPS62746. Supplementary to the high effi-
ciency regulator a linear regulator was placed to power the
accelerometers which had very good noise performance. The
low noise regulator allowed for lower mean root square (rms)
noise in accelerometer sampled data.

There were a few design elements that were successful
has been migrated over to the current generation. The linear
regulator TPS78318 delivering low noise was used both in
the SPW-2 and the Wearable 3. The CC260 SoC from SPW-
2 was migrated into the new design. This Soc provides more
energy efficient wireless connectivity by supporting off-the-
shelf radio that both BLE and IEEE 802.15.4 and link layer
of 6LoWPAN, ZigBee and Thread.The MX25R6435F flash
memory was also migrated. A notable feature is it’s ability
to consumes very low current of 200 nA in shutdown mode.

3.2 The Third Wearable: Wearable 3

The Wearable 3 features one MC3635 accelerometer. The
SPW-1 demonstrated the practical improvements in energy
consumption of using a DCDC converter, instead of a linear
voltage regulator. However, the output voltage of the switch-
ing regulator has a 50 mV periodic fluctuation that introduces
noise in the measurements of the MC3635 accelerometers.
The Wearable 3 mitigates this issue by incorporating two

voltage regulators. The combination of the low-noise lin-
ear voltage regulator (TPS78318) and high-efficiency DCDC
converter (TPS62746) improves the noise levels of the ex-
periments at the cost of only a minor increase of the power
consumption of the accelerometers. The Wearable 3 also
uses 3.7V Li-Po Batteries designed to fit a 100 mAh with
BQ51013B Qi-compliant [1] wireless power receiver and
battery charger. Compared to SPW-2 a change was made in
the power management subsystem was the switch from a sin-
gle wireless power and charging IC in SPW-2 to two separate
IC in the Wearable 3. This further decreased leakages of cur-
rent. A 7.5 uH low-profile (19 mm round up to 0.8 mm) Qi-
compliant wireless power receiver coil (WE-WPCC) is cho-
sen for LiPo batteries because of user-friendliness in reload-
ing and low-cost waterproof inclusions of the wearable sen-
sor. The Wearable 3 also includes a gyroscope (ICM-20948)
that powered from a GPIO as it requires more power than
the accelerometer. The Wearable 3 has 8§ MB peripheral
flash memory (MX25R6435F) with only 200nA in shut-
down mode. Like SPW-1 and SPW-2, the Wearable 3 em-
ploys one button (but unlike in previous devices, the button
is capacitive) and one general purpose LED. In the Wearable
3, as in the SPW-2, 5 exposed GPIOs can be connected ex-
ternal sensors to support digital inputs; 3 of them are shared
with the SPI bus but also support analogue input. A mean-
dered inverted-F antenna (maximum directivity of 5.3 dBi
) that is printed on the FR4 substrate of the Wearable 3 is
matched to the differential RF output of the CC2650. The
nRF51822 used by SPW-1 allows a transmission power of+4
dBm, whereas CC2650 allows a higher transmission power
of +5 dBm. Fig. 2 shows the internal hardware sub-systems
diagram of the Wearable 3. Table 1 compares the Wearable
3 with the SPW-1 and SPW-2, summarizing their features.

The Wearable 3 is designed with smaller dimension (i.e.,
external dimension of 38.5x38.5x12.5 mm and smaller bat-
tery size 23.5x17.5x3 ) compared to the SPW-2 for comfort.
The new wearable incorporates 3D compass, which gives
better motion capture. A new sensor is also included in the
Wearable 3 to measure heart rate. The new Wearable 3 also
supports easy comm USB interface. The Wearable 3 has also
interface of vibration for tactile haptic feedback, touch but-
ton for user interaction, screen for visual information and
capable to connect with other interactive platforms. Fig. 3
shows the external diagram of the Wearable 3 interface with
USB connector.

Figure 4 shows the wearable device and its minimal im-
plementation components for data collection.

4 Performance Evaluation

BLE radio has 4 times higher symbol rate than the
IEEE 802.15.4: 1 Mbps versus 250 Kbps. However, BLE has
a 3 dB lower sensitivity on the receiver. From measurements
presented below assuming that the BLE requires 3 dB higher
power to transmit at the maximum power level of +5dBm
compared to +2dBm the radio consumes 730 uA or 7.5 %
more for the duration of the transmission. The measurements
were derived using variable transmit power for a fixed maxi-
mum size of BLE advertisements. The duration of the trans-
mission has an inherent offset due to radio setup. By varying



Table 1. Summary of Features of SPW-1, SPW-2 and P .
SPW3 Management
| Features | SPW-1 | SPW-2 | Wearable 3 | % Power
SoC nRF51822 | CC2650
BLE Yes — Accelerometer «
IEEE 802.15.4 No Yes
Processor Cortex MO Cortex M3 . IMU 10 mcu BB Antenna
RAM 32KB 30KB
Internal Flash 256KB 128KB Heart-Rate
Coin Cell Support Yes Sensor
Li-Po Support Yes
Battery Voltage 27-6V | 2.15-55V —~  Screen
Battery Charger Yes
Wireless Power (Qi) || No \ Yes Touch
Energy Awareness Yes S
Charging Awareness || No [ Yes Figure 2. Internal hardware sub-systems of the Wear-
Accelerometer 2 [1 able 3.
Gyroscope No Yes
External Flash No 8SMB é{uifg; Charging IC —~  Battery
PCB Ar}tenn.a‘ ' Yes ' Programmer
Max. Directivity 7 dBi 5.3dBi Button USB Wireless Wireless
Max. Tx Power +4 dBm +5dB Serial Connector Power IC Coil
External Antenna Yes No Converter
Ilgli?on 2 ; ! 5V Rail bogic Level .~ mcu
GPIOs 7 5 (SPI) Figure 3. External interfaces of the Wearable 3.
Analogue GPIOs 2 3 (SPD)
Screen No | Yes

the packet length and looking into the time that the radio is
active the start-up time and the time per byte can be derived.
Using a linear regression model using variable length pack-
ets the radio start-up time is 547.2 us and 5.38 us per byte of
data.

Irx = tsetup + trampup + tperbyte X bytes + trampdown
= (2394 141+ 8 x bytes +78)107%(s)

Measurements shown in Fig. 5 were taken using +5 dBm
transmit power. The changes in transmit power affects only
the transmission part. For reception and radio setup, ramp up
and ramp down the energy expenditure remains the same.

Having two radios transmitting 37 bytes of information.
The choice of number is based on the maximum packet size
allowed for BLE advertisements. Radio A and B transmit-
ting using BLE and 802.15.4 respectively. B will require
80 % more time to transmit the packet. This equates to 80 %
more power at the same power level. If we operate at the
limit of the link budget where A has to transmit with 3 dB
higher power than B. Then B consumes 67.5 % more power
per byte. Fig. 6 shows the BLE energy consumption with
variable length. At the same level, 802.15.4 will require 4
time higher power on transmitting the data which leads to
the 80 % higher energy at 37 bytes of transmission.

Apart from transmissions reception power must be con-
sidered. During reception the micro controller consumes a
constant amount of power. Thus the only variable affecting
the power consumption is the time radio spends active to re-

ey

ceive the information. Using the BLE active scanning mode
we can deduce a metric for the receive power mode to assess
the reception energy.

Lrx = Lsetup +3x Lrampup
+ tperbyte X (bytesadv + bytesreq + bytesresp) ()
+3x trampdown

€rx = €setup + 3x €rampup
=+ Pix X tperbyre X (bytesadv + bytesreq + by[esresp) 3)
+3x €rampdown

Notice that the time for which the radio is active the MCU
is idling. Thus this time can be used for data processing.
This time can be quite significant i.e. 1.3 ms while receiv-
ing as show in Fig. 7. In this time features can be extracted
from the data collection stream. Based on results for SPW-2
from [6] which uses the same MCU spectral processing for
up to 15 samples can be done during a 37byte reception us-
ing the scan request response method. Using this approach
decision can be done on the device based on the incoming
data and the processed features. This decision could include
changes in data collection. This could include changes in
accelerator sampling frequency and range or activity detec-
tion thresholds. Also interactive elements can be used such
as presenting messages on user screen, generating vibration
notifications.

Fig. 8 shows the sleep current distribution for the Wear-
able 3 that shows efficiency in new power delivery regula-



Figure 4. Top: device on a charger, middle: device inter-
nals, bottom: wireless charging receiver.

tors and the utilization of them in the Wearable 3 (maxi-
mum of 600 A current consumption compared to 2 mA cur-
rent consumption in SPW-2). Note that the figure shows
very low quiescent current during idle time (i.e., the value
is around 400 nA and with all peripherals in shutdown mode
only 200 nA of excess power as found from the datasheets).
This is due to the space restrictions when it come to PCB
traces clearances with the power planes. The data was col-
lected using a Rocketlogger device. The dual ADC input for
current measurements uses a shunt resistor and a switchable
transimpedance amplifier. During transients to high currents
above a threshold i.e. 4mA the transimpedance amplifier
layout is bypassed using a MOSFET. The low current ADC
is used to examine sleep current and the high range ADC in-
put to assess power consumption while the MCU is active.
During the switching points noise and false readings are in-
troduced. These are accounted for by statistically detecting
outliers and specifying confidence levels using statistics. To
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Figure 6. Comparison between energy spend per state.

have better representation of power consumption data and
the generation of confidence intervals the data had to be fitted
to distributions. The statistical approximation for most of the
measurements was the normal or Gaussian distribution as hy-
pothesized by the Central Limit Theorem. To achieve this, a
large number of samples were collected. Due to the discrete
nature of the data samples, Epanechnikov kernel was used to
approximate the cumulative distribution function (CDF) of
the data points. From the kernel derived CDF approxima-
tion the mean and standard deviation values where derived
by converging the inverse CDF at different probabilities. The
mean can be found at half way of the values. The standard
deviation is the difference of the inverse CDF between two
values at each side of the Probability Density function (PDF)
with probability difference between them of 0.68.

u=F~10.5) 4

c=F1(.6707) — F~1(.3293) (5)

The choice of normal distributions is to allow combinations,
additions and subtractions of different power consumption
states. The combination of those could provide a figure of the
expected battery life with the corresponding confidence in-
tervals. Millions of samples of the sleep current for different
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A: device sleeping, State B: accelerometer enabled, State
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states were collected to generate confidence intervals. The
sleep current was measured while having occasional wake
up calls. To account for current transients and isolate the re-
gions of interest the data was represented using normal dis-
tributions. The lowest power state is where the MCU input
outputs are set to the lowest leakage setting. The MCU can
only wake up from timers set prior to sleeping. This repre-
sents state A on Fig. 8. The next state is when the accelerom-
eter is on and sampling data at 28 Hz. The last state is when
both the accelerometer and the touch sensor IC are both on.
Notice that the variance of the state C is larger than A and
B due to the fact that the touch sensor its an independent
current sink. Thus, the outcome is the sum of two normally
distributed random variables. Also this indicates that the low
noise circuity implemented for the accelerometer does not
have any current noise thus no voltage noise. Another impor-
tant information that can be derived from Fig. 8 is the cost
of adding user interaction on the device. An accelerometer
and the touch button can provide interrupts to the MCU. Us-
ing these interrupts, the MCU is able to wake up and present
screen messages to the user. The capacitive button allows to
wake up the screen and to navigate across menus, while the
accelerometer can provide gesture detection. This dual inter-
action potential can be enabled with current consumption as
low as 3.4 uA (Fig. 8).

S Conclusion and Future Work

This paper presents the Wearable 3, a new wrist-worn sen-
sor node for residential monitoring, and evaluates its perfor-
mance. We show that by using two way communication with
bidirectional RSSI information exchange for accessing net-
work utilization, the Wearable 3 can potentially reduce the
number of BLE channels used for advertisement messages
from 3 to 1, i.e., 66 % energy savings in transmission com-
pared with the previous version. The paper also presents var-
ious energy measurements, including the minimum energy
required for receiving data using BLE scan request / scan
response approach. In addition, this paper identifies a region
where data processing can be done: i.e., while waiting for
the RF queues to be emptied. In the future, additional sensor
functionality can be incorporated in the design by utilizing
the flex connector on-board. A mixed signal interface with
flexible PCBs or board-to-board connections allows the de-
vice to connect with ECG, pulse oximetry, and other sensors.
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