Dynamic Logic of Propositional Assignments and its applications to update, revision and planning

Andreas Herzig
University of Toulouse, IRIT-CNRS, France

Workshop on Planning, Logic and Social Intelligence, Copenhagen, April 4, 2014
Aim of talk

- propaganda for Dynamic Logic of Propositional Assignments
 [Herzig et al., IJCAI 2011; Balbiani et al., LICS 2013]
 - simpler than PDL
 - *the* basic logic to for dynamic systems
 - aim: canonical problems between NP and PSPACE
 - nicer than QBF

- specifically:
 - Forbus’s update operation [Forbus 1989]
 - Dalal’s revision operation [Dalal 1988]
 - planning tasks and their modification
 [Smith, ICAPS 2004; Göbelbecker et al., ICAPS 2010]
Outline

1. DL-PA: dynamic logic of propositional assignments
2. Update and revision via DL-PA programs
3. Forbus update
4. Dalal revision
5. Planning tasks and their modification
Dynamic Logic of Propositional Assignments DL-PA with converse

- instantiates good old Propositional Dynamic Logic PDL
 - atomic programs: assignments of propositional variables
 \[p \leftarrow \top = \text{“make } p \text{ true”} \]
 \[p \leftarrow \bot = \text{“make } p \text{ false”} \]
 - complex programs and formulas: as usual in PDL

\[\pi^m \overset{\text{def}}{=} \begin{cases} \text{skip} & \text{if } m = 0 \\ \pi; \pi^{m-1} & \text{otherwise} \end{cases} \]

\[\pi^{\leq m} \overset{\text{def}}{=} \begin{cases} \text{skip} & \text{if } m = 0 \\ (\text{skip} \cup \pi); \pi^{m-1} & \text{otherwise} \end{cases} \]

\[p \leftarrow \varphi \overset{\text{def}}{=} (\varphi?; p \leftarrow \top) \cup (\neg \varphi?; p \leftarrow \bot) \]
Dynamic Logic of Propositional Assignments DL-PA with converse

- language, for $p \in \text{PVar}$:
 \[
 \pi ::= p \gets T \mid p \gets \bot \mid \varphi? \mid \pi; \pi \mid \pi \cup \pi \mid \pi^* \mid \pi^{-1}
 \]
 \[
 \varphi ::= p \mid T \mid \bot \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \pi \rangle \varphi
 \]

- propositional assignments are an old idea:
 - [Tiomkin & Makowsky, TCS, 1985] (global and local)
 - [Wilm, TCS 1991]
 - [van Eijck, Studia Logica 2000] (no Kleene star)
 - [Guelev et al., Information Security 2004] (deterministic programs)

- but the above language was not considered before
 - [Balbiani et al., LICS 2013]
Semantics of DL-PA: formulas

- **valuation** = subset of PVar
 - set of all valuations is $2^{PVar} = \{v, v', \ldots\}$
 - $p \in v$: p true in v
 - $p \notin v$: p false in v

- interpretation of formula φ = set of valuations $||\varphi|| \subseteq 2^{PVar}$

\[
||p|| = \{v : p \in v\}
\]
\[
||\top|| = 2^{PVar}
\]
\[
||\bot|| = \emptyset
\]
\[
||\neg \varphi|| = 2^{PVar} \setminus ||\varphi||
\]
\[
||\varphi \lor \psi|| = ||\varphi|| \cup ||\psi||
\]
\[
||\langle \pi \rangle \varphi|| = \{v : \text{there is } v', (v, v') \in ||\pi|| \text{ and } v' \in ||\varphi||\}\]
Semantics of DL-PA: programs

interpretation of program \(\pi = \text{relation } ||\pi|| \subseteq 2^{PVar} \times 2^{PVar} \)

\[
\begin{align*}
||p & \leftarrow \top|| = \{ (v, v') : v' = v \cup \{ p \} \} \\
||p & \leftarrow \bot|| = \{ (v, v') : v' = v \setminus \{ p \} \} \\
||\varphi ?|| &= \{ (v, v) : v \in ||\varphi|| \} \\
||\pi ; \pi'|| &= ||\pi|| \circ ||\pi'|| \\
||\pi \cup \pi'|| &= ||\pi|| \cup ||\pi'|| \\
||\pi^*|| &= (||\pi||)^* = \bigcup_{k \in \mathbb{N}_0} (||\pi||)^k \\
||\pi^{-1}|| &= (||\pi||)^{-1}
\end{align*}
\]
DL-PA: eliminating the program operators

- eliminate converse operator:
 \[\| p \leftarrow \top^{-1} \| = \| p ?; (\text{skip} \cup p \leftarrow \bot) \| \]
 \[\| p \leftarrow \bot^{-1} \| = \ldots \]

- eliminate Kleene star:
 \[\| \pi^* \| = \| \pi^{\leq \text{card}(\text{PVar}(\pi))} \| \]

- eliminate the other program operators: as in star-free PDL

Proposition
([Herzig et al., IJCAI 2011; Balbiani et al., LICS 2013])

For every DL-PA formula \(\varphi \) there is an equivalent formula \(\varphi' \) such that no program operators occur in \(\varphi' \).
eliminate atomic programs:
- atomic programs $\langle p \leftarrow \top \rangle$ and $\langle p \leftarrow \bot \rangle$ distribute over \land, \lor, \neg
- can be eliminated when facing atomic formulas:

$$\langle p \leftarrow \top \rangle q \leftrightarrow \begin{cases}
\top & \text{if } q = p \\
q & \text{otherwise}
\end{cases} \quad \langle p \leftarrow \bot \rangle q \leftrightarrow \ldots$$

Proposition
([Herzig et al., IJCAI 2011; Balbiani et al., LICS 2013])

For every DL-PA formula there is an equivalent boolean formula.
DL-PA: eliminating the dynamic operators

Example

\[
\langle p \leftarrow \bot^{-1} \rangle (p \land q) \iff \langle \neg p \ ; \ (\text{skip} \cup p \leftarrow \top) \rangle (p \land q)
\]
\[
\iff \langle \neg p \rangle \langle (\text{skip} \cup p \leftarrow \top) \rangle (p \land q)
\]
\[
\iff \neg p \land \langle (\text{skip} \cup p \leftarrow \top) \rangle (p \land q)
\]
\[
\iff \neg p \land (\langle \text{skip} \rangle (p \land q) \lor \langle p \leftarrow \top \rangle (p \land q))
\]
\[
\iff \neg p \land (\langle \text{skip} \rangle (p \land q) \lor (\langle p \leftarrow \top \rangle p \land \langle p \leftarrow \top \rangle q))
\]
\[
\iff \neg p \land ((p \land q) \lor (\top \land q))
\]
\[
\iff \neg p \land ((p \land q) \lor q)
\]
\[
\iff \neg p \land q
\]
Properties and applications of DL-PA

- **properties**
 - no nondeterministic composition: NP complete
 - star-free: PSPACE complete [Herzig et al., IJCAI 2011]
 - full language: PSPACE complete [Balbiani et al., ongoing]
 - flawed EXPTIME hardness proof in [Balbiani et al., LICS 2013]

- **applications**
 - ...
 - ...
 - ...
 - here:
 - various update and revision operations [Herzig, KR 2014]
 - plan existence, planning task modification
Outline

1. DL-PA: dynamic logic of propositional assignments
2. Update and revision via DL-PA programs
3. Forbus update
4. Dalal revision
5. Planning tasks and their modification
Update and revision operations

- $B \circ A = \text{modification of belief base } B \text{ accommodating input } A$
 - B, A boolean formulas
 - object language operators (vs. metalanguage operations)

- two kinds of change:
 - update = “world changes” [Katsuno&Mendelzon 1992]
 - revision = “knowledge about world changes” [Alchourrón et al., JSL 1985]

- two different accounts:
 1. parametrised operations
 - built from arbitrary orderings or distances
 - characterised by postulates
 2. concrete operations
 - based on particular distances between valuations
 - mainly studied from semantic perspective
 - $\Rightarrow B \circ A = \text{a set of valuations of classical propositional logic}$
 - $\Rightarrow \text{syntactical representation?}$
 - $\Rightarrow \text{“disjunction of formulas describing the models of } B \circ A”$
Embedding into DL-PA

- idea:
 - update by atomic formula ≡ atomic assignment
 - update by p ≡ $p \leftarrow \top$
 - update by $\neg p$ ≡ $p \leftarrow \bot$
 - update by complex formula $A \approx$ complex assignment $\pi(A)$
 - depends on belief change operation: $\pi^{\text{wss}}(A) \neq \pi^{\text{forbus}}(A)$, etc.
 - $\pi^{\text{wss}}(\neg p \lor \neg q) = p \leftarrow \bot \cup q \leftarrow \bot \cup (p \leftarrow \bot; q \leftarrow \bot)$
 - $\pi^{\text{forbus}}(\neg p \lor \neg q) = \ldots$

- aim: find polynomial embeddings into DL-PA
 1. syntactical construction of the new base via reduction to boolean formulas
 2. general framework for belief change

 to be proved for each change operation \circ^ω:

 $B \circ^\omega A = \langle (\pi^\omega(A))^{-1} \rangle B$

- here: based on Hamming distance [Forbus 1989; Dalal 1988]
- other operations: see [Herzig, KR 2014]
Some useful DL-PA programs

- nondeterministically assign truth values to \(p_1, \ldots, p_n \):
 \[
 \text{vary}(\{p_1, \ldots, p_n\}) = (p_1 \leftarrow T \cup p_1 \leftarrow \bot) ; \cdots ; (p_n \leftarrow T \cup p_n \leftarrow \bot)
 \]

- nondeterministically flip one of \(p_1, \ldots, p_n \):
 \[
 \text{flip1}(\{p_1, \ldots, p_n\}) = p_1 \leftarrow \neg p_1 \cup \cdots \cup p_n \leftarrow \neg p_n
 \]
Outline

1. DL-PA: dynamic logic of propositional assignments
2. Update and revision via DL-PA programs
3. Forbus update
4. Dalal revision
5. Planning tasks and their modification
Forbus’s update operation [Forbus89]

- Hamming distance between valuations v and v'
 \[h(\{p, q\}, \{q, r, s\}) = \text{card}(\{p, r, s\}) = 3 \]

- Valuation-wise update:
 1. for each model $v \in ||B||$:
 - select A-valuations closest w.r.t. the Hamming distance
 2. collect the resulting valuations

\[
 v \diamond_{\text{forbus}} A = \{v' : v' \in ||A|| \text{ and there is no } v'' \text{ such that } h(v, v'') < h(v, v') \}
\]

Example

\[
\begin{align*}
 \neg p \land \neg q \diamond_{\text{forbus}} p \lor q &= ||p \oplus q|| \\
 \neg p \land \neg q \land \neg r \diamond_{\text{forbus}} (p \land q) \lor r &= ||\neg p \land \neg q \land r||
\end{align*}
\]
Expressing Forbus’s operation in DL-PA

Proposition

Let A, B be propositional formulas. Let

$$H(A, \geq m) = \begin{cases} \top & \text{if } m = 0 \\ \neg \langle \text{flip}^{m-1}(\text{PVar}(A)) \rangle A & \text{if } m \geq 1 \end{cases}$$

Let $\pi^{\text{forbus}}(A)$ be the DL-PA program

$$\bigcup_{0 \leq m \leq \text{card(PVar}(A))} H(A, \geq m); \text{flip}^m(\text{PVar}(A)); A?$$

Then $B \diamond^{\text{forbus}} A = ||(\pi^{\text{forbus}}(A))^{-1}\rangle B||$.

- program length cubic in length of A
Outline

1. DL-PA: dynamic logic of propositional assignments
2. Update and revision via DL-PA programs
3. Forbus update
4. Dalal revision
5. Planning tasks and their modification
Dalal’s revision operation

- based on minimisation of the Hamming distance between valuations
- revise B by $A = \text{“go to the } A\text{-valuations that are closest w.r.t. Hamming distance to the } B\text{-valuations”}\n - if B is satisfiable:
 \[
 B \star^{\text{dalal}} A = \{v_A \in ||A|| : \text{there is } v_B \in ||B|| \text{ s.t. there are no } v'_A, v'_B \text{ with } h(v'_A, v'_B) < h(v_A, v_B)\}\n
 - if B is unsatisfiable:
 \[
 B \star^{\text{dalal}} A = ||A||
 \]
- revision operation: satisfies AGM preservation postulate
 \[
 \text{if } ||B \land A|| \neq \emptyset \text{ then } B \star A = ||B \land A||
 \]

Example

\[
\neg p \lor \neg q \star^{\text{dalal}} p = ||p \land \neg q||
\]
- different from update: $\neg p \lor \neg q \diamond^{\text{forbus}} p = ||p||$
Proposition

Let $\pi^{\text{dalal}}(A, B)$ be the DL-PA program

\[
\text{vary}(\text{PVar}(B)) \ ; \ B ? \ ; \\
\bigcup_{0 \leq m \leq \text{card}(\text{PVar}(A))} \left([\text{vary}(\text{PVar}(B)) \ ; \ B?] \mathcal{H}(A, \geq m)? \ ; \text{flip}^m(\text{PVar}(A)) \right) \ ; \ A ?
\]

Then for satisfiable B: $B^{\text{dalal}} A = \|\langle \pi^{\text{dalal}}(A, B) \rangle^{-1} \rangle B \|$.

- program depends on the input A and on the base B
- program length cubic in length of $A + \text{length of } B$
Outline

1. DL-PA: dynamic logic of propositional assignments
2. Update and revision via DL-PA programs
3. Forbus update
4. Dalal revision
5. Planning tasks and their modification
Classical planning tasks

- action (planning operator): $a = (\text{pre}_a, \text{add}_a, \text{del}_a)$ with:
 - $\text{pre}_a \in \text{Fml}_{\text{bool}}$ (precondition)
 - $\text{add}_a, \text{del}_a \subseteq \text{PVar}$ (finite add list + delete list)
- semantics:

\[
\|a\| = \{(v, v') : v \in \|\text{pre}_a\| \text{ and } v' = (v \setminus \text{del}_a) \cup \text{add}_a\}
\]

\[
\|a\| = \|\text{pre}_a\?; q_1 \leftarrow \bot; \cdots; q_n \leftarrow \bot; p_1 \leftarrow T; \cdots; p_m \leftarrow T\|
\]

for $\text{add}_a = \{p_1, \ldots, p_m\}$ and $\text{del}_a = \{q_1, \ldots, q_n\}$
Classical planning tasks

valuation \(v \) is *reachable* from valuation \(s_0 \) via a set of actions \(A \) iff there is a sequence of actions \((a_1, \ldots, a_n)\) and a sequence of valuations \((v_0, \ldots, v_n)\) such that

- \(v_0 = s_0 \),
- \(v_n = v \), and
- \((v_{k-1}, v_k) \in \|a_k\|\) for every \(k \) such that \(1 \leq k \leq n \).

classical planning task: \((\text{PVar}, A, s_0, S_g)\) where:

- \(A \) is a set of actions
- \(s_0 \subseteq \text{PVar} \) (initial state)
- \(S_g \subseteq 2^{\text{PVar}} \) (goal)

solvable iff there is \(v \in S_g \) reachable from \(s_0 \) via \(A \)

hypothesis: \(\text{PVar} \) and \(A = \{a_1, \ldots, a_n\} \) finite

- \(\text{iterate}_A = (a_1 \cup \cdots \cup a_n)^* \)

\[(\text{PVar}, A, s_0, S_g) \text{ solvable } \iff \text{Fml}(s_0) \rightarrow \langle \text{iterate}_A \rangle \text{Fml}(S_g) \text{ DL-PA valid}\]
suppose \((P\text{Var}, A, s_0, S_g)\) has no solution

task modification [Göbelbecker et al., ICAPS 2010]:

1. increase or decrease the set of objects of the domain
2. augment the set of actions \(A\)
3. change the initial state \(s_0\)
4. change the goal description \(S_g\) (‘over-subscription planning’)

here: 3 and 4
Changing the initial state

- set of candidate initial states:

\[S'_0 = \{ s'_0 : \text{there is } s_g \in S_g \text{ such that } s_g \text{ is reachable from } s'_0 \text{ via } A \} \]

\[= \| \langle \text{iterate}_A \rangle \text{Fml}(S_g) \| \]

- set of initial states closest to \(s_0 \) from which \(S_g \) is reachable:

\[s_0 \diamond^{\text{forbus}} \text{Fml}(S'_0) \]

Alternatively: \(s_0 \diamond^{\text{pma}} \text{Fml}(S'_0) \) [Göbelbecker et al., ICAPS 2010]
Changing the goal

- given: planning task \((PVar, A, s_0, S_g)\)
- set of candidate goal states:

\[
S'_g = \{ s'_g : s'_g \text{ is reachable from } s_0 \text{ via } A \}
= \|\langle \text{iterate}_A^{-1}\rangle Fml(s_0)\| \\

- set of goal states closest to \(S_g\) that are reachable from \(s_0\):

\[
S_g^*_{dalal} Fml(S'_g)
\]

\[
S_g^*_{dalal} \|\langle \text{iterate}_A^{-1}\rangle Fml(s_0)\| = \|\langle (\pi_{dalal}(\langle \text{iterate}_A^{-1}\rangle Fml(s_0), Fml(S_g)))^{-1}\rangle Fml(S_g)\|
\]
embedding of prominent belief change operations into DL-PA
- Forbus’s operation operation
- Winslett’s update operations WSS and PMA
- Dalal’s revision operation
- Satoh’s revision operation

embedding of planning tasks and their modifications
 involves update/revision by counterfactuals

allows for the syntactical construction of the result

range of applicability of DL-PA:
- coalition logic of propositional control [Herzig et al, IJCAI 2011]
- normative systems [Herzig et al, CLIMA 2011]
- deontic action logic [Herzig et al, DEON 2012]
- update of ASP programs [Fariñas et al., LPNMR 2013]
- belief merging [Herzig et al., FOIKS 2014]
- modification of abstract argumentation frameworks à la Dung [Doutre et al., KR 2014]