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Abstract

In this paper we introduce an a priori variant of the capacitated vehicle routing
problem and provide a constant factor approximation algorithm, when the demands
of customers are independent and identically distributed Bernoulli experiments. In
the capacitated vehicle routing problem (CVRP) a vehicle, starting at a depot, must
visit a set of customers to deliver the requested quantity of some item. The vehicle
has capacity k, which is the maximum number of items that the vehicle can carry
at any time, but it can always return to the depot to restock. The objective is
to find the shortest tour subject to these constraints. In the a priori CVRP with
unit demands the vehicle has to visit a set of active customers, drawn from some
distribution. Every active customer has a demand of one. The goal is to find a
master tour, which is a feasible solution to the deterministic CVRP, i.e. where all
customers are active. Then, given a set of active customers, the tour is shortcut to
only visit those customers. The cost of the tour is the expected cost with respect to
the distribution of active customers. We consider the model, where every customer
is independently active with the same probability.

LetN be the number of customers. We provide an algorithm, which takes as input
an a priori TSP solution with approximation factor γ, and gives a solution to the a
priori CVRP with unit demands, whose cost is at most (1+k/N+γ) times the value of
the optimal solution. Specifically, this gives an expected 5.5−approximation by using
the 3.5−approximation to the a priori TSP from Van Ee and Sitters (2018) and a
deterministic 8.5−approximation by using the deterministic 6.5−approximation from
Van Zuylen (2011).
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1. Introduction

Vehicle routing problems are well studied problems, where the goal is to find the
shortest delivery routes from a set of depots to a set of customers [1, 2, 7, 8, 10, 13, 14].
Each customer has a certain demand of goods which have to be delivered. Addition-
ally, there may be certain constraints like vehicle capacity (i.e., a maximum amount
of goods that a vehicle can carry at any time), or time constraints [13]. Traditionally,
these problems are deterministic, meaning that all of the customers have to be served
and they have a predetermined demand. In some settings stochastic variations of
the problems are more realistic: Not every customer needs to be served every day,
and demands will typically vary over time. Also dynamic variations exist, where for
example new customers may appear during routes [14]. An overview of stochastic
vehicle routing problems is given by Gendrau et al. [8]. One way of approaching
stochastic settings is in considering a priori versions of these problems. The general
idea is to find a master tour, that is, a tour for all possible customers that can easily
be modified to serve the demand on a given day. The cost is then defined to be the
expected cost with respect to the distribution of demands.

We consider an a priori variant of the capacitated vehicle routing problem (CVRP),
where the demands are all independent and identically distributed Bernoulli experi-
ments. In the deterministic variation of CVRP we are given a single depot, a set of
customers, which all have a demand of one, and a vehicle with capacity k. The goal
is to find a tour (consisting of a set of subtours) of minimum total cost that visits
every customer and returns to the depot after serving at most k customers. In the a
priori variant a set of active customers is drawn from some probability distribution.
The goal is to find as master tour a feasible solution to the deterministic problem.
The tour is then shortcut given the demand, which in this case is the active set of
customers. The objective is to minimize the expected cost after shortcutting. This
is the same model used for the a priori TSP in Shmoys and Talwar [16] and for the a
priori travelling repairman problem in Van Ee and Sitters [17]. Note, however, that
this definition of an a priori strategy is slightly different from the a priori strategies,
which have typically been considered for the CVRP (for example [3, 6, 9]). Here
they follow a TSP tour of all customers, and then go back to the depot whenever
necessary. In contrast to this we require that the master tour itself is already a fea-
sible solution to the deterministic CVRP (i.e., it includes the returns to the depot).
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This means that for our approach we can have a fleet of vehicles, where each vehicle
visits (a subset of) the same customers every time. This can be important for some
applications, such as nurses visiting their patients.

Related work. The idea of using an a priori strategy was first introduced for
the travelling salesman problem by Jaillet in his PhD thesis [11] (later published in
an article [12]). Shmoys and Talwar [16] provide a randomized algorithm with an
approximation factor of 4 for the a priori TSP and a deterministic algorithm with an
approximation factor of 8. In their work they consider the independent activation
model, which means that every customer is active with a probability that is indepen-
dent from the probabilities of the other customers. These bounds have been improved
to a 3.5 factor for the randomized algorithm by Van Ee and Sitters [17] and a de-
terministic 6.5−approximation by Van Zuylen [18]. In an earlier result, Schalekamp
and Shmoys [15] give an O(log(N))− approximation for arbitrary distributions. Van
Ee and Sitters [17] prove a constant approximation ratio for the a priori travelling
repairman problem under the assumption that every node is independently active
with the same probability. This is the same assumption we impose on our problem.

The deterministic vehicle routing problem and its variations are well studied [1, 2,
7, 10]. Two variations of the problem are the split-delivery CVRP and the unsplit-
delivery CVRP. In the former variation the vehicle can deliver the demands over
multiple visits, whereas it has to deliver the full demand in one visit in the latter.
For split-delivery CVRP Haimovich and Rinnooy Kan [10] use an algorithm called
the cyclic heuristic, and Altinkemer and Gavish [2] use a slight variation of it. Both
take as input a TSP solution with approximation factor α and achieve an approxi-
mation ratio of 1 + α(1 − 1/k) in the case where all the demands are one. This is
essentially equivalent to the split-delivery CVRP with arbritary demands, as shown
by Haimovich and Rinnooy Kan [10]. For the non-split delivery CVRP Altinkemer
and Gavish [1] give an algorithm with an approximation ratio of 2+α(1−2/k), which
has subsequently been improved to 2 +α(1− 2/k)− 1/(3k3) by Bompadre et al. [7].

The a priori CVRP with stochastic demands was first studied by Bertsimas [5].
The problem considered by Bertsimas (and others) differs from ours in that, as men-
tioned, they fix an order of visited customers, but do not have a master tour which
is a feasible solution. Bertsimas introduces two stochastic variants for the split-
delivery variation: In the first strategy every customer is visited, and the demand
only becomes clear once the vehicle arrives at the customer. As such, every cus-
tomer needs to be visited, even if it turns out that they have zero demand. The
other strategy, which is the strategy we apply to our problem, is defined such that
the demands are fixed as soon as the vehicle first leaves the depot, and customers
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with zero demand are skipped. For the first strategy Bertsimas obtains an approxi-
mation ratio of 1 + α+O(1/N), when the demands of the customers are identically
distributed. Berman and Das [4] generalize this result to arbitrarily distributed de-
mands and give a randomized algorithm with an approximation ratio of 1 + α and
a deterministic algorithm with an approximation ratio of 1 + 2α. Gupta et al. [9]
give a similar algorithm, which also achieves an approximation ratio of 1 + α for
the split-delivery variation and additionally provide a (2+α)−approximation for the
unsplit-delivery variation. They also show that the cyclic heuristic is a deterministic
(1 + 2α)−approximation algorithm.

A common approach to CVRP (used for example in the cyclic heuristic) is to
modify a solution to the TSP, such that it becomes a valid CVRP solution. We will
use the same idea for the a priori variation of the problem.

Our results. We give an approximation algorithm for the a priori CVRP with
unit demands. As in Shmoys and Talwar [16] we consider the independent activa-
tion model. Furthermore, we restrict ourselves to the case where every customer is
independently active with the same probability. We prove the following theorem:

Theorem 1. Given a γ−approximation algorithm for the a priori TSP, there exists
a (1 + k/N + γ)−approximation algorithm for the a priori vehicle routing problem
with unit demands and vehicle capacity k, where all nodes are independently active
with the same probability.

The algorithm first computes a solution to the a priori TSP, then uses a similar
idea as Altinkemer and Gavish [2] to transform this into a solution to the a priori
CVRP, but now optimizes with respect to the expected cost over the distribution
of active customers. To prove our constant performance guarantees we also bound
the value of an optimal a priori CVRP solution by the value of an optimal a priori
TSP solution. Furthermore, we use the fact that for every subtour in the optimal
solution, the active customer that is furthest away from the depot has to be served,
and thus the length of the subtour is at least twice the distance from the depot to
this customer. We bound this by two times the average distance to the active cus-
tomers, which we then rewrite to a form that enables us to prove a constant factor
approximation.

2. Problem Description

In the capacitated vehicle routing problem with unit demands we are given a
complete undirected graph G = (V,E) with N vertices (customers) and edge weights
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du,v denoting the distance between vertex u and vertex v. Additionally, we have a
source (depot) s /∈ V , and for every vertex v ∈ V the cost of travelling to and from
the source is dv = ds,v = dv,s. Additionally, we assume the distances form a metric
on V ∪{s}. The goal is to find, for a given capacity k ∈ N, a minimal cost tour that
visits every vertex in V exactly once, and goes back to the source after visiting at
most k vertices.

In the a priori capacitated vehicle routing problem with unit demands we consider
a probability distribution Π over the powerset of V . The goal is to find a master
tour (that is, a valid solution for the CVRP) minimizing the expected cost of the
tour after shortcutting to an active set A drawn from Π. From here on, whenever we
talk about the cost of an a priori CVRP solution, we mean the expected cost with
respect to Π.

In this paper we consider the independent activation model, where the probability
of a vertex being active is independent of the probabilities of the other vertices.
Furthermore, we restrict ourselves to the case, where all vertices v ∈ V are active
with the same probability p.

3. A Constant Approximation Algorithm for the Uniform A Priori CVRP
with Unit Demands

In this section we give a (1+k/N+γ)−approximation algorithm to the uniform a
priori CVRP with unit demands, where γ is the approximation ratio of an algorithm
to the a priori TSP. Our idea is based on the work by Altinkemer and Gavish [2]
for the deterministic CVRP with unit demands. They consider k different ways of
splitting the TSP solution into subtours of length at most k, then choose the one with
minimum cost. Inspired by this, we propose a similar algorithm, which constructs
N sets of subtours, and chooses the optimal one with respect to the expected cost.

More formally, we start from a TSP solution of V , that is, a TSP solution of
all nodes excluding the source. We then create N sets of subtours S0, . . . ,SN−1
in the following way: We enumerate the vertices in V as v0, . . . , vN−1 in the or-
der of the TSP tour. Then, Si will be the tour split into dN

k
e subtours, start-

ing at vertex i, where at the beginning and end of each subtour we return to the
source. That is, for every Si we have dN

k
e − 1 subtours of length k of the form

(s, vzk+i mod N , vzk+i+1 mod N . . . , v(z+1)k+i−1 mod N , s), for 0 ≤ z < dN
k
e − 1. The

last subtour is given by (s, v(dN
k
e−1)k+i mod N , v(dN

k
e−1)k+i+1 mod N . . . , vi−1 mod N , s).

Out of S0, . . . ,SN−1, we choose the Si with minimum expected cost. This is the mas-
ter tour returned by the algorithm. Note that in the case of N mod k = 0, some of
the sets Si will be identical. This has no influence on the analysis.
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Clearly, this algorithm returns a valid solution with respect to the problem de-
scription. We show how to compute the expected cost for a set of subtours Si in
polynomial time. The expected cost of this solution is the expected cost of the set
of subtours when shortcut to an active set A. Denote the resulting set of edges by
Si(A). Then the cost of Si is given by:

EA

 ∑
u,v∈V ∪{s}

du,v1 ((u, v) ∈ Si(A))

 (1)

=
∑

u,v∈V ∪{s}

du,vP ((u, v) ∈ Si(A)) . (2)

Here, 1 (X) is the indicator function that returns 1 if X is true and 0 otherwise. If u
and v are elements of different subtours, then probability in (2) is zero. Otherwise, if
u is the depot, the probability is p(1−p)l, where l is the number of elements before v
in the subtour in Si. That is, the probability that v is active and no elements before
v are active. Similarly, if v is the depot, the probability is p(1 − p)l, where l is the
number of elements after u in the subtour in Si. If both u and v are in V and in the
same subtour, then the probability of the edge (u, v) being included in the shortcut
solution is p2(1− p)l, where l is the number of vertices between u and v in Si. Thus,
we can quickly compute P ((u, v) ∈ Si(A)) for any pair (u, v) and plug it into (2) to
compute the expected cost of Si.

We now prove that the algorithm gives an expected (1+k/N+γ)−approximation
to the a priori CVRP. We first prove two lower bounds for the expected cost of the
optimal solution, then prove an upper bound for the expected cost of the solution
returned by the algorithm. Finally, we combine these to obtain the claimed bound.

In the following lemma we show how to bound the optimal solution for the a
priori CVRP in terms of the value of the a priori TSP solution.

Lemma 3.1. Let CAPTSP and OPTAPTSP be the costs of a γ−approximation al-
gorithm and an optimal solution to the a priori TSP on the set of customers V ,
respectively. Let OPT be the cost of an optimal solution to the uniform a priori
CVRP with unit demands. Then

γOPT ≥ γOPTAPTSP ≥ CAPTSP .

Proof. By definition γOPTAPTSP ≥ CAPTSP . At the same time we have OPT ≥
OPTAPTSP , since we can get a feasible solution to the a priori TSP by shortcutting
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any CVRP solution such that we do not visit the source. Combining these two facts
gives the lemma.

In the next lemma we prove a lower bound, which is based on the observation
that in each subtour we have to visit the active vertex that is furthest away from the
depot.

Lemma 3.2. OPT ≥ 2(1−(1−p)k)
k

∑
v∈V dv .

Proof. Denote by SOPT the set of subtours in the optimal solution. Then, by the
triangle inequality, the following holds:

OPT ≥ 2EA

[ ∑
τ∈SOPT

avgv∈τ∩A dv

]
= 2

∑
τ∈SOPT

EA [avgv∈τ∩A dv]

= 2
∑

τ∈SOPT

EA [avgv∈τ∩A dv|τ ∩ A 6= ∅]P (τ ∩ A 6= ∅).

To compute EA(avgv∈τ∩A dv|τ ∩ A 6= ∅) partition the outcome space by the size of
τ ∩ A. That is,

EA [avgv∈τ∩A dv|τ ∩ A 6= ∅] =

|τ |∑
i=1

EA [avgv∈τ∩A dv||τ ∩ A| = i]P (|τ ∩ A| = i).

Now, for a fixed i, each set A such that |τ ∩ A| = i is equally likely. As such

EA [avgv∈τ∩A dv||τ ∩ A| = i] = avgv∈τ dv,

for all i. We get

OPT ≥ 2
∑

τ∈SOPT

EA [avgv∈τ∩A dv|τ ∩ A 6= ∅]P (τ ∩ A 6= ∅)

= 2
∑

τ∈SOPT

(avgv∈τ dv)(1− (1− p)|τ |)

= 2
∑

τ∈SOPT

(
1

|τ |
∑
v∈τ

dv

)
(1− (1− p)|τ |).
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The last expression decreases as a function of |τ | (see Appendix A).
Since we require the optimal solution to be feasible for the deterministic problem,

each subtour τ can have at most k customers. Therefore,

OPT ≥ 2
∑

τ∈SOPT

∑
v∈τ

dv
1− (1− p)|τ |

|τ |

≥ 2
∑

τ∈SOPT

∑
v∈τ

dv
1− (1− p)k

k

=
2
(
1− (1− p)k

)
k

∑
v∈V

dv .

The following lemma gives an upper bound for the expected cost of the algorithm.
The proof is similar to the one by Altinkemer and Gavish [2], however we now consider
the expected costs of the sets of subtours S0, ...,SN−1, where the expectation is taken
over Π.

Lemma 3.3. Denote by CAPTSP the expected cost of the a priori TSP solution used
in the algorithm. Then

EA [ALG(A)] ≤ 2

(
1

k
+

1

N

)(
1− (1− p)k

)∑
v∈V

dv + CAPTSP .

Proof. We can decompose the cost of every subtour into the cost of the edge that
leaves the source (outgoing edge), the cost of the edge that returns to the source
(incoming edge) and the rest of the subtour.

To determine the total cost of the algorithm we consider the expected contribu-
tion of each vertex separately, and use the sum of the expected costs of all possible
sets of subtours S0, . . . ,SN−1 to bound the cost of the best set of subtours.

Each vertex will be the j’th vertex in a subtour in at most dN
k
e of the subtours

S0, . . . ,SN−1. Now consider the following: If a vertex v is the j’th first vertex in
a subtour, the chance of this vertex being the first active vertex in the subtour is
(1− p)j−1p. Summing up over all the sets of subtours it thus contributes at most⌈

N

k

⌉ k−1∑
j=0

(1− p)jpdv ≤
(
N

k
+ 1

) k−1∑
j=0

(1− p)jpdv
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to the total cost of the outgoing edges. By the same argument, each vertex v con-
tributes no more than

(
N
k

+ 1
)∑k−1

j=0(1 − p)jpdv to the total cost of the incoming
edges. For every set of subtours, shortcut to A, the cost of the edges which are
neither outgoing nor incoming can be bounded by the a priori TSP solution. For all
sets, we thus bound the rest of the cost by N · CAPTSP .

Hence, we get:

N−1∑
i=0

EA [cost(Si(A))] ≤ 2
∑
v∈V

(
N

k
+ 1

) k−1∑
j=0

(1− p)jpdv +N · CAPTSP (3)

= 2

(
N

k
+ 1

)∑
v∈V

1− (1− p)k

1− (1− p)
pdv +N · CAPTSP (4)

= 2

(
N

k
+ 1

)(
1− (1− p)k

)∑
v∈V

dv +N · CAPTSP . (5)

Here (4) follows from (3) by using the closed form of the geometric series.
We choose the best set of subtours, so N times the cost of this solution must be

smaller than sum of the costs of the N sets of subtours. Thus:

N · EA [ALG(A)] ≤
N−1∑
i=0

EA [cost(Si(A))]

≤ 2

(
N

k
+ 1

)(
1− (1− p)k

)∑
v∈V

dv +N · CAPTSP .

Hence:

EA [ALG(A)] ≤ 2

(
1

k
+

1

N

)(
1− (1− p)k

)∑
v∈V

dv + CAPTSP .

We are now ready to prove the main result of this paper:

Theorem 1. Given a γ−approximation algorithm for the a priori TSP, there exists
a (1 + k/N + γ)−approximation algorithm for the a priori vehicle routing problem
with unit demands and vehicle capacity k, where all nodes are independently active
with the same probability.
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Proof. We bound the ratio EA[ALG(A)]
OPT

using Lemma 3.1, 3.2 and 3.3:

EA [ALG(A)]

OPT
≤

2
(
1
k

+ 1
N

) (
1− (1− p)k

)∑
v∈V dv

2(1−(1−p)k)
k

∑
v∈V dv

+
CAPTSP
OPT

≤ 1 + k/N + γ.

We can use the expected 3.5−approximation algorithm for the a priori TSP from
Van Ee and Sitters [17] and the deterministic 6.5−approximation algorithm from
Van Zuylen [18] to get the following corollary:

Corollary 3.4. There exists a randomized 5.5−approximation algorithm and a de-
terministic 8.5−approximation algorithm for the a priori capacitated vehicle routing
problem with unit demands, when nodes are independently active with the same prob-
ability.

Proof. This follows immediately from Theorem 1 by plugging in the randomized
3.5−approximation algorithm from Van Ee and Sitters [17] and the deterministic
6.5−approximation algorithm from Van Zuylen [18], respectively.

4. Conclusion

We have provided an algorithm, which, given a γ−approximation algorithm for
a priori TSP, gives an approximation factor of 1 + k/N + γ for the a priori capa-
citated vehicle routing problem in the independent activation model with the ad-
ditional constraints that the customers have unit demands and are active with the
same probability. We can use the randomized algorithm for the a priori TSP from
Van Ee and Sitters [17] to get an expected 5.5−approximation or we can use the de-
termistic algorithm from Van Zuylen [18] to get a deterministic 8.5-approximation.
It remains an open question whether the approach in this paper can be used to get
a constant factor approximation algorithm for the general independent activation
model.
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Appendix A. Proof that 1−(1−p)x

x
is a decreasing function of x

To prove this we differentiate the function wrt. x and show that the result is
negative:

d

dx

(
1− (1− p)x

x

)
= −(1− p)x ln(1− p)

x
− 1− (1− p)x

x2
= −(1− p)x(ln(1− p)x− 1) + 1

x2

We show that the numerator is always positive:

(1− p)x(ln(1− p)x− 1) + 1 ≥ 0

⇔ 1

(1− p)x
≥ − ln(1− p)x− 1

⇔1 +
1

(1− p)x
≥ − ln((1− p)x)

This is true since for all z > 0 it holds that z+1
z
≥ − ln(z)
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