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General mission

Machine learning gets more and more powerful —
let’'s apply it to solve problems of societal relevance!

Today’s talk

How can machine learning be used to design biomarkers (measurable
indicators) for diagnosis and prognosis of diseases?

Many people think that deep learning is the future of Al, so let’s
discuss it in the context of medical biomarkers.
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© Invariant Features
Diagnosis and Prognosis of Alzheimer’s Disease
Working in Scale-space

® Convolutional Neural Networks
Deep Learning
Analysis of Mammograms
Knee Cartilage Segmentation
Brain Segmentation

® Some Thoughts
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Outline

© Invariant Features
Diagnosis and Prognosis of Alzheimer’s Disease

® Convolutional Neural Networks

® Some Thoughts
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Alzheimer’s Disease progression
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Hippocampal texture from structural MRI

e Image analysis of brain scans
e Segmentation of brain regions
(hippocampi)
e Extraction of image features

¢ Classification using SVMs
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Filter responses

Serensen, Igel, Hansen, Osler, Lauritzen, Rostrup, Nielsen. Early detection of Alzheimer’s disease using MRI hippocampal
texture. Human Brain Mapping, 2016 .
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CADDementia Challenge

o Computer-Aided Diagnosis of Dementia based on structural
MRI data (CADDementia) competition

e Goal: Diagnosis into Alzheimer’s disease (AD), mild cognitive
impairment (MCI), and normal controls (NC)

¢ No labelled training data was provided, we trained on freely
available data sets.

e We combined several biomarkers (cortical thickness
measurements, hippocampal shape, hippocampal texture,
and volumetric measurements).

Serensen, Pai, Anker, Balas, Lillholm, Igel, Nielsen. Dementia Diagnosis using MRI Cortical Thickness, Shape, Texture,
and Volumetry. MICCAI 2014 — Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data, 2014

Bron et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The
CADDementia challenge. Neurolmage, 2015

Sarensen, Igel, Pai, Anker, Balas, Lillholm, Nielsen. Differential diagnosis of mild cognitive impairment and Alzheimer’s
disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Neurolmage:
Clinical, in revisions
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CADDementia: Results

Original results table presented on 18 September 2014 at the MICCAI workshop.
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Working in Scale-space

® Convolutional Neural Networks

® Some Thoughts
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Recall: Convolution

1D convolution with filter kernel w : R — R:
5(1) = (e w)(1) = / xa)w(i—a)da
Convolution of a discrete 2D image I with filter kernel K:
S(i,j) = (I*K)( ZZImn —m,j—n)
(K=I)( ZZ[ i—m,j—n)K(m,n)
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Example: Convolution

Example of applying a horizontal derivative filter:

Goodfellow, Bengio, Courville. Deep Learning. MIT Press
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Derivatives in scale-space

e Letx = [x,y,z]” be a point in image 1.
e The Gaussian scale-space representation I = I * G4 at scale
G is given by convolving with:

G (x)z—1 exp(—w>
X = (m o) 27

e Partial derivatives are now easily obtained, e.g., w.r.t. y using
Ly o(x) = [I %Gy ] (x)
with partial first-order derivative of the Gaussian, e.g.:

Gyalx) = %%(x)
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The Hessian

o We denote the eigenvalues of the Hessian

Ixx,c Ixy,(s Ixz,(s
Hs(x) = |lyo Lyo Ieo| (X)
Ixz,cs Iyz,G Izz,G
by
Nig(x)  [Me(X)] = [A6(x)] = [A3,6(x)]
for a voxel x = [x,y,z]7.
e Considering these eigenvalues induces rotation invariance.
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Scale-space features

Gradient magnitude

IVGa ()|l = \/Tea(3)? + Iy 6(%)% + L o(x)?

Laplacian of the Gaussian
VZGG(X) =M o(X) + A2 6(X) + A3 6(x)
Gaussian curvature

Ko(x) = A1 6(X)  A2.6(X) - A3.6(X)

Frobenius norm of the Hessian

1Ho(x) = /h1.6(0% + A0 ()2 + A3 (%)’
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Histogram representation
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Filter responses

e Features values are computed at each x, the values are
binned and the frequencies are the final representation.

e Collecting values over a region in a histogram makes the
features invariant under translation and allows for easy
handling of variable-size input.
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Invariance

e Histograms of selected scale-space features do not change if
the image is translated, flipped, or rotated.

e Feature invariance carry over to the machine learning model
on top of the features.

e This fosters generalization and makes learning statistically
efficient.
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® Convolutional Neural Networks
Deep Learning

® Some Thoughts
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Deep learning

e Deep learning refers to ML architectures very high level representation:
composed of multiple levels of non-linear
transformations. f

.. €lC ...

e |dea: Extracting more and more abstract A

features from input data, learning more slightly higher level representation

abstract representations.

raw input vector representation:

e Representations can be learned in a
supervised and/or unsupervised manner.

e Example: Convolutional neural networks
(CNNs) are popular deep learning
architectures.

LeCun, Bottou, Bengio, Haffner. Gradient-based learning applied to Bengio. Learning Deep Architectures
document recognition. Proceedings of the IEEE, 1998 for Al. Foundations and Trends in Ma-
chine Learning 2(1): 1-127, 2009
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Convolutional neural network (CNN)

Example of a special CNN architecture we use:

pooling

scale t

sofmax 37

padded rim
~ J
unsupervised Y
supervised

A canonical CNN consists of

e convolutional layers, each of which producing several feature
maps; interleaved with

e pooling layers; and
e a standard neural network on top.
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Convolutional layer

feature (filter mask)
E . :
[

input image/map

feature (filter mask)
[

feature map input image/map

feature map

e A convolutional layer computes a feature map by convolution
of the input with a linear filter.

e The coefficients of each convolution kernel are learned as
weights in a neural network.

¢ A non-linear function is applied to the feature map elements,
which can be viewed as neurons with shared weights.
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Pooling layer
= max (@) e max (@)
T i
input map feature map input map feature map

e Pooling layers compute the maximum or average over a

region of a feature map.
e Used to reduce the dimensionality, increase the scale, and to

support translation invariance.
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Outline

© Invariant Features

® Convolutional Neural Networks

Analysis of Mammograms

® Some Thoughts
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Breast cancer

e Breast cancer is a frequent cause of death among women

e Screening programs halve the risk of death! and reduce
mortality by 28-36 %>

e Still: 33% of cancers are missed,> 70 % of referrals are false
posi’[ives,4 and 25 % of cancers could have been detected
earlier’

e Goal: More accurate image-based biomarkers allowing
personalized breast cancer screening

1Otto et al. Cancer Epidemiol Biomarkers Prev 21, 2012
2Broeders et al. J Med Screen 19, 2012

3 Karssemeijer et al. Radiology 227, 2003

4Yankaskas et al. Am J Roentgenol 177, 2001
STimmers et al. Eur J Public Health, 2012
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Breast segmentation

Breast segmentation is the first step in the analysis.

input manual CNN
Dataset Background  Pectoral muscle Breast tissue
Nijmegen (/N = 495) 0.99 £ 0.01 095 £ 0.08 098 £ 0.01
Mayo (N = 717) 0.99 £ 0.01 093 £0.11 097 £ 0.02

Dice’s coefficients
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Breast density scoring

Breast density is related to breast cancer risk, the risk of missing
breast cancer, and the risk of false positive referral.

input manual CNN

Current work: Better biomarkers using CNN density scores and
CNN texture scores

Kallenberg, Petersen, Nielsen, Ng, Diao, Igel, Vachon, Holland, Winkel, Karssemeijer, and Lillholm. Unsupervised deep
learning applied to breast density segmentation and mammographic risk scoring. IEEE Transactions on Medical Imaging,

2016 .
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® Convolutional Neural Networks

Knee Cartilage Segmentation

® Some Thoughts
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Knee cartilage segmentation

e Cartilage segmentation in knee MRI is the method of choice
for quantifying cartilage deterioration.

o Cartilage deterioration implies osteoarthritis, one of the major
reasons for work disability in the western world.

input manual CNN

——r

Prasoon, Petersen, Igel, Lauze, Dam, Nielsen. Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar
Convolutional Neural Network. Medical Image Computing and Computer Assisted Intervention (MICCAI), LNCS 8150, 2013
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® Convolutional Neural Networks

Brain Segmentation

® Some Thoughts
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Brain segmentation

134 classes, ground truth (top) and CNN results (bottom)

Pai, Teng, Blair, Kallenberg, Dam, Sommer, Igel, Nielsen. Characterisation of errors in deep learning-based brain MRI
segmentation. Deep Learning for Medical Image Analysis, Elsevier, in press
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Tri-planar CNN

Processing 3D images (A) by 2D (B), tri-planar (C), 3D (D)
convolutions:

Tri-planar CNNs are computationally and statistically efficient.

Prasoon, Petersen, Igel, Lauze, Dam, Nielsen. Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar
Convolutional Neural Network. Medical Image Computing and Computer Assisted Intervention (MICCAI), LNCS 8150, 2013

Pai, Teng, Blair, Kallenberg, Dam, Sommer, Igel, Nielsen. Characterisation of errors in deep learning-based brain MRI
segmentation. Deep Learning for Medical Image Analysis, Elsevier, in press
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Some thoughts

@ CNNs are well suited for image and sound processing; they
have won several competitions recently.
The best performance is usually achieved when the CNN is
combined with careful image preprocessing.

¢ CNNs exploit “spatial” structure in the input; in particular, they
incorporate translation invariance.

¢ Layers can be (pre-)trained sequentially.

¢ Unsupervised and supervised learning can nicely be
combined.

& Training CNNs typically scales linearly in training set size.
¢ CNNs profit from massively parallel computing (e.g., GPUs)

Slide 31/33 — Christian Igel — Machine Learning for Science and Society — igel@diku.dk



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Some more thoughts

@/ Deep networks are highly non-linear models.
© Tuning the architecture of a deep learning system can be very
difficult.
© Deep learning is badly understood theoretically.

The revival of deep neural networks is partly due to the
availability of fast (parallel) hardware and larger training data
sets (which makes overfitting less of a problem).
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Take me home ...

Incorporating the right invariance properties in the learning
system is a key principle for increasing efficiency and
performance.

Machine learning can be used to design powerful biomarkers for
diagnosis and prognosis of diseases.

Machine learning gets more and more powerful —
let’s apply it to solve problems of societal relevance!

http://image.diku.dk/igel
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