Roots of the chromatic polynomial, spanning trees and minors

Thomas Perrett

Technical University of Denmark

GT2015, Nyborg, Denmark

August 26th, 2015
The Chromatic Polynomial

To each graph G, we can associate a polynomial $P(G, t)$ which counts, for each non-negative integer t, the number of proper t-colourings of G.

\[P(K_3, t) = t(t - 1)(t - 2) \]
Chromatic Roots

Definition
A real number t is a *chromatic root of G* if $P(G, t) = 0$.

Clearly $0, 1, \ldots, \chi(G) - 1$ are always chromatic roots of G.

Can chromatic polynomials have non-integer roots?
Chromatic Polynomial of $K_{2,3}$
No chromatic roots

Theorem (Tutte/Woodall 1974)

No graph has a chromatic root in the intervals $(-\infty, 0)$ *and* $(0, 1)$.
No chromatic roots

Theorem (Tutte/Woodall 1974)

_No graph has a chromatic root in the intervals $(-\infty, 0)$ and $(0, 1)$. _

Every bipartite graph with an odd number of vertices has a chromatic root in $(1, 2)$.

No chromatic roots

Theorem (Jackson 1993)

No graph has a chromatic root in the interval \((1, \frac{32}{27}]\).
No chromatic roots

Theorem (Jackson 1993)

No graph has a chromatic root in the interval $(1, \frac{32}{27}]$.

$32/27$ is the infimum in the interval $(1, 2]$ of the chromatic roots of all graphs.
Chromatic roots in \((1, 2)\)

For a class of graphs \(\mathcal{G}\), let \(\omega(\mathcal{G})\) be the infimum in \((1, 2]\) of the chromatic roots of \(G \in \mathcal{G}\).
Chromatic roots in $(1, 2)$.

Theorem (Jackson 1993)

If \mathcal{G} is the class of all graphs, then $\omega(\mathcal{G}) = \frac{32}{27}$.
Planar triangulations

Theorem (Birkhoff and Lewis, 1946)

*If \mathcal{P} is the class of planar triangulations, then $\omega(\mathcal{P}) = 2$.***
Theorem (Thomassen 2000)

If \(\mathcal{H} \) is the class of graphs with a Hamiltonian path, then \(\omega(\mathcal{H}) = t_0 \) where \(t_0 \approx 1.296 \) is the unique real root of the polynomial \(t^3 - 2t^2 + 4t - 4 \).

\[(-\infty, 0) \quad (0, 1) \quad (1, t_0) \]

\[0 \quad 1 \quad 2 \]
3-leaf spanning trees

Theorem (P. 2015+)

If \mathcal{T} is the class of graphs containing a spanning tree with at most 3 leaves, then $\omega(\mathcal{T}) = t_1$, where $t_1 \approx 1.290$ is the smallest real root of the polynomial $t^6 - 8t^5 + 27t^4 - 56t^3 + 82t^2 - 76t + 31$.

\[
\begin{align*}
(\infty, 0) & \quad (0, 1) & \quad (1, t_1)
\end{align*}
\]
Minors

Theorem (Dong 2010)
If G is the class of graphs not containing $K_{2,3}$ as a minor, then $\omega(G) = 2$.

Theorem (Dong 2010)
If G is the class of graphs not containing $K_{2,4}$ as a minor, then $\omega(G) = \gamma$ where $\gamma \approx 1.430$ is the chromatic root of $K_{2,3}$.
Theorem (P. 2015+)

If G is the class of graphs which are \{H_0, H_1, H_2\} -minor-free, then $\omega(G) = t_0$, where $t_0 \approx 1.296$ is the unique real root of the polynomial $t^3 - 2t^2 + 4t - 4$.

H_0, H_1, H_2
Theorem (P. 2015+)

If \mathcal{G} is the class of graphs which are $\{H_0, H_1, H_2\}$-minor-free, then $\omega(\mathcal{G}) = t_0$, where $t_0 \approx 1.296$ is the unique real root of the polynomial $t^3 - 2t^2 + 4t - 4$.
Minors

Theorem (P. 2015+)

If \mathcal{G} is the class of graphs which are \{\(H_0, H_1, H_2\)\}-minor-free, then $\omega(\mathcal{G}) = t_0$, where $t_0 \approx 1.296$ is the unique real root of the polynomial $t^3 - 2t^2 + 4t - 4$.

Theorem (Thomassen 2000)

If \mathcal{H} is the class of graphs with a Hamiltonian path, then $\omega(\mathcal{H}) = t_0$ where $t_0 \approx 1.296$ is the unique real root of the polynomial $t^3 - 2t^2 + 4t - 4$.
Generalised triangles

A very important class of graphs in the study of chromatic roots.

\[\mathcal{K} = \{ \text{generalised triangles} \} \]
Double subdivision
Generalised triangles

Any graph you can obtain from a triangle by a sequence of double subdivisions.
Generalised triangles

The generalised triangles form a partially ordered set under the double subdivision operation: For generalised triangles G and H, we say $H \leq G$ if G can be obtained from H by a sequence of double subdivisions.
Generalised triangles
Generalised triangles
Key observation

Lemma

If G and H are generalised triangles, then H is a minor of G if and only if $H \leq G$.
Key observation

Lemma

If G and H are generalised triangles, then H is a minor of G if and only if $H \leq G$.

A downwards closed subset \mathcal{K}' of \mathcal{K} can be characterised within \mathcal{K} by forbidding a collection of minors.
Key observation

Lemma

If G and H are generalised triangles, then H is a minor of G if and only if $H \leq G$.

A downwards closed subset \mathcal{K}' of \mathcal{K} can be characterised within \mathcal{K} by forbidding a collection of minors.
Key observation

Lemma
If G and H are generalised triangles, then H is a minor of G if and only if $H \leq G$.

A downwards closed subset \mathcal{K}' of \mathcal{K} can be characterised within \mathcal{K} by forbidding a collection of minors.
Key observation

Lemma

If G and H are generalised triangles, then H is a minor of G if and only if $H \leq G$.

A downwards closed subset \mathcal{K}' of \mathcal{K} can be characterised within \mathcal{K} by forbidding a collection of minors.
There is a minor-closed class of graphs \mathcal{G} such that $\mathcal{G} \cap \mathcal{K} = \mathcal{K}'$.

Lemma (Dong 2010)

*If \mathcal{G} is a minor-closed class of graphs, then $\omega(\mathcal{G}) = \omega(\mathcal{G} \cap \mathcal{K})$. Using Dong’s result: $\omega(\mathcal{G}) = \omega(\mathcal{G} \cap \mathcal{K}) = \omega(\mathcal{K}')$.***
The families \mathcal{K}_1 and \mathcal{K}_2

Definition

Let G be a generalised triangle.

- $G \in \mathcal{K}_1$ if for every 2-cut $\{x, y\}$, and every component C of $G - x - y$, at least one of x and y has precisely one neighbour in C.

- $G \in \mathcal{K}_2$ if for every 2-cut $\{x, y\}$, at least one component of $G - x - y$ is a single vertex.
The family \mathcal{K}_1

<table>
<thead>
<tr>
<th>Forbidden minors</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega(\mathcal{K}_1)$</td>
<td>$5/4$</td>
</tr>
</tbody>
</table>

Theorem

*If \mathcal{G} is the class of H_0-minor-free graphs, then $\omega(\mathcal{G}) = 5/4$.***

Conjecture (Dong and Jackson 2011)

*If \mathcal{G} is the family of graphs such that some vertex is contained in every 2-cut, then $\omega(\mathcal{G}) = 5/4$.***
The family \mathcal{K}_2

<table>
<thead>
<tr>
<th>Forbidden minors</th>
<th>$\omega(\mathcal{K}_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>H_2</td>
</tr>
</tbody>
</table>

$q \approx 1.225$ root of $t^4 - 4t^3 + 4t^2 - 4t + 4$.

Theorem

If \mathcal{G} is the class of $\{H_1, H_2\}$-minor-free graphs, then $\omega(\mathcal{G}) = q$.

Conjecture (Dong and Jackson 2011)

If \mathcal{G} is the family of 2-connected plane graphs such that every two cut is contained in the outer cycle, then $\omega(\mathcal{G}) = q$.
The family $\mathcal{K}_1 \cap \mathcal{K}_2$

<table>
<thead>
<tr>
<th>Forbidden minors</th>
<th>H_0</th>
<th>H_1</th>
<th>H_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega(\mathcal{K}_1 \cap \mathcal{K}_2)$</td>
<td>$t_0 \approx 1.296$ root of $t^3 - 2t^2 + 4t - 4$.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lemma (Thomassen 2000)

If \mathcal{H} is the class of graphs with a Hamiltonian path, then $\omega(\mathcal{H}) = \omega(\mathcal{H} \cap \mathcal{K}) = t_0$.

We show $\{ P(H, t) : H \in \mathcal{H} \cap \mathcal{K} \} = \{ P(G, t) : G \in \mathcal{K}_1 \cap \mathcal{K}_2 \}$.

Theorem

If \mathcal{G} is the class of $\{ H_0, H_1, H_2 \}$-minor-free graphs, then $\omega(\mathcal{G}) = t_0$.
Further work

Conjecture

Let H be a generalised triangle. If \mathcal{G} is the class of H-minor-free graphs, then $\omega(\mathcal{G}) > 32/27$.
Thanks.