
for generative modeling

Søren Hauberg

Differential geometry

Copyright © 2025 Søren Hauberg

This version is printed on February 23, 2025.
For the latest version, please see http://hauberg.org/weekendwithbernie/

http://hauberg.org/weekendwithbernie/

Author’s note

To Aasa, Ing
ri

d,
Agnes,

A former professor of mine once described a popular textbook
on differential geometry as ‘toilet reading’. Admittedly, he used
more crude terms. This description meant that the text was so
easily accessible that he could read the book while frequenting the
bathroom. That description was not meant as a compliment. . .

This brief book aims to be ‘toilet reading’. Differential geometry is
all too often presented abstractly with the driving intuitions hidden
well away. Instead, I have tried to make this text as easy as possible
to digest. . .

That said, I assume you have some experience with machine
learning and the standard mathematical tools associated with this
field. That is, you should be familiar with elementary calculus, linear
algebra, and probability theory.

This document is a work-in-progress, but you are invited to
improve it. Comments can be directed at sohau@dtu.dk

sohau@dtu.dk

Mathematical notation

I have tried to limit the mathematical rigor of this text, with the aim
of only providing enough detail for an operational understanding
of the topic. For a deeper dive, existing textbooks are available.
We cannot, and should not, completely skip mathematics, so some
notation is in order.

In general, boldface variables of lower case, e.g. x, are vectors,
while matrices are boldface capital letters, e.g. J. Scalars are low-
ercase, such as a. Different spaces are denoted with calligraphic
letters, such as M, or ‘mathematical bold’, such as R that denotes
the set of real numbers. The table below gives a list of commonly
used symbols and variables. These will be defined throughout the
text and are only listed here for reference.

RD The space of D-dimensional real vectors.
Ω ⊂ Rd The input domain of a manifold.

In machine learning jargon: the latent space.
M A manifold, usually M = f(Ω) ⊂ RD.
Tx The tangent space at x ∈ Ω.
Symd×d

+ The space of symmetric positive d× d matrices.

6 søren hauberg

xn,xm ∈ Ω Points in the input domain.
In machine learning jargon: latent variables.

yn,ym ∈ RD Point in the ambient space, usually y = f(x).
These may be thought of as observational data.

δn, δm Infinitesimals, i.e. very small vectors.
[x]i The ith element of vector x.

Similar notation is used for matrices.

Jx ∈ RD×d The Jacobian matrix of f at x ∈ Ω.
Gx ∈ Symd×d

+ The Riemannian metric J⊺
xJx.

c A curve of the form c : [0, 1]→ Ω. The curve is
indexed by t, and we write ct = c(t) to
determine the point along the curve at time t.

ċ The derivative of the curve c, i.e. ċ = dc/dt.
cnm The shortest path (geodesic) connecting xn and xm.

∥ · ∥ The norm of a vector.
⟨·, ·⟩ The inner product between vectors.
∥ · ∥x The norm of a vector with respect to the metric at x ∈ Ω.
⟨·, ·⟩x The inner product with respect to the metric at x ∈ Ω.
Length[c] The length of a curve c.
E [c] The energy of a curve c.
dist(·, ·) The geodesic distance between two points.

Logxn
(xm) The logarithm map of xm evaluated at xn.

Expx(v) The exponential map of v starting from x.

Contents

Chapter 1

Introduction Page 11

In which we meet our first manifolds, and the story begins.

Chapter 2

Making maps Page 19

In which we pause to look at the world.

Chapter 3

Embedded and immersed manifolds Page 23

In which we begin to observe manifolds.

Chapter 4

Distances on manifolds Page 31

In which we start being able to tell what is close and what is far away.

Chapter 5

Riemannian metrics Page 41

In which we measure from the inside out.

Chapter 6

Examples of learned metrics Page 51

In which we take an exemplary intermission.

8 søren hauberg

Chapter 7

Geodesics Page 55

In which shortcuts are repeatedly taken.

Chapter 8

Computing geodesics numerically Page 67

In which we actually do something practical.

Chapter 9

Arithmetic on Riemannian manifolds Page 77

In which we joyfully rediscover plus and minus.

Chapter 10

Integration on manifolds Page 83

In which the metric speaks volumes about space.

Chapter 11

Submanifolds Page 91

In which recursion takes over (again).

Chapter 12

Noisy manifolds Page 95

In which data ruins the party only to randomly save it again.

Chapter 13

Expected Gaussian manifolds Page 109

In which great expectations aren’t all that great.

Chapter 14

Parameter manifolds Page 123

In which everything is latent and the distant is near.

CONTENTS 9

Chapter 15

Parting remarks & further reading Page 131

In which our story ends, while many new begin.

Appendix A

Ordinary differential equations Page 137

Index Page 141

Bibliography Page 143

Chapter 1

Introduction

In which we meet our first manifolds,
and the story begins.

The figure below shows a manifold. It is a collection of points in
R3 that are somehow connected to form a smooth object. It is these
kinds of objects we together will investigate in order to build useful
models derived from observed data. You may notice that data does
not appear in the figure — don’t worry we will eventually get to
data, but it will not be our initial focus.

Figure 1.1: A simple two-
dimensional manifold em-
bedded in R3.

Geometry tells us how to measure; statistics rely on our choice
of measure. This book touches on some geometric foundations that
are useful when constructing statistical models. In particular, we
will work towards understanding Riemannian manifolds as they can
appear in machine learning. We won’t focus on how to learn models,
but rather on what to do with models once they have been learned.

The existing literature is focused on the mathematics of geometry,
often presented abstractly. From a practical perspective, this is
unwarranted as the topic is often simple and intuitive. This book
aims to be a starting ground that establishes the most basic con-

12 søren hauberg

structions to preserve intuition. As such this is by no means a
complete exposition, but rather an opening that allows the reader
to get started.

On that note, let’s get started. . .

∼ Example: Identifiability issues ∽

In latent variable models, we describe our hypothesis of how the
observed data was generated through the use of an underlying
‘hidden’ quantity. For example, we may assume that an observation
y is generated as

y = f(x), (1.1)

where both the function f and its input x are ‘hidden’, i.e. not
observed. In probabilistic terms, we would perhaps prefer to work
with a conditional distribution rather than a function, such that the
latent variable model becomes

p(y) =
∫
p(y|x)p(x)dx. (1.2)

Here x is called the latent variable, and the intuition is that this
variable captures the essence of our observations. This is a reasonably
general approach to building statistical models, and depending on
the assumptions we are willing to make the model may have different
degrees of feasibility.

Probabilistic PCA

Let us assume that we observe D-dimensional data y ∈ RD and that
the latent variable is a lower dimensional vector x ∈ Rd, d < D. We
can now create the probabilistic principal component analysis [38]
model if we assume that there is an affine relationship between x
and y, i.e.

p(y|x) = N (y|Ax + b, σ2I). (1.3)

Here N denotes the density of a multivariate normal distribution,
A ∈ RD×d,b ∈ RD reflect the affine relationship, and I ∈ RD×D is
an identity matrix. Informally

y = f(x) = Ax + b + noise. (1.4)

introduction 13

1 a rotation matrix is defined
as satisfying R⊺R = I

If we further assume that p(x) = N (x|0, I), then we have a fully
specified model. As normal distributions are reasonably easy to
manipulate one can carry out the integration of Eq. 1.2 in closed
form and get that

p(y) = N (y|b,AA⊺ + σ2I). (1.5)

This gives a likelihood that can be optimized to estimate the model
parameters.

This model is commonly used to visualize and otherwise under-
stand the data, by inspection of the latent variable x. The intuition
is that x are low-dimensional projections of the observations y.

Here some care should be taken as the model is not identifiable,
i.e. the distribution p(y) may be parametrized differently without
changing the density. For example, if x,A,b, and σ2 are the maxi-
mum likelihood estimators of the model parameters, then we can
create a new set of parameters that give identical likelihood. Let
R ∈ Rd×d be a rotation matrix.1 Now replace the (unobserved)
latent variables with

x̂ = Rx (1.6)

then p(x̂) = N (x|0, I). That is, if we rotate the latent variables,
then they still follow a unit Gaussian. Then define Â = AR⊺ and
let

p(y|x̂) = N (y|Âx̂ + b, σ2I). (1.7)

We have now constructed a new model by rotating the latent variable
and changing the affine mapping correspondingly. The resulting
data density is

p(y) = N (y|b,AR⊺RA⊺ + σ2I), (1.8)

which is identical the original model (1.5) as R⊺R = I. So the latent
variable can be arbitrarily rotated without seeing a change in the
resulting data density. Practically speaking, this implies that we
can only estimate (identify) the latent variable x up to an unknown
rotation. If we plot the latent variable, we should, thus, expect it to
be arbitrarily rotated. This is illustrated in Fig. 1.2.

14 søren hauberg

Figure 1.2: In probabilis-
tic principal component
analysis, we can get two
equally good models by ro-
tating the latent variable
of one model and adapting
the affine mapping corre-
spondingly.

Figure 1.3: A transforma-
tion of space that preser-
ves distances to the origin.

Deep generative models

Instead of an affine model, as in probabilistic PCA, we can also
consider general nonlinear functions, such as neural networks. This
results, for example, in probabilistic models of the form

p(x) = N (x|0, I) (1.9)

p(y|x) = N (y|f(x), σ2I). (1.10)

That is, the latent variable is mapped through a function f : Rd →
RD, after which independent Gaussian noise is added. Assuming f is
nonlinear, then this results in a more flexible model than probabilistic
PCA. This, however, also implies that the identifiability problem
just got worse.

Consider a nonlinear invertible function h : Rd → Rd with the
property

x ∼ N (0, I) ⇒ h(x) ∼ N (0, I). (1.11)

One example of such a function is

h(x) = Rθ(x) x, (1.12)

where Rθ is a linear transformation that rotates points by θ(x) =
sin(π∥x∥). This is illustrated in Fig. 1.3. Note that we could have
made other choices of h.

introduction 15

Using the function h, we can significantly distort the latent space
without changing the distribution of the latent variables. Specifically,
we can repeat the exercise from the previous section, and introduce
a new model from x̂ = h(x),

p(x̂) = N (x̂|0, I) (1.13)

p(y|x̂) = N (y|f(h−1(x̂)), σ2I). (1.14)

Thus, if we are working with a function class for f(·) that is suffi-
ciently general to also contain f(h−1(·)), then we can construct the
same probabilistic model using very different parametrizations. As
before this may influence our ability to understand the generative
process through inspection of the latent variables.

∼ Outline & reading guide ∽

The structure of this text is trivial: you are supposed to start at the
beginning and stop at the end. A few sections and chapters here
and there may be skipped; these are marked with a ‘yawn’ in the
margin (see example on the right).

The text emphasizes the parts of differential geometry that are of
most use in the statistical analysis of data. As such, many central
topics of differential geometry, such curvature or topology, at best
only play a secondary role. The predominant focus is on the tools
needed for making quantitative statements, such as distances, angles,
and volumes, as this is what the practitioner will tend to need.

Related work is only cited sparsely throughout the text. The
concluding chapter provides some, albeit limited, remedies to this.

16 søren hauberg

∼ Exercises ∽

Exercise 1.1: PPCA distances and angles.
Probabilistic PCA can be equivalently expressed as

p(y|x) = N (y|Ax + b, σ2I) (1.15)

(with latent variables x) or

p(y|x̂) = N (y|Âx̂ + b, σ2I) (1.16)

(with latent variables x̂ = Rx and Â = AR⊺, where R is a rotation
matrix). The two latent representations x and x̂ are clearly different
(for R ̸= I). Show that

1. Euclidean distances between points in these representations are
identical, i.e. ∥xi − xj∥ = ∥x̂i − x̂j∥, and

2. angles between points in these representations are identical, i.e.
∠(xi − xj ,xk − xj) = ∠(x̂i − x̂j , x̂k − x̂j).

Exercise 1.2: Autoencoder distances and angles.
An autoencoder is a nonlinear generalization of PCA. Let gθ : RD →
Rd be a neural network with weight parameters θ, and let fψ : Rd →
RD be another network with parameters ψ. Furthermore, let D
denote the dimensionality of training data y and let d < D. The
autoencoder learns a mapping of data y ∈ RD into a low-dimensional
latent representation x ∈ Rd alongside a mapping that reconstructs
the data from the representation. Specifically, the autoencoder is
trained to minimize the reconstruction error

θ∗, ψ∗ = argmin
θ,ψ

N∑
n=1
∥fψ(gθ(yn))− yn∥2

. (1.27)

1. Implement an autoencoder for a simple dataset. Pick the latent
dimension d = 2 and plot the resulting low-dimensional represen-
tations.

2. Plot the latent representations for different models trained from
different random initialization. Do you recover the same repre-
sentations?

introduction 17

3. Compute pairwise distances ∥g(yi)− g(yj)∥ between latent rep-
resentations in different models. Are the distances between rep-
resentations identical across models? Discuss what the answer
implies.

Exercise 1.3: Reparametrizations.
Consider the function h(x) = Rθ(x)x (see Eq. 1.12 and Fig. 1.3) in
two dimensions (i.e. x ∈ R2). This is an example of a reparametriza-
tion of a representation space.

1. Numerically simulate 100 standard normally distributed points
xn ∼ N (0, I) and plot how h(xn) changes compared to xn.

2. Visualize how the reparametrization changes pairwise distances.
Specifically, compute dnm = ∥xn − xm∥ and d̂nm = ∥h(xn) −
h(xm)∥ and make a scatter plot containing points (dnm, d̂nm).
What conclusion do you draw from the plot?

Figure 2.1: Planet Earth.
Image courtesy of NASA.

1 Translates to remarkable
theorem, which indicates the
level of excitement from
Gauss upon his discovery.

Chapter 2

Making maps

In which we pause to look at the world.

Planet Earth is approximately spherical, making it a prototypical
manifold. Since carrying around spherical maps is impractical, much
effort has gone into making flat maps, such as the one in Fig. 2.2
below. One reason so much effort has been required is that the task
is fundamentally impossible. The impossibility was made precise by
Carl Friedrich Gauss in 1827 through his Theorema Egregium.1

This theorem states that the Gaussian curvature of a surface is
preserved by local isometries. Admittedly, we haven’t defined most
terms in this statement, but we can try to understand it nonetheless.
An isometry is a transformation that preserves all distances, and
the Gaussian curvature is a measure of how much a surface bends.
So, the theorem informs us that if we find a transformation that

Figure 2.2: The second
Borgian map by Diego
Ribero, Sevilla 1529.
While beautiful, the map
is fundamentally mislead-
ing as any flat depiction
of a curved object (here:
Earth) will not reflect
distances accurately.

20 søren hauberg

takes spherical Earth and places it on a flat piece of paper such that
distances between all points are identical in the two representations,
then the curvature of the sphere and the paper is the same as well.
Since the curvature of a sphere and a flat piece of paper surely must
be different, the theorem informs us that the transformation cannot
preserve distances. The map must be distorted.

The astute reader may reasonably object here. Perhaps the issue
at hand here is that we cannot make a map of the entire sphere as
that requires us to ‘tear it open’, which must cause trouble. Perhaps
we can make an accurate map of a part of the sphere? Again, Gauss’
theorem informs us that this cannot be done. If we take a part of
the sphere, then this remains a curved surface, so any map onto a
flat plane must distort distances.

The takeaway message is that whenever we deal with curved
objects, such as manifolds estimated from data, then we cannot
make this flat without getting a distorted picture. This is the
fundamental challenge, that geometry solves.

making maps 21

∼ Exercises ∽

Exercise 2.1: Maps of the world.
Humans have long aimed to map their surroundings in order to
reliably navigate. The resulting maps have often been used to form
mental pictures of the world in the general population. Rulers of the
world (kings, queens, presidents, etc.) have historically been keen
on shaping these maps to influence how people perceive the world.

1. Find a map of planet Earth, which is made according to Mercator’s
projection. Next, find a map made according to Peter’s projection.
What are the differences? Is one more correct than the other?
Why would a ruler prefer one map over the other?

2. We make the analogy between maps of planet Earth and learned
representations to gain an intuition about the parametrization
issue. What does the answers to question 1 tell you about repre-
sentation learning?

Figure 3.1: A manifold
spanned by a function f :
R2 → R3.

Chapter 3

Embedded and immersed manifolds

In which we begin to observe manifolds.

In most data-centric uses of manifolds, we observe data y1, . . . ,yN
as a collection of vectors in RD. We call this the ambient space. We
then fit a lower-dimensional manifold M to this data, drawing on
the assumption that the intrinsic structure of the data is inherent of
lower dimension than the space in which we made our observations.

From a practical perspective, we construct this manifold through
a mapping

f : Rd → RD, d ≤ D (3.1)

from a low-dimensional space into a high-dimensional observation
space. Depending on how we choose f we may then create different
manifolds, e.g. if f is a linear function, the manifold will be a
hyperplane in RD. Our interest will predominantly be cases where
f is nonlinear, though, as this will allow our models to capture more
variability in the data.

∼ Manifold learning ∽

In order to fit a manifold to data, a common strategy is to pick
a suitable loss function that reflects the properties we seek in our

24 søren hauberg

Figure 3.2: An example of
a reparametrization given
by a function h : R2 → R2.
This figure is a repetition
of Fig. 1.3.

model. For instance, we may seek a least-squares fit to our data,

θ∗,x∗
1, . . . ,x∗

n = argminL(θ,x1, . . . ,xN) (3.2)

= argmin
N∑
n=1
∥fθ(xn)− yn∥2

. (3.3)

Here two important points must be raised.
First, we have parametrized the mapping f by a vector θ. For

instance, if we have chosen f to be polynomial, then θ will contain
the corresponding coefficients, or if f is a neural network, θ will
be the weights. To ease notation, we will generally not write the
parameters explicitly.

Second, as we do not know f beforehand, we also do not know
the input points xn that correspond to the observed data yn. In
Eq. 3.3, we, therefore, treat these input points xn as unknown
(latent) and seek whichever points that minimize our loss function.
Had we known xn, our problem would have been reduced to finding
f by regression.

Many alternatives to the least-squares loss function (3.3) exist,
but we commonly rely on some similarity measure between f(xn)
and yn to determine the quality of the fit. This will be the root cause
of many of the troubles examined in this book. Specifically, consider
an invertible function h : Rd → Rd, and assume that {f,x1, . . . ,xN}
span an optimal manifold (according to our loss function), then

f̂(x̂) = f(h−1(x̂)) (3.4)

x̂n = h(xn) (3.5)

will be equally optimal. In fact, these two manifolds are identical
as f̂(x̂) = f(x). Note how h and h−1 cancel each other out. This
implies that a learned manifold will generally not have a unique set of
optimal parameters and that we can always parametrize the manifold
in a different, but equally good, way. We call this a reparametrization
issue, but the statistically inclined reader may prefer to call it an
identifiability problem. The practical implication of this issue is that
our model will be difficult to interpret.

We often think of the inputs xn as low-dimensional representations
of our data. We may therefore hope to learn something about our
data and the process that generated it, by inspecting xn. For

embedded and immersed manifolds 25

instance, we may choose to plot x1, . . . ,xN if their dimension is
sufficiently low. The reparametrization issue tells us that this is a
dangerous strategy.

∼ Reparametrizations in practice ∽

In practice, the reparametrization issue appears in the form that if we
fit a model to data several times, each instance may result in different
low-dimensional representations. Figure 3.3 shows an example of
this. Here a variational autoencoder (VAE) [22, 30] is fitted twice
to high-dimensional data using different random initializations. The
data in question is a collection of protein sequences from the beta-
lactamase family, and the colors in the plots indicate subfamilies
[32, 14]. We observe that the two models have similarities in their
low-dimensional representations, but also notable differences. If the
objective is to extract knowledge from the plots about the underlying
biology that drives the proteins, then clearly this is a brittle process.
Depending on which plot we choose to investigate we may end
up drawing different conclusions. If the purpose of the analysis is
to phrase biological hypotheses that are to be tested in the lab,
we quickly run the risk of wasting the time (and money) of the
experimental scientists.

Figure 3.3: The low-
dimensional representa-
tions xn of two variational
autoencoders fitted to the
same data. Here each
point corresponds to one
protein from the beta-
lactamase family. The two
different representations
may result in different
biological interpretations.

∼ Relation to map-making ∽

In Chapter 2 we briefly touched upon Gauss’ Theorema Egregium,
which states that curved objects cannot be faithfully represented
by a flat surface. In the context of manifold learning, this result

26 søren hauberg

Figure 3.4: A mixture
model is not identifiable
because the mixture com-
ponents can be swapped.

Figure 3.5: Probabilistic
PCA is not identifiable
as we cannot determine a
unique basis for the esti-
mated subspace.

indicates the difficulty of the learning task: the idea of learning an
Euclidean representation of a curved data manifold must imply that
a distorted representation is learned.

∼ Statistical identifiability ∽

Consider a statistical model pθ that is parametrized by θ. We then
say that the model is identifiable if the mapping θ 7→ pθ is one-to-
one (injective). This may sound terribly abstract, but it really isn’t.
Being identifiable, merely say that any given model pθ can only be
parametrized in one way.

For example, the normal distribution pθ = N (µ, σ2) is a statistical
model with parameters θ = {µ, σ}. If we change these parameters, we
always also change the statistical model. Therefore pθ is identifiable.

In contrast, a mixture of normal distributions,

pθ(y) = 1
2N (y|µ1, σ

2
1) + 1

2N (y|µ2, σ
2
2), (3.6)

is not identifiable. To see this, note that the model has parameters
θ = {µ1, σ1, µ2, σ2}. By a simple ‘swapping’, we can create a new
parameter vector θ′ = {µ2, σ2, µ1, σ1} that gives the same statistical
model as before. Formally, pθ = pθ′ even if θ ̸= θ′, such that the
mapping θ 7→ pθ is not one-to-one.

Chapter 1 noted that probabilistic PCA gives a statistical model

pθ(y) = N (y|b,AA⊺ + σ2I), (3.7)

which can be equivalently written as

pθ′(y) = N (y|b,AR⊺RA⊺ + σ2I), (3.8)

for some rotation matrix R. These two (identical) models can be
written as θ = {b,A, σ} and θ′ = {b,AR⊺, σ}. Again, we see that
pθ = pθ′ even if θ ̸= θ′, such that the probabilistic PCA model is
not identifiable.

In many cases, only an unknown latent reparametrization (e.g.
a rotation in the PCA example) prevents the model from being
identifiable. This book focuses on these cases and we will interchange
between the terms reparametrizations and statistical identifiability
even if these concepts are not entirely the same.

embedded and immersed manifolds 27

Figure 3.6: The curve
f(x) ∈ R2 self-intersect
and is not an embedded
manifold.

∼ Manifolds ∽

Most loss functions of interest do not have closed-form solutions,
and we will generally have to rely on iterative optimization methods
to fit a manifold to data. This will be significantly easier if we can
differentiate our loss function, which, in turn, requires us to be able
to differentiate the mapping f . We will therefore assume that f is
a smooth function from now on. This assumption restricts what
we can model and will give rise to our first definition of the term
manifold.

Consider a smooth function

f : Ω→ RD, (3.9)

where Ω ⊂ Rd is the input domain, which may be the entire Rd or
some connected subset thereof. We say that a manifold M is the
image of Ω under f , i.e. M = f(Ω). That’s it for now. We will
revisit this definition later when it turns too restrictive, but for most
machine learning tasks, we may think of a manifold as the collection
of all possible outputs a given smooth function may generate.

Since f is smooth, we may locally approximate the manifold
by its tangent space. According to Taylor’s theorem, the Jacobian
matrix of f provides a basis for this tangent space. We often think
of manifolds as point collections that are locally Euclidean, and
this view will provide us with many of the tools needed to study
manifolds.

∼ Embedded manifolds ∽

We say that a manifold is embedded if f is invertible on M. Practi-
cally speaking, this implies that the manifold does not self-intersect
or locally change dimensionality. Consider the curve in Fig. 3.6,
which is described by a function f : [a, b] → R2. In the point of
self-intersection we have f(x0) = f(x1) for x0 ̸= x1, such that f
is not invertible at this point. Consequently, this manifold is not
embedded.

Mathematically, we can ensure that a manifold is embedded if
the function f is injective, i.e. if f(x1) = f(x2) ⇒ x1 = x2. This
implies that f is invertible on its image, i.e. if y = f(x) then the

28 søren hauberg

1 Technically, we refer to this
as the left inverse to empha-
size that f is only invertible
on its image.

inverse mapping1 exists and x = f−1(y). Most function classes (e.g.
neural networks) that are commonly used in machine learning are
not guaranteed to be injective, so it is rare that we get to work with
embedded manifolds in practice.

∼ Immersed manifolds ∽

Practically, it is too restrictive to only study embedded manifolds,
and we, therefore, open up for allowing functions f that is only
locally invertible. That is, if the Jacobian J = ∂f/∂x has full rank
for all x ∈ Ω, then we say that M = f(Ω) is an immersed manifold.
Since the Jacobian can be seen as a local linear approximation to
the manifold, we can think of the Jacobian as a basis of a plane that
is tangential to the manifold (see Fig. 3.7 below). When we require
the Jacobian to be full rank, we merely say that the dimensionality
of this tangential plane should always match that of the manifold.
Note that embedded manifolds are immersed, but the opposite need
not hold true.

.

Figure 3.7: The Jacobian
of f can be interpreted as
giving a basis for a tangen-
tial plane to the manifold.
When the Jacobian has
full rank then this tangen-
tial plane has the same di-
mensionality as the mani-
fold (i.e. the manifold does
not collapse anywhere)

embedded and immersed manifolds 29

Figure 3.8: The regres-
sion curve f(x) of a ker-
nel ridge regressor extrap-
olates to zero.

∼ Exercises ∽

Exercise 3.1: You really should. . . .
If you haven’t already, solve exercise 1.2.

Exercise 3.2: Extrapolation.
In curve fitting, we often control how a fitted function extrapolates.
For example, kernel ridge regression [36] will, for most kernels,
extrapolate to 0 (see Fig. 3.8 for an example). Assume a generative
model y = f(x), where

f(x) =


f1(x)

...
fD(x)

 (3.10)

consist of D functions fi : Rd → R.

1. Assume that functions fi extrapolate to 0 for all i = 1, . . . , D, i.e.
assume that fi(x) = 0 for all x that are more than a distance
τ away from the nearest training data. Show that the resulting
manifold cannot be embedded.

Exercise 3.3: Immersion & embedding.
Consider a generative model y = f(x), where x = (x1, x2) ∈ R2 and
y = (y1, y2, y3) ∈ R3. Let

f(x) =

f1(x)
f2(x)
f3(x)

 =

2x2
1 + x2

2
x1

x2

 . (3.11)

1. Derive the Jacobian matrix of f .

2. Show that the generative model spans an immersed manifold.

3. Show that the generative model spans an embedded manifold.

Exercise 3.4: Immersion only.
Consider a generative model y = f(x), where x = (x1, x2) ∈ R2 and
y = (y1, y2, y3) ∈ R3. Let

f(x) =

f1(x)
f2(x)
f3(x)

 =

cos(x1)
sin(x1)
cos(x2)

 . (3.15)

30 søren hauberg

1. Derive the Jacobian matrix of f .

2. Show that the generative model spans an immersed manifold.

3. Show that the generative model does not span an embedded mani-
fold.

Chapter 4

Distances on manifolds

In which we start being able to tell what
is close and what is far away.

To build a statistical model, we need some way of measuring simi-
larity. If we want to build statistical models of data distributed on
a manifold, we then need a way of measuring on this manifold. This
is where Riemannian geometry comes into play.

∼ Euclidean curve lengths ∽

The basic idea behind distances on manifolds is to define them as
lengths of shortest paths. Hence we need to agree on how to measure
the length of a given curve, and we here start with the Euclidean
case. The general case is then a trivial extension.

Let c : [0, 1]→ RD be a smooth curve in a D-dimensional space.
We can then approximate this curve by a set of straight lines con-
necting points

{c(0), c(t1)} , {c(t1), c(t2)} , . . . , {c(tN), c(1)} , (4.1)

where tn ∈]0, 1[, n = 1, . . . , N . This approximation is shown in
Fig. 4.1. We can then approximate the length of c as the sum of the
length of these line segments, i.e.

Length(c) ≈
N∑
i=0
∥c(ti)− c(ti+1)∥, (4.2)

32 søren hauberg

Figure 4.2: The length
of a curve can also be
expressed by integrating
the curve derivative, which
avoids the use of a limit.

where we have defined t0 = 0 and tN+1 = 1. Increasing the number
of line segments in the approximation then gives an increasingly
better length approximation, and a natural definition of curve length
is then to consider the limit N →∞,

Length(c) = lim
N→∞

N∑
i=0
∥c(ti)− c(ti+1)∥. (4.3)

A neat aspect of this definition is that it lends itself immediately to
a numerical implementation by using Eq. 4.2.

Figure 4.1: The length of
a curve (4.5) can be under-
stood as “cutting up” the
curve in small linear seg-
ments and adding up their
lengths.

Analytically, we can follow the limit in Eq. 4.3 and turn the sum
into an integral,

Length(c) = lim
N→∞

N∑
i=0

∥∥∥∥c(ti)− c(ti+1)
∆t

∥∥∥∥∆t (4.4)

=
∫ 1

0

∥∥∥∥dc(t)
dt

∥∥∥∥ dt, (4.5)

where ∆t = |ti+1 − ti|. This integral expression (4.5) is often easier
to manipulate mathematically as we do not have to worry about the
limit.

∼ Reparametrization issues ∽

A reoccurring problem that we will keep facing in various forms
starts with the observation that a curve can be reparametrized
without changing its length. What does that mean? Consider a
curve c : [0, 1]→ RD, then its length is given by Eq. 4.5 above. Now
we introduce a smooth monotonic function h : [0, 1] → [0, 1] with
the properties

h(0) = 0 and h(1) = 1. (4.6)

distances on manifolds 33

1 e.g. we may seek a curve
that is as short as possible

The idea is that instead of parametrizing the curve c by t, we now
parametrize it by t = h(s). The first thing we observe (Fig. 4.3) is
that ĉ(s) = c(h(s)) generates the same curve as c(t). The curve is,
however, traversed at a different speed. If we think of the curve as a
path along which to walk, then both c and ĉ define the same route,
but we may reach different destinations at different times.

0 1-1

1

0 1-1

1

Figure 4.3: A sine curve
under two parametriza-
tions. While the points
generated along the curve
are identical in the two
parametrizations, we get
different positions along
the curve for a fixed input.

Since c and ĉ correspond to the same curve, we intuitively expect
that they have equal lengths. To verify this, we compute the length
of c as

Length(c) =
∫ 1

0

∥∥∥∥dc
dt

∥∥∥∥ dt (Definition of curve length)

=
∫ 1

0

∥∥∥∥∥
(

dc
dt

)
t=h(s)

∥∥∥∥∥ dh
ds ds t → h(s)

=
∫ 1

0

∥∥∥∥∥
(

dc
dt

)
t=h(s)

dh
ds

∥∥∥∥∥ ds dh/ds > 0

=
∫ 1

0

∥∥∥∥dc
ds

∥∥∥∥ ds (Chain rule)

= Length(ĉ). (4.7)

As expected, the speed with which we walk along a path does not
change the length of the path itself.

Why is this a problem? We will often find ourselves optimizing a
curve to satisfy some criteria,1 in which case it is rather annoying
that multiple versions of the same curve exist, as this implies that
an optimal curve is never unique. At best, an optimal curve will
only be unique up to some reparametrization. Practically, this can
make gradient-based optimization unstable as every local optimum
will be a plateau corresponding to different parametrizations of the
same curve.

34 søren hauberg

2 Technically, one should use
an infimum rather than a
minimum, but practically
speaking we always seek a
minimizer. Hence we here
stick with the more intuitive
definition.

∼ Measuring on immersed manifolds ∽

Now we repeat the exercise for curves restricted to a manifold
M = f(Ω), where Ω is a connected subset of Rd, such that M is an
immersed manifold in RD.

Let c : [0, 1] → Ω be a smooth curve in Ω such that f(c) is a
smooth curve on M. We then define the curve length of c to be the
length of f(c), i.e.

LengthM(c) def= Length(f(c)) =
∫ 1

0

∥∥∥∥ d
dtf(ct)

∥∥∥∥ dt, (4.8)

where we use the short-hand ct = c(t). This merely says, given a
curve in Ω, we measure its length by mapping the curve to RD and
follow the usual Euclidean definition.

Figure 4.4: The length of a
curve on a manifold is sim-
ply the Euclidean length
of the immersed curve.

Given two points c0, c1 ∈ Ω, we can define the shortest connecting
path as2

c01 = argmin
c

LengthM(c)

subject to c(0) = c0 and c(1) = c1.
(4.9)

We call any local minimizer a geodesic as this is the usual convention.
In practice, we tend to be interested in global minima, and will often
implicitly assume that we can compute such a curve.

Given the shortest connecting curve between two points, it is
natural to define the geodesic distance as the length of this curve,

dist(c0, c1) = LengthM(c01). (4.10)

This definition is an example of the implicit assumption that c01 is
a global minimizer.

distances on manifolds 35

3 Also known as the triangle
inequality.

We may ask if this geodesic distance is actually a proper distance
function. That is, does it satisfy the intuitive criteria

dist(x, y) = 0 ⇔ x = y (4.11)

dist(x, y) = dist(y, x) (4.12)

dist(x, y) ≤ dist(x, z) + dist(z, y) (4.13)

for points x, y, z ∈ Ω? These three requirements are essentially all
satisfied due to the definition of the geodesic as the minimal path.
The first requirement is easy: if the geodesic has zero length, then
its end-points must coincide and vice versa. The second requirement
follows by noting that if the two distances are different, then one
must be larger than the other. The larger geodesic then cannot
be the globally shortest path as a shorter path exists. The third
requirement3 also follows by contradiction: assume that cxy is the
geodesic connecting x and y and that a shorter connecting path
exists that goes through z. Then cxy cannot be geodesic and we
have reached a contradiction.

∼ Reparametrization issues ∽

We have previously seen that a given curve does not have a unique
parametrization. Since the length of a curve does not depend on its
parametrization, the distance definition does not care about curve
parametrization. The distance between two points is invariant to
reparametrizations of the geodesic.

However, as touched upon in chapter 3, the manifold itself can
also be reparametrized. As usual, let

Ω ⊂ Rd (4.14)

f : Ω→ RD, d < D (4.15)

such that our manifold is M = f(Ω). Now consider a smooth
invertible function h : Rd → Rd, then we may define

Ω̂ = h(Ω) ⊂ Rd (4.16)

f̂(x) = f
(
h−1(x)

)
. (4.17)

36 søren hauberg

4 The exception is when h

performs a rotation, which
does preserve distances.

Then we have

f̂(Ω̂) = f(h−1(g(Ω))) (4.18)

= f(Ω) (4.19)

=M. (4.20)

In words, Ω̂ and f̂ define the exact same manifold as Ω and f , such
that a given manifold can be parametrized differently.

When analyzing data, we often call upon the manifold hypothesis,
which states that observed data is distributed near a low-dimensional
manifold within the observation space. As an example, we may model
our data y as

y = f(x) + ϵ, (4.21)

where ϵ is a random variable capturing the ‘off-manifold’ noise, and
x is a low-dimensional representation of y. The reparametrization
issue then implies that if some learning algorithm has recovered f

alongside x1:N = {x1, . . . ,xN} then these are not unique solutions.
We may reparametrize by some h to recover an equally good fit to
our data. Using x̂ = h(x) and f̂(x̂) = f(h−1(x̂)) will give the exact
same density estimate of our data. In the statistics literature, this
is known as an identifiability issue as we cannot recover unique f
and x1:N from the density of data alone [23]. This implies that if we
analyze the estimated f and x1:N , then we need to take into account
that these are by no means uniquely defined.

Here geometry comes in handy. While x1:N may not be iden-
tifiable, we can make pairwise distances between x’s identifiable.
Consider two points on the learned manifold xn,xm, approximately
corresponding to observations yn ≈ f(xn) and ym ≈ f(xm). If we
compute the Euclidean distance between xn and xm, then this may4

change under different parametrizations, i.e. in general

∥xn − xm∥ ≠ ∥h(xn)− h(xm)∥. (true in general, but excep-
tions exist)

In contrast, the geodesic distance does not depend on parametriza-
tion. To see this, let c be a smooth curve such that

c(0) = xn and c(1) = xm, (4.22)

distances on manifolds 37

then the corresponding curve along the manifold is t 7→ f(c(t)). If we
reparametrize manifold by h, then c become t 7→ h(c(t)),which will
be immersed as t 7→ f(h−1(h(c(t)))) = f(c(t)). This implies that
the length of a curve (4.5) does not depend on the parametrization
of the manifold. Consequently, geodesic distances between points
xn and xm are unique. In statistics jargon, we may say that the
geodesic distance between xn and xm is identifiable, even if the
points themselves are not.

38 søren hauberg

∼ Exercises ∽

Exercise 4.1: Euclidean curve lengths.
Consider the curve c : [0, 1]→ R2 defined as (see plot in the margin)

c(t) =
(

2t+ 1
−t2

)
. (4.23)

1. Derive an expression of the speed function t 7→ ∥ċt∥.

2. Compute the Euclidean length of the curve. Hint:∫ √
1 + t2dt = 1

2

(√
1 + t2 t+ sinh−1(t)

)
+ C, (4.24)

for some constant C.

Exercise 4.2: Numerical computation of Euclidean curve lengths.
Consider the curve c : [0, 1]→ R2 defined in Eq. 4.23.

1. Write a computer program that evaluates the length of the curve c
using Eq. 4.2.

2. If you have completed exercise 4.1:

(a) Did the numerical and the analytical results agree?
(b) Use the analytic expression for ∥ċt∥ to write a computer program

that evaluates the length of the curve using Eq. 4.5. Note that
you need to approximate the integral with a sum.

Exercise 4.3: Metricity of geodesic distance.
On page 35, a proof sketch is provided for why the geodesic distance
(4.10) is a valid distance measure. This is somewhat ‘handwavy’.

1. Prove that Eq. 4.11 holds for the geodesic distance.

2. Prove that Eq. 4.12 holds for the geodesic distance.

3. Prove that Eq. 4.13 holds for the geodesic distance.

Exercise 4.4: Manifold curve lengths.
Consider the manifold spanned by the function f : R2 → R3 defined
as

f(x1, x2) =

 x1

x2

x2
1 + x2

2

 . (4.33)

Let c(t) = vt for a non-zero vector v ∈ R2.

distances on manifolds 39

1. Derive an expression of the speed function t 7→ ∥d/dtf(ct)∥.

2. Show that the length of c from t = 0 to t = 1 is

LengthM(c) = ∥v∥
∫ 1

0

√
1 + t2dt. (4.34)

Exercise 4.5: Reparametrizations.
Consider the manifold spanned by the function f : R2 → R3 defined
by Eq. 4.33 (previous exercise), and letM1 = f(R2) be the manifold
consisting of all points that can be generated by f . Now consider
the function h : R2 → R2 defined as

h(x1, x2) =
(
x3

1
x3

2

)
. (4.35)

Next, we reparametrize our manifold as M2 = f(h(R2)).

1. Derive an alternative function f̂ for spanning the manifold such
that f(x) = f̂(h(x)) for all x ∈ R2.

2. Define M3 = f̂(R2) and show that M1 =M2 =M3.

Exercise 4.6: Numerical computation of autoencoder curve lengths.
Consider an autoencoder (or a similar type of model) with a two-
dimensional latent space.

1. Write a computer program that evaluates the length of any second-
order polynomial curve c using Eq. 4.2. It is recommended that
you write the code to support any callable curve c.

Chapter 5

Riemannian metrics

In which we measure from the inside
out.

We can get a more intrinsic understanding of the length of a curve
by applying the chain rule to Eq. 4.8

LengthM(c) =
∫ 1

0

∥∥∥∥ d
dtf(ct)

∥∥∥∥ dt, (5.1)

=
∫ 1

0
∥Jct ċt∥ dt (5.2)

=
∫ 1

0

√
ċ⊺t J⊺

ctJct
ċtdt, (5.3)

where ċt = dc/dt|t=t is the curve derivative (velocity) and Jct
=

∂f/∂x|x=ct is the Jacobian of f . While this derivation is purely
mechanical, it does allow for a more elegant view of the geometry of
our models.

∼ Tangent spaces ∽

The Jacobian Jx can be seen as a local linear approximation to f .
Specifically, Taylor’s theorem tells us that

f(x + ϵ) ≈ f(x) + Jxϵ (5.4)

42 søren hauberg

for sufficiently small ϵ. Here it is worth recalling the dimensions of
the variables at hand. Since f : Rd → RD, we have

Jx ∈ RD×d (5.5)

x, ϵ ∈ Rd (5.6)

y = f(x) ∈ RD. (5.7)

The Jacobian Jx can then be understood to form a basis of a d-
dimensional hyperplane in RD that is tangential to f(x). We call
this hyperplane the tangent space at x and denote it Tx. Returning
to the viewpoint that manifolds are spaces that are locally Euclidean,
we can think of the tangent space as the Euclidean interpretation of
the manifold, which is valid in a local neighborhood around x.

Figure 5.1: A manifold is
locally Euclidean, which
is reflected by the tangent
space of our manifold. For
immersed manifolds, the
Jacobian of f provides us
with a basis for this tan-
gent space.

Here it is worth repeating that for a manifold to be ‘immersed’,
we require that the Jacobian is full rank everywhere. That is, the
tangent space of the manifold should have dimension d at all points
on the manifold. If this is not the case, then it implies that the
manifold locally collapses to have a dimension less than d.

∼ Local inner products ∽

Having direct access to a local Euclidean view of the manifold is
very valuable, and we have already made use of this. When writing
the length of a curve as in Eq. 5.2,

LengthM(c) =
∫ 1

0
∥Jct

ċt∥ dt, (5.8)

we can heuristically write this as

=
∫ 1

0
∥Jct (ċt dt)∥ . (Heuristic notation)

riemannian metrics 43

That is, we may think of ċt dt as an infinitesimal vector, which we
then express in the tangent space, where we measure its length. We
emphasize the infinitesimal aspect as the Euclidean view is only
valid locally. This construction informs us how we can measure the
norm of an infinitesimal vector; the length of a curve is then found
by integrating this infinitesimal norm.

Likewise, we can construct an inner product between two infinites-
imal vectors. Assume that δ1 and δ2 are two such vectors, which
we interpret as infinitesimal displacements from a point x. We can
then map both vectors to the tangent space at x and compute the
usual Euclidean inner product there,

⟨δ1, δ2⟩x = (Jxδ1)⊺ (Jxδ2) = δ⊺1 J⊺
xJxδ2. (5.9)

Notice how we place a subscript on the inner product ⟨·, ·⟩x to denote
that the inner product should be computed in the tangent space at
x. An alternative way to arrive at the same expression is to compute
the Euclidean inner product between vectors (f(x+δ1)− f(x)) and
(f(x+δ2)− f(x)), which we can, again, do using Taylor’s theorem

⟨f(x + δ1)− f(x), f(x + δ2)− f(x)⟩ (5.10)

= (f(x) + Jxδ1 − f(x))⊺ (f(x) + Jxδ2 − f(x)) (5.11)

= δ⊺1 J⊺
xJxδ2. (5.12)

∼ Local norms and angles ∽

Given a vector v in the tangent space at x, we can measure its norm
using the local inner product,

∥v∥x =
√
⟨v,v⟩x (5.13)

= ∥Jv∥. (5.14)

If two curves c1 and c2 on the manifold intersect at a point x we
can provide a notion of angle between the curves. Recall, that the
angle between two vectors v1 and v2 is commonly defined as

cos θ = ⟨v1,v2⟩
∥v1∥ · ∥v2∥

, (5.15)

where θ is the angle of interest. If we now pick vectors v1 and
v2 as curve velocities of c1 and c2, respectfully, at the point of

44 søren hauberg

intersection, we can then define the angle between the curves as the
angle between the velocity vectors. Figure 5.2 below illustrates this
intuitive concept.

Figure 5.2: The angle be-
tween two curves can be
computed in the tangent
space of the point of in-
tersection as the angle be-
tween velocity vectors.

We can formalize this idea by first determining the point of
intersection in terms of curve parameters. We let t1 and t2 be
defined such that

c1(t1) = x = c2(t2). (5.16)

We need this notation to ensure that we compute velocity vectors at
the correct points along the curves,

v1 = ċ1(t1) (5.17)

v2 = ċ2(t2), (5.18)

where ċ = dc/dt is short-hand for curve derivatives. The angle between
the curves then becomes

θ = cos−1
(
⟨v1,v2⟩x

∥v1∥x · ∥v2∥x

)
(5.19)

= cos−1
(

v⊺
1J⊺

xJxv2

∥Jxv1∥ · ∥Jxv2∥

)
. (5.20)

riemannian metrics 45

∼ Riemannian metrics ∽

The Jacobian J appears practically everywhere we seek to make any
sort of quantitative statement, such as a distance or an angle. You
may have noticed that actually, the Jacobian tends to appear in the
form J⊺J, e.g. as with inner products

⟨δ1, δ2⟩x = δ⊺1 J⊺
xJxδ2. as defined in Eq. 5.9

As it turns out, we rarely need the Jacobian directly, but rather J⊺J.
We, therefore, give this matrix a name, call it the metric, and even
give it its own symbol,

Gx = J⊺
xJx, (5.21)

where the subscript x denotes that we are looking at the metric at the
point x ∈ Ω. With this notation, we can now write inner products as

⟨δ1, δ2⟩x = δ⊺1 Gxδ2. (5.22)

One interpretation is that we locally define distances such that
unit circles are not round but rather ellipsoidal (see fig. 5.3). The
eigenvectors of Gx then provide the principal directions of these
ellipsoids, much like how the eigenvectors of a covariance matrix
give the principal components.

Figure 5.3: In a Euclidean
view, the inner product
structure is the same ev-
erywhere in space. In
the Riemannian view, this
changes locally. The inner
product is such that local
unit circles have an ellip-
soidal shape.

46 søren hauberg

1 i.e. all eigenvalues are
strictly positive

Figure 5.4: The particular
choice of basis of our tan-
gent space is rarely all that
important. What matters
is that we get norms and
angles correct.

Property 1: positive definiteness

Since J ∈ RD×d, then G is a d × d symmetric matrix. When the
manifold of interest is immersed, i.e. locally invertible, then J has
full rank and G become positive definite1 by construction. We can
also show this directly by forming a singular value decomposition
(SVD) of J as

J =USV⊺, (5.23)

where U ∈ RD×D,S ∈ RD×d and V ∈ Rd×d.

Here U and V are rotations, i.e. U⊺U = I and V⊺V = I, and S is a
(rectangular) diagonal matrix with non-zero entries. This is just the
usual definition of the SVD. Forming the metric we now see

G = J⊺J (5.24)

= (USV⊺)⊺ (USV⊺) (5.25)

= VS⊺U⊺USV⊺ (5.26)

= VΛV⊺, (5.27)

where Λ = S⊺S ∈ Rd×d is a (square) diagonal matrix with strictly
positive entries. We recognize this as an eigenvalue decomposition
of the metric, and since the eigenvalues are positive, we declare the
metric to be positive definite.

This is important as now the inner product is also positive definite,
which ensures nice things. For instance, the distance between two
distinct points cannot be zero when the inner product is positive
definite. Do note that the argument above rests on the assumption
that the manifold is immersed, such that J has full rank. Should this
not be the case, then the local inner product is no longer positive
definite, and can consequently no longer be seen as an inner product.

Property 2: basis independence

One could certainly argue that since the metric is directly computed
from the Jacobian, it is silly to introduce yet another term alongside
new symbols. Is it just pointless obscurification?

One counterargument is that the Jacobian is a basis of the tangent
space, but it is not the only possible basis. Let R be a D×D rotation

riemannian metrics 47

matrix (i.e. R⊺R = I) such that J̃ = RJ spans the same tangent
space. The corresponding metric

G̃ = J̃⊺J̃ = (RJ)⊺RJ = J⊺R⊺RJ = G (5.28)

is, however, identical to the previously defined metric. Working with
the metric instead of the Jacobian, thus, allows us to not worry
about the choice of basis. At times this can be rather convenient.
We will also later see the metric allows for elegant interpretations of
computations on manifolds.

∼ Riemannian metrics and manifolds ∽

We can view the metric as a function

Gx : Ω→ Symd×d
+ , (5.29)

where Symd×d
+ denote the set of real d×d symmetric positive definite

matrices. If Gx is a smooth function, then we say that it is a Rie-
mannian metric. We further say that M is a Riemannian manifold
if it has an associated Riemannian metric.

It is worth remarking that whatever smoothness properties G
might possess comes directly from the smoothness properties of the
Jacobian, which in turn comes from f . So, when we ask that the
metric behaves smoothly we are merely asking that f is smooth.

But why do we care that the metric is smooth? The answer is
simply that having access to derivatives is convenient. If we want
to fit a model on top of a manifold, it is practical that we can
easily optimize model parameters. This, in turn, will often require
(through the chain rule) that we can take derivatives of the metric.

∼ Measuring on abstract manifolds ∽

Once the metric has been defined, we can redefine local inner prod-
ucts, curve lengths, and the like in terms of the metric. To be

48 søren hauberg

explicit, we can define

⟨δ1, δ2⟩x = δ⊺1 Gxδ2 local inner product (5.9)

∥v∥x =
√

v⊺Gxv local norm (5.14)

θ = cos−1

(
v⊺

1Gxv2√
v⊺

1Gxv1 ·
√

v⊺
2Gxv2

)
angle between vectors (5.20)

LengthM(c) =
∫ 1

0

√
ċ⊺tGct ċtdt. curve length (4.5)

These only depend on the metric being used for computing local
inner products.

Since we can compute all elementary quantities of interest from
the metric alone, it is worth asking if we can forget all about f
and J and only care about the metric. This leads to the notion of
abstract manifolds, which are simply manifolds that come with a
metric, but where an explicit embedding (or immersion) is not known.
Mathematically, these are often studied as they are both elegant
abstractions, and often have less notional clutter than embedded
and immersed manifolds.

Abstract manifolds may, however, also be very practical. At
times, defining a metric to have desirable properties may simply be
an easy way to ensure that your model behaves the way you want it.
If, for example, we want a model where geodesics avoid particular
regions, then we can equip this region with a metric that has larger
numerical values than for other regions. Geodesics will then stay
clear of this region as paths otherwise become excessively long. We
shall return to such considerations in Chapter 11.

riemannian metrics 49

∼ Exercises ∽

Exercise 5.1: Spherical metric.
Let x1 ∈ (0, π) and x2 ∈ [0, 2π) be the latent coordinates of the
manifold spanned by the function f : (0, π)× [0, 2π)→ R3

f(x1, x2) =

sin(x1) cos(x2)
sin(x1) sin(x2)

cos(x1)

 . (5.30)

This will span the unit sphere.

1. Derive the Jacobian matrix of f .

2. Derive the metric associated with f according to Eq. 5.21.

3. Show that the metric is positive definite.

Exercise 5.2: Quadratic metric.
Consider a two-dimensional abstract manifold with the metric

Gx =
(
1 + ∥x∥2) I, x ∈ R2. (5.45)

Consider the points

x1 =
(

1
1

)
x2 =

(
2
3

)
x3 =

(
0
3

)
. (5.46)

1. Compute the local norms of the tangent vector v1 =
(

1 0
)⊺

assuming the point of tangency is x1, x2 and x3, respectively.

2. Compute the local angles between v1 and v2 =
(

0 1
)⊺

in the
same three points of tangency.

Chapter 6

Examples of learned metrics

In which we take an exemplary
intermission.

So far, we have focused on the mathematical properties of mani-
folds and their metrics. We now change scenery and look at examples
learned from data.

∼ Abstract density metrics ∽

Our general focus, thus far, has been on models where the manifold
is defined through a mapping f : Rd → RD, but one can also learn
the metric directly. Consider a data set y1:N = {y1, . . . ,yN}, where
yn ∈ RD. We may then assign a smoothly changing metric Gy to
each point in RD, and use the developed tools directly. The simplest
approach is to pick the metric as

Gy = g(y)I, (6.1)

where g : Rd → R+ is a learned function that controls the metric.
If g is smooth, then Gy is also smooth. Since g is positive, then,
by construction, Gy is positive definite, and we may view Gy as a
Riemannian metric.

At this point, we may construct g to have whichever properties
are useful for the application at hand. As an intuitive example,
consider picking g to be inversely proportional to the data density

52 søren hauberg

[24], i.e.

g(y) = 1
p(y) . (6.2)

Here p(y) is any smooth estimate of the density, e.g. a kernel density
estimate [18] or even a deep generative model [39]. This metric
has the property that it takes on small values where we observe
data, and high values otherwise. The length of a curve is, therefore,
longer in regions far away from the data than near the data. The
shortest paths are then naturally drawn toward the data. Figure 6.1
below provides an example of this behavior. Whether this is a useful
property or not depends on the application.

Figure 6.1: Direct learn-
ing of a Riemannian met-
ric. The background color
reflects the learned func-
tion g as in Eq. 6.2. As
g takes small values near
the data, geodesics are nat-
urally drawn towards re-
gions of high density.

Clearly, we need not restrict ourselves to the case of a scaled
identity matrix (6.1) and can extend trivially to diagonal or general
positive definite metrics. For examples of such, see [24, 20, 4].

∼ Autoencoder metrics ∽

The autoencoder [34] is a prototypical example of the manifolds
discussed thus far. Briefly put, this model class defines a manifold
through a decoder function f : Rd → RD and approximates the
projection onto the manifold with an encoder function g : RD →
Rd. This pair of functions is then jointly trained by minimizing
the squared distance between observations and their approximate
projections onto the manifold,

N∑
n=1
∥xn − f(g(xn))∥2. (6.3)

examples of learned metrics 53

Figure 6.2 below gives a simple example where an autoencoder is
used to approximate a two-dimensional manifold in R3. The figure
further shows an example geodesic on this learned manifold. Notice
how the geodesic avoids steep regions of the manifold as these result
in very long curves. We will revisit autoencoders in Chapter 12
when discussing noisy manifolds.

Figure 6.2: A manifold
learned from data (blue)
and an example geodesic
(black). Note how the
geodesic avoids ‘climbing
the steep hill’ of the mani-
fold.

∼ Classification metrics ∽

Riemannian metrics can, at times, also be used to shed light on
the behavior of various predictive models. Consider, for example, a
classifier f that maps a given input to a vector of probabilities over
class membership, i.e.

f : RD → C, (6.4)

where C is a vector space of dimension K (number of classes) where
all elements have positive entries that sum to 1. We can then
assign a metric to the observation space with the regular pull-back
construction (5.21)

Gx = J⊺
xJx, (6.5)

where Jx is the Jacobian of f evaluated at x. An important subtlety
comes into play here: for Gx to be positive definite, we need the
rank of Jx to equal the data dimension. Since the maximal rank of
Jx ∈ RD×K is min(D,K), we see that the number of classes cannot
be smaller than the number of data dimensions for the metric to be
positive definite.

Figure 6.3 below gives an example of such a classification metric.
Here the observation space is two-dimensional and the data can be

54 søren hauberg

partitioned into three classes. We see that the metric has significantly
different behavior around the decision boundaries compared to the
remainder of the observation space, which is indicative that the
classifier tries to push the classes apart by ‘stretching’ the decision
boundaries.

Figure 6.3: The (square
root determinant of the)
pull-back metric associ-
ated with a neural network
performing classification
on a two-dimensional pro-
jection of the Iris dataset.
The metric is then over the
space of observed data.

The above construction, however, breaks down when the dimen-
sion of the data exceeds the number of classes. Arguably, this is
the most commonly occurring situation. The (partially) good news
is that when the metric is positive semi-definite (some eigenvalues
are zero), most of the geometric tools we have constructed still
apply. In this case, we say that the metric is pseudo-Riemannian
(or semi-Riemannian). In such models, one should be aware that
distinct points may have a distance of 0, which does not match
common intuition (how can objects at distinct positions be at the
same place?). We will return to this question in Chapter 14.

Chapter 7

Geodesics

In which shortcuts are repeatedly taken.

We have seen that we can define distances between two points as
the length of the shortest path that connects them. But what about
the shortest path itself? Is it ‘just’ an intermediate variable needed
for computing distances?

Intuitively, the shortest path connecting two points is a natural
choice for an interpolant (i.e. an interpolating curve) as it avoids
unwarranted detours. Just like we often find the straight line inter-
polant to be natural in Euclidean spaces (where the straight line is
indeed the shortest path).

∼ What’s in a name? ∽

The shortest paths on a manifold are often called geodesics. The
name originates from geodesy, which is the art of making measure-
ments about the planet Earth. The word geodesic then refers to
the shortest path between two points on Earth’s surface. Much
of differential geometry comes from geodesy and cartography, i.e.
the art of making maps, and often the terminology refers directly
to these fields. On more general manifolds than the one reflecting
Earth’s surface, we choose to reuse terminology.

56 søren hauberg

Figure 7.1: Geodesics on
a sphere may be found as
the intersection of a plane
and the sphere.

Figure 7.2: Antipodal
points do not span a plane,
and the geodesic is not
unique. . .

Figure 7.3: . . . instead
we may pick any plane
containing the antipodal
points, such that we get
infinitely many geodesics.

∼ Uniqueness? ∽

Let’s stay a tad bit longer on planet Earth, and for the sake of
manageability, let’s assume that its surface is that of a sphere. On
the sphere, geodesics (shortest paths) are circular arcs found through
the intersection of the sphere and a plane going through the center
of the sphere and the two points we seek to geodesically connect.
This is illustrated in Fig. 7.1. That is, given two points xn,xm and
the center of the sphere o we can span a two-dimensional plane
going through these three points. The intersection of this plane and
the sphere will define a circle within the plane. Geodesics on the
sphere are arcs along this circle.

This construction, however, breaks down if the points xn and
xm are antipodal, that is, they are opposite to each other on the
sphere (think of the North and South poles). In this case, the three
points xn, xm, and o are linearly dependent and will only span a
line rather than a plane (Fig. 7.2). We can, however, easily see
that independently of which plane we choose that contains the three
points, then the corresponding circular arc will have the same length
(Fig. 7.3). This implies that infinitely many geodesics exist that
connect antipodal points on the sphere. From this example, we
conclude that in general, we cannot expect geodesics to be unique.

Since geodesics are defined as the shortest connecting curves,

c∗ = argmin
c

LengthM(c)

subject to c(0) = xn and c(1) = xm,
(7.1)

it is not surprising that multiple geodesics may exist. We should in
general expect several local optima arising from this optimization
problem, and we will call all of the resulting curves geodesics.

∼ Constant speed parametrizations ∽

So, geodesics are not unique. To further add to the lack of non-
uniqueness we have previously seen (page 32) that we can parametrize
the same curve in a multitude of different ways. We can informally
visualize the situation if we take an optimization perspective, and
consider the geodesic definition of Eq. 7.1. Here we seek a curve
of minimal length. We can think of the curve as having a set of

geodesics 57

parameters that determine its shape, e.g. the shape of a polynomial
is determined by its coefficients. For any set of curve parame-
ters, we can then evaluate the length of the corresponding curve,
and we can then visualize the optimization landscape associated
with the geodesic problem (7.1). Figure 7.4 provides a concept
drawing of this landscape. Here the black curves correspond to
different reparametrizations of different locally optimal solutions
to the geodesic optimization problem. Here we are relying on a

Figure 7.4: The optimiza-
tion landscape from curve
length minimization. Here
coordinates are different
curve parameters. Due
to reparametrization is-
sues each local optimum
forms a continuum (black
curves) along which corre-
sponding curves have the
same shape and length.

concept drawing rather than an actual numerical example as general
smooth curves have infinitely many control parameters, which is at
odds with the idea of making a two-dimensional plot. Nonetheless,
it is valuable to attempt to imagine how messy the optimization
landscape becomes when optima are never points, but always form
continuums.

That geodesics need not be unique is fundamental: sometimes
there is simply more than one good way to connect two points.
That we cannot change. The reparametrization issue we can, in
contrast, do something about. The solution is merely to introduce a
convention that makes the reparametrization issue go away. If the
same curve can be parametrized in different ways, we will simply
pick one particular parametrization which we will then always use.
Whatever choice we make here will be arbitrary, so we might as well
make a choice that is simple. Since parametrization changes the
speed with which we traverse a curve, the simplest choice seems to
be that we should traverse the curve with constant speed. That is if

58 søren hauberg

we have a curve c : [0, 1]→ RD with length

LengthM[c] =
∫ 1

0
∥ċt∥dt, (7.2)

then its speed ∥ċt∥ should be constant (independent of t). If we let
v = ∥ċt∥ denote this constant, then the length simplifies to

LengthM[c] =
∫ 1

0
vdt (7.3)

= v

∫ 1

0
dt = v. (7.4)

That is, the length of a constant speed curve can be found by
computing the speed ∥ċt∥ at any point rather than by evaluating
an integral. So, not only can we now have a unique (by convention)
parametrization of a curve, we also get the added benefit that length
computations significantly simplify.

In practice, one can always reparametrize a given curve to have a
constant speed, but rather than develop techniques for this, we will
next see how we can get constant speed curves with no additional
effort.

∼ Curve energy ∽

Instead of computing shortest paths by minimizing the length of
a curve, we will now derive an alternative objective function to
minimize. This will have the property that solution curves are the
shortest paths, but it will also ensure that solution curves have a
constant speed.

To arrive at this, we first recall the Cauchy-Schwarz inequality

|⟨u, v⟩| ≤ ∥u∥ ∥v∥, (7.5)

where the equality is satisfied if and only if u and v are parallel.
This holds in any inner product space with the usual convention
that ∥u∥ =

√
⟨u, u⟩. We will use this to first bound the length of a

curve, and for this, we will need an inner product between curves.
The usual choice is

⟨u, v⟩ =
∫ 1

0
utvtdt (7.6)

geodesics 59

for curves u, v : [0, 1]→ R. In order to bound the length of a curve c,
we introduce the curve u : [0, 1]→ R that measures the speed of c,

ut = ∥ċt∥. (7.7)

In order to apply the Cauchy-Schwarz inequality, we also introduce
the seemingly silly constant curve v : [0, 1]→ R

vt = 1. (7.8)

With these definitions in place, we see that the length of the curve
c can be written as an inner product,

LengthM[c] =
∫ 1

0
∥ċt∥dt = ⟨u, v⟩. (7.9)

Then by the Cauchy-Schwarz inequality, we have

LengthM[c] ≤ ∥u∥ ∥v∥ (7.10)

=

√∫ 1

0
∥ċt∥2dt

√∫ 1

0
12dt (7.11)

=

√∫ 1

0
∥ċt∥2dt. (7.12)

This last integral turns out to be important, so we give it a name:
the energy of a curve and denote it

E [c] =
∫ 1

0
∥ċt∥2dt. (7.13)

If we square both sides of Eq. 7.12 we see that

Length2
M[c] ≤ E [c]. (7.14)

This is a direct application of the Cauchy-Schwarz inequality. Here
we know that equality is satisfied if and only if u and v are parallel,
i.e. if they are proportional to each other,

ut = α vt ⇔ ∥ċt∥ = α. (7.15)

In other words, we achieve equality in Eq. 7.14 if and only if the
curve speed ∥ċt∥ is constant.

60 søren hauberg

We now have all the ingredients to realize that if we minimize
curve energy, then we get a curve of minimal length with constant
speed. Since curve energy upper bounds squared curve length, we
know that the smallest energy a curve can realize is the squared
geodesic distance. We also know that a curve will only ever realize
this minimal energy if it has a constant speed. From this, we see
that by minimizing curve energy (7.13) we recover a geodesic with
constant speed.

Contrasting energy minimization to length minimization we now
get an optimization landscape that is significantly more well-behaved
(Fig. 7.5 vs. Fig. 7.4).

Figure 7.5: The opti-
mization landscape from
curve energy minimization.
This figure should be con-
trasted with that of length
minimization (Fig. 7.4).
Now optima are well iso-
lated and correspond to
constant speed curves.

∼ Governing differential equations ∽

Both computationally and mathematically we often need a richer
language for understanding geodesics. We can get this through a
system of ordinary differential equations (odes) that capture the
behavior of geodesics.

A geodesic is a minimizer of curve energy (7.13), and informally
this should imply that the derivative of energy with respect to the
curve should be zero for geodesics. As a curve is not a vector, this
statement is not quite true and we must turn to the Euler-Lagrange
equations for a more formal statement. The Euler-Lagrange equa-
tions state that integrals of the form∫ 1

0
E(t, ct, ċt)dt, (7.16)

geodesics 61

In coordinates
dEt

d[ċt]i
= 2
∑d

j=1[Gct]ij [ċt]j

where E : R× Rd × Rd → R, are minimized with respect to a curve
c when

∂Et
∂ct

= d
dt
∂Et
∂ċt

. (7.17)

In our particular case of energy-minimizing curves, we would have

Et = E(t, ct, ċt) = ċ⊺tGct
ċt. (7.18)

The corresponding Euler-Lagrange equations are then a system of
odes that characterize geodesic curves. We will derive these in the
next section, but first, present the result

[c̈t]j = −
d∑
i=1

d∑
k=1

Γikj (ct) [ċt]k [ċt]j (7.19)

Γikj (ct) = 1
2
[
G−1
ct

]
ij

(
2
∂ [Gct]ij
∂ [ct]k

−
∂ [Gct]jk
∂ [ct]i

)
, (7.20)

where [·]i denotes an indexing into the ith dimension of a vector, and
similarly with matrix indexing [·]ij . Clearly, this is a notional mess,
but such is the situation. Here the Γikj (ct) coefficients (informally)
reflect how much the metric changes relative to the metric itself.
This is indicative of how much the manifold curves at a given point.

∼ Deriving the geodesic ODE ∽

The derivation of the geodesic ode (7.19) is purely mechanical and
is, as indicated by the resulting equation, largely a matter of keeping
track of indices. As such, the hurried reader is encouraged to skip
this section. With such warnings out of the way, we may proceed.

The Euler-Lagrange equation (7.17) is easy to work with: evaluate
the individual terms, and put them together. As we will be doing
this in coordinates, we first write Et in such,

Et = ċ⊺tGct
ċt =

d∑
j=1

d∑
k=1

[Gct
]jk[ċt]j [ċt]k. (7.21)

Next, we write the left-hand side of the Euler-Lagrange equations as

dEt
d[ct]i

=
d∑
j=1

d∑
k=1

d[Gct
]jk

d[ct]i
[ċt]j [ċt]k. (7.22)

62 søren hauberg

d
dt

ab =
(

d
dt

a
)

b + a
(

d
dt

b
)

d
dt

f

(
g

(1)
t , . . . , g

(d)
t

)
=∑d

k=1
dg(k)

dt

df
(

g
(1)
t

,...,g
(d)
t

)
dg

(k)
t

[A−1b]i =∑d

j=1[A−1]ij [b]j

To evaluate the right-hand side of the Euler-Lagrange equation,
we first note that

∂Et
∂ċt

= 2Gct
ċt. (7.23)

Differentiating this with respect to t then yields the right-hand side,

d
dt

dEt
d[ċt]i

= d
dt

2
d∑
j=1

[Gct
]ij [ċt]j

 (7.24)

= 2
d∑
j=1

(
d[Gct

]ij
dt [ċt]j + [Gct

]ij [c̈t]j
)

(7.25)

= 2
d∑
j=1

(
d∑
k=1

d[Gct]ij
d[ct]k

[ċt]k[ċt]j + [Gct]ij [c̈t]j

)
. (7.26)

We can now simply insert Eqs. 7.22 and 7.26 into the Euler-
Lagrange equation (7.17) to get

d∑
j=1

d∑
k=1

d[Gct]jk
d[ct]i

[ċt]j [ċt]k

= 2
d∑
j=1

(
d∑
k=1

d[Gct
]ij

d[ct]k
[ċt]k[ċt]j + [Gct

]ij [c̈t]j

)
.

(7.27)

Isolating the term with second-derivatives (c̈t) yields

[c̈t]j = −1
2

d∑
i=1

[G−1
ct

]ij
d∑
k=1

(
2d[Gct]ij

d[ct]k
− d[Gct]jk

d[ct]i

)
[ċt]k[ċt]j . (7.28)

If we introduce the short-hand notation

Γikj (ct) = 1
2
[
G−1
ct

]
ij

(
2
∂ [Gct]ij
∂ [ct]k

−
∂ [Gct]jk
∂ [ct]i

)
, (7.29)

we get the desired geodesic ode

[c̈t]j = −
d∑
i=1

d∑
k=1

Γikj (ct) [ċt]k [ċt]j . (7.30)

geodesics 63

1 Readers unfamiliar with
this theorem may consult Ap-
pendix A for a brief recap.

∼ Alternative expression of the geodesic ODE ∽

In some computational environments, it is inconvenient that the
geodesic ode (7.19) uses many indices as a direct evaluation and
then requires multiple loops over these indices. With a bit of manip-
ulation it is possible to express the geodesic ode without the use of
indices [5]:

c̈t = −1
2G−1

ct

{
2(I⊗ ċ⊺t)∂ctvec(Gct) ċt − ∂ctvec(Gct)

⊺ (ċt ⊗ ċt)
}
.

Here vec(·) stacks the columns of a matrix into a vector and ⊗ is the
Kronecker product. This does not exactly render the equation any
easier to read, but it can be practical in numerical environments.

∼ Two types of geodesics ∽

The geodesic ode (7.19) tells us how geodesics behave locally. This
is a second-order ode as it describes the behavior of the second
derivative c̈t of the geodesic c. As a curve satisfying the geodesic
ode is energy minimizing, we know that it must be constant speed.

So far, we have treated geodesics as a means to computing dis-
tances between points c0 and c1. The corresponding geodesic is then
a solution to the geodesic ode subject to the constraints that the
initial point should be c0 and the terminal point should be c1. This
is known as a two-point boundary value problem, and little is known
about such problems except that they may be difficult to solve.

A more positive story can be told for initial value problems. In
general, when we specify the initial conditions of an ode, the Picard-
Lindelöf theorem1 tell us that the resulting curve is unique. In terms
of the geodesic ode, an initial condition is a starting point c0 and
an initial velocity ċ0. If we think of a geodesic path traversed by
a person walking along the manifold, then we may say that if we
know the starting point, initial direction, and how long said person

64 søren hauberg

should walk, then the traversed path is unique. Geodesics where
we specify the initial point and velocity are often called shooting
geodesics due to an analogy with how a cannonball flies as a function
of the cannon’s direction.

geodesics 65

∼ Exercises ∽

Exercise 7.1: Euclidean metric.
Consider the Euclidean metric of Rd, i.e. G = I.

1. Derive the coefficients of the geodesics ode of this metric (Eq. 7.20).

2. Derive the geodesic ode.

3. What is the geodesic that connects points x1 and x2?

Exercise 7.2: Spherical metric.
Let x1 ∈ (0, π) and x2 ∈ [0, 2π) be the latent coordinates of the
manifold spanned by the function f : (0, π)× [0, 2π)→ R3

f(x1, x2) =

sin(x1) cos(x2)
sin(x1) sin(x2)

cos(x1)

 . (7.36)

This will span the unit sphere. In exercise 5.1 we derived that the
metric in latent coordinates is

Gx =
(

1 0
0 sin2(x1)

)
(7.37)

1. Derive the coefficients of the geodesics ode of this metric (Eq. 7.20).
Hint: note that some terms of the metric are zero, which renders
some coefficients to be zero as well.

2. Derive the geodesic ode.

Exercise 7.3: Quadratic metric.
Consider a two-dimensional abstract manifold with the metric

Gx =
(
1 + ∥x∥2) I, x ∈ R2. (7.38)

1. Derive the coefficients of the geodesics ode of this metric (Eq. 7.20).
Hint: note that some terms of the metric are zero, which renders
some coefficients to be zero as well.

2. Derive the geodesic ode.

3. Consider a geodesic c starting at c0 = 0 and initial velocity ċ0 = v.
What is the acceleration c̈0?

Chapter 8

Computing geodesics numerically

In which we actually do something
practical.

In practice, we are not satisfied with mathematical expressions
for the geodesic curves: we want actual algorithms to compute them!
Let’s start with the bad news: while many algorithms exist, none
are sufficiently fast and stable to be considered the gold standard.
With that said, let’s ignore all warnings and proceed ahead.

∼ Do yourself a favor. . . ∽

To compute a geodesic we will often need to evaluate many deriva-
tives. For example, the geodesic ode (7.19) requires the derivative
of the metric. For many models, the metric is also composed of
derivatives, e.g. the pull-back metric G = J⊺J requires a Jacobian
matrix. And so forth. Computing such derivatives is often feasible,
but it is tedious ‘grunt work’.

If you do any form of numerical differential geometry, I strongly
recommend that you use software to compute the required derivatives.
Fortunately, tools for automatic differentiation [42] are plentiful and
constantly evolving.

∼ Direct length minimization ∽

68 søren hauberg

Figure 8.1: Caption

For example, for N = 3, we
have {0, 1/3, 2/3, 1}.

∼ Connecting geodesics ∽

Given two points c0 and c1, the simplest algorithm to compute
the connecting geodesic is direct energy minimization. This can be
summarized as

Compute connecting geodesic
1. parametrize a curve that connects c0 and c1,

2. numerically approximate the energy of the parametric
curve, and finally

3. minimize the energy using gradient-based optimization.

This high-level approach can be realized in many ways, and we’ll
cover some step-by-step.

Step 1, take 1: piecewise linear curves

The simplest way to parameterize a curve c : [0, 1]→ Rd is through
a piecewise linear function. We start with a partitioning of the
interval [0, 1] with N + 1 equidistant points,

ti = i

N
, for i = 0, . . . , N. (8.1)

For each ti we keep an associated position along the curve c̃i ∈ Rd.
Since the end-points of the requested geodesic are known, we let c̃0 =
c0 and c̃N = c1. The remaining points {c̃i}N−1

i=1 are considered free
parameters of the curve representation. When computing geodesics,
we will optimize with respect to these free parameters (see Fig. 8.2).

Step 1, take 2: polynomial curves

On smooth manifolds, geodesics are smooth curves. Some readers
may, therefore, object to the idea of using a piecewise linear curve to

computing geodesics numerically 69

Figure 8.2: A continuous
curve (dashed, black) is ap-
proximated by a piecewise
linear curve (brown). The
endpoints (red diamonds)
are considered fixed, while
the green circles are con-
sidered free parameters
that can move during op-
timization.

represent geodesics. Here we consider polynomials as an alternative,
but any parametric curve (splines, Bezier curves, neural networks,
etc.) would do. As a general strategy, consider decomposing a curve
c into linear and nonlinear parts,

c(t) = (1− t)c0 + tc1 + c̃(t), (8.2)

where c̃ is constructed to have endpoints at zero, i.e. c̃(0) = c̃(1) = 0.
This construction is illustrated in Fig. 8.3. This decomposition
neatly allows you to change the curve endpoints with little effort.

Figure 8.3: A curve c(t)
is split into a linear part,
(1−t)c0+tc1, and a nonlin-
ear remainder c̃(t). This
has the benefit that the
same parametrization of
c̃(t) can be used indepen-
dently of the geodesic end-
points.

If we model c̃ as a Kth order polynomial, i.e.

c̃i(t) =
K∑
k=1

wikt
k + wi0, (8.3)

then it is trivial to ensure that c̃i(0) = c̃i(1) = 0. Specifically, letting
wi0 = 0 and wiK = −

∑K−1
k=1 wik ensures these boundary conditions.

Computing geodesics, thus, reduces to minimizing the energy of
the curve c with respect to wik for i = 1, . . . , d and k = 1, . . . ,K− 1.

Step 2, take 1: energy quadrature

Given a curve c, we seek to numerically approximate its energy

E [c] =
∫ 1

0
∥ċt∥2

Gct
dt ≈ Ẽ [c]. (8.4)

70 søren hauberg

The simplest approach is to numerically approximate the integral
with a Riemann sum (quadrature), i.e.

Ẽ [c] =
S∑
s=0
∥ċs∥2

Gcs
∆s, (8.5)

where cs = c(s/S) are placed on a regular grid over the interval [0, 1]
and ∆s = 1/S + 1.

Depending on how we have chosen to parametrize the curve c,
we may compute the curve derivative ċ analytically or using finite
differences.

On abstract manifolds, where we have direct access to the metric
G, we can trivially evaluate the squared curve velocity as ∥ċs∥2

Gcs
=

ċ⊺sGcs
ċs. When working with pullback metrics G = J⊺J it is, instead,

often more practical to recall that the curve energy can be written
as

E =
∫ 1

0

∥∥∥∥ d
dtf(ct)

∥∥∥∥2
dt. (8.6)

Making a finite difference approximation to the derivative d/dtf(ct) ≈
(f(ct+h) − f(ct))/h followed by the usual numerical quadrature, we can
arrive at the simple energy approximation,

Ẽ [c] =
S∑
s=1
∥f(cs)− f(cs−1)∥2. (8.7)

Compared to working directly with the metric G = J⊺J, this ap-
proach has the advantage that we invoke the automatic differenti-
ation engine (assuming we are clever enough to use such) one less
time, which can provide significant reductions in both running time,
memory use, and code complexity.

Step 2, take 2: Monte Carlo energy

The energy quadrature (8.7) requires differentiating through S + 1
calls to the function f , which can be memory intensive when f has
many parameters (e.g. it is a deep neural network). This can, in turn,
render the gradient-based optimization (step 3) computationally
taxing. In such cases, it can be beneficial to rewrite the curve energy

computing geodesics numerically 71

1 Interested readers can con-
sult standard textbooks [41].

(8.6) as an expectation,

E =
∫ 1

0

∥∥∥∥ d
dtf(ct)

∥∥∥∥2
dt = Ep(t)

[∥∥∥∥ d
dtf(ct)

∥∥∥∥2
]
, (8.8)

where p(t) = U(0, 1) is the uniform distribution over [0, 1]. We can
then use a Monte Carlo estimate of this expectation to arrive at a
stochastic approximation of the curve energy

Ẽ [c] = 1
S

S∑
s=1

∥∥∥∥ d
dtf(cts)

∥∥∥∥2
, ts ∼ U(0, 1). (8.9)

If need be, we can make a finite difference approximation to the
curve derivative d/dtf(ct) ≈ (f(ct+h) − f(ct))/h.

Step 3: numerical optimization

Once we have a parametric curve cw with free parameters w, and a
numerical estimator Ẽ of the curve energy, we can find the geodesic
by solving

wopt = argmin
w

Ẽ [cw]. (8.10)

Assuming we work in a computational environment that supports
automatic differentiation, then it is trivial to compute derivatives
with respect to w.

The energy functional is convex near its optima, which implies that
any reasonable optimization algorithm will recover a locally optimal
curve. The numerical approximation of the energy is, however,
not guaranteed to share this local convexity, but in practice, this
optimization is stable when the numerical integrator is reasonably
accurate.

∼ Shooting geodesics ∽

From a starting point c0 and an initial velocity ċ0 we can derive the
associated geodesic c by solving the geodesic ode (7.19). In practice,
we can achieve the same by solving the ode numerically using any
standard solver (e.g. Euler methods, variants of Runge-Kutta, and
so forth). We will not review such solvers here1 and instead assume

72 søren hauberg

2 linspace(0, 1, 25) in
several programming
environments.

that they are available through some library implementation.
Standard numerical ode solvers are aimed at first-order problems,

i.e. problems of the type ċt = h(t, ct) for some function h. The
geodesic ode (7.19) is, however, a second-order problem

[c̈t]j = h(t, ct, ċt) = −
d∑
i=1

d∑
k=1

Γikj (ct) [ċt]k [ċt]j , (8.11)

where Γikj are the ode coefficients (7.20).
We can, fortunately, easily turn our second-order ode into a

first-order problem. To do this, we introduce a curve k : t 7→ (ct, ċt)
and write the geodesic ode accordingly. Note that if c is a curve in
Rd then k is in R2d. By construction

k̇t =
(
ċt

c̈t

)
=
(

ċt

h(t, ct, ċt)

)
← part of kt
← the geodesic ode.

(8.12)

This gives rise to the following high-level algorithm.

Compute shooting geodesic
Input: c0, ċ0.

1. Define the ode k̇ = (t, kt) 7→
(

ċt

h(t, ct, ċt)

)
.

2. Define the initial condition k0 =
(
c0

ċ0

)
.

3. Solve the ode kt = odeint(k̇, k0, t).

4. Split the solution into ct, ċt ← kt.

Here odeint is any numerical first-order ode solver that takes
as input

1. The ode to be solved. This should be a function that takes
inputs t and kt = (ct, ċt).

2. The initial condition k0 = (c0, ċ0) ∈ R2d.

3. The points t1, . . . , tn where the solution curve should be evaluated.
Usually, these are equidistant points from 0 to 1.2

computing geodesics numerically 73

Figure 8.4: The initial
velocity of the geodesic
ode is optimized such that
the resulting geodesic hits
the right end-point. The
dashed lines indicate the
optimization criteria.

∼ Connecting geodesics, again ∽

Modern ode solvers support automatic differentiation, such that
we can differentiate the solution with respect to the initial condition
[11]. That is, we can evaluate ∂ct/∂ċ0.

Let c(t; ċ0) denote the numerical solution to the geodesic ode
starting at c0 with initial velocity ċ0. If we are seeking a geodesic
with end-point c1, then a solution is to solve

ċ∗
0 = argmin

ċ0

∥c1 − c(1; ċ0)∥2. (8.13)

Using a numerical ode solver that supports automatic differen-
tiation, this equation can be immediately solved using standard
gradient-based optimization. The solution will be an initial velocity
such that the geodesic starting at c0 reaches c1.

Conceptually this is quite elegant as both connecting and shooting
geodesics are solved using the same driving building block: the ode
solver. In practice, the approach can, however, be both computa-
tionally expensive and numerically unstable. Expensive because
the geodesic ode requires derivatives of the metric, unlike direct
energy minimization. Unstable, because differentiating an ode
requires solving another ode, which often is ill-conditioned [11].
This approach for computing connecting geodesics is, thus, rarely
recommendable.

74 søren hauberg

Figure 8.5: The toy-
banana dataset is a subset
of 1-digits from mnist ex-
pressed in its leading prin-
cipal components.

Figure 8.6: Example
geodesics.

∼ Exercises ∽

Exercise 8.1: Curve parametrizations.
Consider a two-dimensional abstract manifold with the metric

Gx =
(
1 + ∥x∥2) I, x ∈ R2. (8.14)

1. Implement direct energy minimization for computing geodesics
using piecewise straight lines to parameterize the solution curve.

2. Extend the previous implementation to also support third-order
polynomials to parametrize the solution curve.

Exercise 8.2: Shooting geodesics.
Consider the same metric as the previous exercise.

1. Implement an algorithm for computing shooting geodesics by solv-
ing the geodesic ode using a first-order Euler method.

2. Extend the previous implementation to use more elaborate numer-
ical ode solvers. This can be done using a support library for
your computational environment (e.g. scipy in Python).

Exercise 8.3: Density metrics.
Consider the dataset available at

http://hauberg.org/weekendwithbernie/toybanana.npy

This consists of N = 992 observations in R2 (see plot in the margin).
Consider the metric over R2 defined as

Gx = 1
p(x) + ϵ

(8.15)

p(x) = 1
N

N∑
n=1
N (x|xn, σ2I), (8.16)

where σ = 0.1, and ϵ = 10−4 avoids dividing by zero.

1. Implement direct energy minimization for computing geodesics
using piecewise straight lines to parameterize the solution curve.

2. Extend the previous implementation to also support third-order
polynomials to parametrize the solution curve.

http://hauberg.org/weekendwithbernie/toybanana.npy

computing geodesics numerically 75

Exercise 8.4: Autoencoder geodesics.
Consider a simple dataset (e.g. mnist).

1. Implement an autoencoder with at least one hidden layer in the
decoder, and fit it to the chosen dataset.

2. Implement at least one algorithm for computing connecting geodesics.

3. How does the (empirical) computational cost of computing geodesics
grow with the dimensionality of the latent representation?

Chapter 9

Arithmetic on Riemannian manifolds

In which we joyfully rediscover plus and
minus.

When building computational models over Riemannian manifolds
we need basic operators akin to plus and minus for interacting with
data. The most elementary operators over Riemannian manifolds
are the logarithm and exponential maps, which exactly serve this
purpose.

∼ Euclidean arithmetic ∽

We are used to interacting with vectors xn,xm ∈ RD by adding and
subtracting them from each other. Before seeking to understand how
we can interact with points on Riemannian manifolds, we first look
at the Euclidean case. This will allow us to build up intuitions that
we can generalize. The reader should be warned, that this section is
beyond trivial, but it is so purposely.

Shortest paths

We first remind the reader that given two points in a Euclidean
space, then the shortest connecting path is the straight line. This is
an important analogy when considering the extension to Riemannian
manifolds.

78 søren hauberg

Figure 9.1: Subtraction in
a Euclidean space is an op-
erator that returns a vec-
tor representing the short-
est path (straight line) con-
necting two points.

Subtraction (minus)

Consider two points, xn and xm, in a Euclidean space, their difference
is given by ∆ = xn − xm. This is illustrated in Fig. 9.1 on the right.
The shortest path connecting xm to xn can be written as

c(t) = ∆t+ xm, t ∈ [0, 1]. (9.1)

Here we have parametrized the shortest path over t ∈ [0, 1], which is
an arbitrary choice. We see that ∆ provides a representation of the
shortest path from xm to xn, i.e. subtraction is an operator that
returns a vector that parametrizes the shortest path from one point
to another.

Addition (plus)

Subtraction gives a vector representing the shortest path connecting
two points, and addition is the inverse operation. Geometrically,
this means that addition should be an operator that given a point
xm and a vector ∆ should span the shortest path that connects the
two points. Indeed, this is achieved by the addition in Eq. 9.1.

Operators, points, and vectors

Thus far, we have made a subtle distinction between a point, xn or
xm, and a vector ∆. A point represents the position of an object,
whereas a vector represents a displacement. We will now make this
distinction painfully clear and letM denote the set of all points, and
let T denote the set of all displacements. In the Euclidean domain,
M = T = RD and this distinction are rather pointless. We will
proceed nonetheless as it will soon carry value.

Now we can make the subtraction and addition operators more
explicit by writing

− : M×M→ T (9.2)

+ : M× T →M. (9.3)

That is, subtraction takes two points and returns a vector, while
addition takes a point and a vector and returns a point.

arithmetic on riemannian manifolds 79

1 See Appendix A if you are
not familiar with this result.

Figure 9.2: The logarithm
map (subtraction) returns
the initial velocity of the
connecting geodesic.

Relation to distances

As a final remark, we note that the vector ∆ = xn − xm not only
tells us how to get from y to x, but also tells us how far xn is from
xm. In particular, the distance between xn and xm is by definition
dist(xn,xm) = ∥xn − xm∥ = ∥∆∥.

∼ Riemannian operators ∽

We now carry on to the Riemannian setting. Our goal will be to
provide operators akin to subtraction and addition as described
above.

Riemannian subtraction

In Euclidean space, we have seen that subtraction is an operator
that given two points returns a vector encoding the direction to get
from one point to the other as fast as possible. The logarithm map
serves the same purpose on Riemannian manifolds.

Given two points xn,xm ∈ M on a Riemannian manifold, we
let cmn denote the shortest connecting path (geodesic). We have
previously seen that this path can be recovered as the solution to a
system of ordinary differential equations (7.19). The Picard-Lindelöf
theorem1 then imply that the geodesic is uniquely defined by its
initial position and velocity. That is, the geodesic can be uniquely
recovered from cmn(0) and ∂tcmn(0) by solving the associated differ-
ential equations. Letting cmn(0) = xm and ∆ = ∂tcmn(0), we can
interpret ∆ as the initial direction of the shortest path going from xm
to xn. This vector then uniquely tells us how to get from xm to xn as
fast as possible, and we can view ∆ as the Riemannian counterpart
to the difference vector attained by Euclidean subtraction.

These considerations motivate the definition of the logarithm map
(or log-map for short) as the function that given two points returns
the initial velocity of the geodesic connecting the points. We write

Logxm
(xn) = ∆ = ∂tcmn(0), (9.4)

and note that ∆ by definition belongs to the tangent space Txm
.

If the geodesic is parametrized over the time interval [0, 1] with

80 søren hauberg

constant speed, then we see that its length is

LengthM(cmn) =
∫ 1

0
∥∂tcmn(t)∥dt (9.5)

= ∥∂tcmn(0)∥
∫ 1

0
dt (9.6)

= ∥∆∥. (9.7)

That is, the norm of the vector returned by the logarithm map is
the geodesic distance between xn and xm, and we have recovered
the two characteristics of subtraction highlighted in the previous
section. It should be noted that since ∆ is a member of the tangent
space Txm

, then the norm of ∆ should be computed using the inner
product (metric) associated with this tangent space.

Riemannian addition

Having seen that the logarithm map performs an operation akin to
subtraction, it is natural to consider the inverse operation. This is
known as the exponential map and is defined as the solution to the
geodesic ode (7.19) subject to the initial conditions

c(0) = xm (9.8)

∂tc(0) = ∆. (9.9)

This ode is evaluated at time t = 1 to match the parametrization
used for the logarithm map. We write this as

Expxm
(∆) = xn. (9.10)

arithmetic on riemannian manifolds 81

∼ Exercises ∽

Exercise 9.1: Spherical arithmetic.
On the unit sphere, SD−1 = {y ∈ RD | ∥y∥ = 1}, two points y1 and
y2 can be connected with the geodesic

c(t) = cos
(

2t
π

)
y1 + sin

(
2t
π

)
y2, (9.11)

assuming the points are not on opposite poles. The geodesic distance
between the points is the angle between the vectors y1 and y2,

dist(y1,y2) = arccos(y⊺
1y2). (9.12)

1. Derive the expression for the logarithm map Logy1(y2).

2. Derive the expression for the exponential map Expy1(v) for some
vector v ∈ RD such that v⊺y1 = 0.

1 While the name might sug-
gest that this integral is
tied to Riemannian geom-
etry, such is not the case.
The name merely shows that
Bernhard Riemann was a
productive fellow.

Chapter 10

Integration on manifolds

In which the metric speaks volumes
about space.

The volume of an object is one of the most basic quantities we
may compute. Of particular importance, volumes are useful for
determining the probability of an event, which is paramount for any
decision-making procedure.

To define a notion of the volume of a part of a manifold, we need
integration over the said manifold. Consider, as usual, a manifold
M = f(Ω), where f : Rd → RD and Ω ⊂ Rd. If Ω is compact then
the manifold has a finite volume defined as

vol(M) =
∫

M
1dy. (10.1)

In practice (and in particular when working numerically), it is much
easier to compute this integral if we can phrase this over the low-
dimensional Ω rather than the high-dimensional M. This is what
we will set out to do.

∼ Ordinary integration ∽

Before extending our view of integration, let us briefly recap the
basics of the Riemann integral.1 Given a real function h : R→ R,
the integral of h corresponds to the area under the curve traced
out by h. The Riemann sum provides an approximation to this
area by partitioning the first-axis into segments of size ∆x and then

84 søren hauberg

Figure 10.1: The Riemann
sum approximates the
area under the curve by
summing the volume of
small segments that fit
the curve. Note how
the segment width ∆x

depends on the first axis
being the real line R.

summing the areas of the corresponding boxes that fit under the
curve,

Area ≈
N∑
n=1

h(xn)∆x, where x1 < . . . < xN . (10.2)

Here ∆x = xn+1 − xn is the width of each segment. We can then
get an increasingly better approximation by increasing N , and the
Riemann integral is the limit N →∞,∫ b

a

h(x)dx = lim
N→∞

N∑
n=1

h(xn)∆x. (10.3)

The notation dx should be thought of as the limiting value of ∆x, i.
e. it is the width of an infinitesimal segment.

∼ Volume measures ∽

Let us consider the more general task of integrating a function over
a subset of a manifold. That is, we are interested in a function
h : M → R, which raises the question of how we are going to
determine the width of the infinitesimal segment in the Riemann
sum.

Let us assume that X ⊆ Ω is the region over which we want to
integrate, and that h : M → R is the integrand, i.e. the function

Figure 10.2: When inte-
grating a function over
a subset of the manifold,
f(X) it is generally more
practical to express it as
in integral over X instead.

integration on manifolds 85

Figure 10.3: The volume
of an infinitesimal patch in
Ω changes when measured
in ambient space.
2 As the Jacobian is assumed
to have full rank.

Figure 10.4: Integration
is defined by partitioning
space into small segments
and the volume of each
segment weighs its contri-
bution to the total inte-
gral. In Euclidean space,
this volume is constant,
but for Riemannian mod-
els, we must take the ‘size’
of the local metric into ac-
count.

which we seek to integrate. Then we can define the integral of
interest as ∫

f(X)
h (y) dy. (10.4)

By standard integration by substitution we may write this as∫
X
h(f(x))V (x)dx, (10.5)

where V (x) is the volume of the parallelogram spanned by the
Jacobian of f at x. This volume informs us of how different the
volume of a small patch in Ω is compared to the corresponding patch
expressed on the manifold M.

To quantify this change in volume, we write the Jacobian of f at
x in its singular value decomposition

Jx = UxSxV⊺
x, (10.6)

where Ux ∈ RD×D and Vx ∈ Rd×d are orthogonal matrices, and
Sx ∈ RD×d is a rectangular diagonal matrix with strictly positive
entries.2 Since orthogonal matrices (rotation matrices) do not influ-
ence the volume of the parallelogram spanned by the Jacobian, we
observe that this must be the product of the diagonal of Sx,

V (x) =
d∏
i=1

[Sx]ii . (10.7)

Returning to the singular value decomposition of Jx (10.6), we
observe that the metric can be written

Gx = J⊺
xJx = VxS⊺

xSxV⊺
x. (10.8)

This is the eigendecomposition of Gx where S⊺
xSx is a square diagonal

matrix containing the eigenvalues of the metric. The determinant
of Gx is the product of these eigenvalues, so the metric determinant
must be the square of the volume of the parallelogram spanned by Jx,

V 2(x) = det (Gx) ⇔ V (x) =
√

det (Gx). (10.9)

Combining these observations, we may write the expression of
the integral (10.5) as∫

X
h(f(x))

√
det (Gx)dx. (10.10)

86 søren hauberg

One common interpretation is that
√

det (Gx)dx forms a measure
over the manifold, which gives rise to the short-hand notation∫

X
h(f(x))

√
det (Gx)dx =

∫
X
h(f(x))dM(x). (10.11)

This nicely highlights that the metric not only tells us how to
compute inner products but also how to integrate over the manifold.
The metric truly provides an elegant summary of the quantitative
aspects of the manifold.

∼ Densities and probabilities ∽

Having established how to integrate over a manifold, it is now easy
to define probabilities over manifold-valued events. If x ∈ Ω is
a random variable, we may give it a density p(x) ≥ 0 under the
requirement that it integrates to 1,∫

Ω
p(x)dM(x) = 1. (10.12)

The probability of an event is then defined as usual

Pr(x ∈ X) =
∫

X
p(x)dM(x). (10.13)

An example density is a uniform density over a compact region
X , which is constant with respect to the measure dM, i.e.

UX (x) =


1∫

X
dM(x)

x ∈ X

0 otherwise.
(10.14)

For most distributions on most manifolds, we cannot evaluate the
normalization constant of the density in closed-form. This implies
that we most often need to call upon numerical approximations such
as Monte Carlo techniques when building probabilistic models over
manifolds.

∼ Expectations ∽

If we have a random variable x ∈ Ω with density p(x), and a function
h : Ω→ R then we can define the expectation of h(x) as usual

E [h(x)] =
∫

Ω
h(x)p(x)dM(x). (10.15)

integration on manifolds 87

For finite data, this is then approximated as

E [h(x)] ≈ 1
N

N∑
n=1

h(xn)dM(xn). (10.16)

An annoying subtlety, however, prevents us from using this con-
struction to define something as elementary as the mean of a random
variable. If we just naively attempt to evaluate E[x], then we end
up with an integral over a manifold-valued variable rather than a
real variable. This is undefined and we have no standard extension
of means to manifolds.

As we often find great value in summarizing an entire data set in
a single observation, various generalizations of means are available.
The most common choice is the Fréchet mean, which is defined as
follows. We start by defining the variance with respect to a point µ
as the average squared distance to data,

Var[x] = E
[
dist2(x, µ)

]
. (10.17)

In Euclidean statistics, it is well-known that the mean is the unique
minimizer of Var[x]. The Fréchet mean for manifold-valued data
is then defined as the global minimizer of the variance. Note that
multiple minima may exist, so this definition is not as well-behaved
as its Euclidean counterpart. In practice, we tend to minimize the
empirical variance using gradient-based optimization and then hope
that the point of convergence is a reasonable summary statistic.

88 søren hauberg

3 If you forgot about embed-
dings, see page 27.

∼ Exercises ∽

Exercise 10.1: Spherical metric.
Let x1 ∈ (0, π) and x2 ∈ (0, 2π) be the latent coordinates of the
manifold spanned by the function f : (0, π)× (0, 2π)→ R3

f(x1, x2) =

sin(x1) cos(x2)
sin(x1) sin(x2)

cos(x1)

 . (10.18)

This will span the unit sphere. In exercise 5.1 we derived that the
metric in latent coordinates is

Gx =
(

1 0
0 sin2(x1)

)
. (10.19)

1. Derive the volume measure of the metric.

2. Integrate the function h(x1, x2) = x2 sin(x1) with respect to the
volume measure, i.e. compute

∫ π
0
∫ 2π

0 h(x1, x2)dM(x1, x2).

3. Write a computer program to numerically estimate the value of
the integral.

Exercise 10.2: Quadratic metric.
Consider a two-dimensional abstract manifold with the metric

Gx =
(
1 + ∥x∥2) I, x ∈ R2. (10.26)

1. Derive the volume measure of the metric.

2. Integrate the function h(x1, x2) = x1 with respect to the volume
measure over the set [−1, 1]2, i.e. compute

∫ 1
−1
∫ 1

−1 h(x1, x2)dM(x1, x2).

3. Write a computer program to numerically estimate the value of
the integral.

Exercise 10.3: Normalizing flows.
Consider a smooth embedding3 f : Rd → RD, and let the random
variable y be distributed as p(y). Assume that p(y) has support on
the entirety of RD, i.e. p(y) > 0 ∀y.

1. Let x = f−1(y) be a new random variable. What is the support
of p(x)?

integration on manifolds 89

2. Bringing the Euclidean metric from RD into Rd gives the Rieman-
nian metric Gx = J⊺

xJx. Use eq. 10.10 to evaluate the probability
Pr(x ∈ X̂) =

∫
f(X̂) p(y)dy.

3. Consider the case d = D. Show that the volume measure of the
metric reduces to

√
det Gx = det Jx. Update the expression of

Pr(x ∈ X̂) to this case.

1 In a machine learning con-
text, the obvious example of
such a function is a multi-
layer neural network.

Chapter 11

Submanifolds

In which recursion takes over
(again).

So far, we have constructed distance measures over manifolds
by measuring curve lengths along the manifold. The length of
such curves has then been measured using the Euclidean metric
of the ambient space. On the other hand, we have seen how we
can disregard the ambient space altogether once we have access to
a Riemannian metric. This raises the natural question: can our
ambient space have a Riemannian metric?

∼ Composite functions ∽

To start the discussion, let us first recall that we focus on manifolds
that are spanned by a function f : Rd → RD,

M = f(Ω), Ω ⊆ Rd. (11.1)

Let us now assume that f is a composite function, i.e.

f(x) = f2(f1(x)), (11.2)

where f1 : Rd → Rd′ , f2 : Rd′ → RD, and d ≤ d′ ≤ D.1 The
analysis we have carried out thus far tells us that then Ω ⊆ Rd is
naturally equipped with a Riemannian metric Gx = J⊺

xJx. The
same analysis, however, also tells us that Ω′ = f1(Ω) ⊆ Rd′ also has

92 søren hauberg

a Riemannian metric,

G(2)
x = J(2)

x
⊺
J(2)

x , (11.3)

where J(2)
x = ∂f2/∂f1(x) is the Jacobian of f2. In this case, Gx and

G(2)
x represent the Euclidean metric of RD brought into Rd and Rd′ ,

respectively. A natural question is then if we can bring the metric
G(2)

x from Rd′ into Rd and if doing so results in the metric Gx?
To provide an answer, let us consider the manifold

M1 = f1(Ω) ⊂ Rd
′
. (11.4)

We will use the Riemannian metric G(2)
x to measure curve lengths

in Rd′ , i.e.

Length(c) =
∫ 1

0

∥∥∥∥ d
dtf1(ct)

∥∥∥∥
G(2)

ct

dt (11.5)

=
∫ 1

0

∥∥∥J(1)
ct
ċt

∥∥∥
G(2)

ct

dt, (11.6)

where J(1)
x = ∂f1/∂x is the Jacobian of f1. Inserting the definition of

the norm (5.14) then gives

Length(c) =
∫ 1

0

√(
J(1)
ct ċt

)⊺
G(2)
ct

(
J(1)
ct ċt

)
dt (11.7)

=
∫ 1

0

√
ċ⊺t

(
J(1)
ct

⊺
G(2)
ct J(1)

ct

)
ċtdt. (11.8)

That is, Ω is now equipped with the metric J(1)
ct

⊺
G(2)
ct J(1)

ct .
The Jacobian of f can be written in terms of the Jacobians of f1

and f2 as Jx = J(2)
x J(1)

x , such that our initial metric for Ω is

Gx = J⊺
xJx = J(1)

x
⊺
J(2)

x
⊺
J(2)

x J(1)
x (11.9)

= J(1)
ct

⊺
G(2)
ct

J(1)
ct
, (11.10)

which is the same as above. The unsurprising summary is that if
f is a composite function then we can bring the ambient metric
through the individual functions to create intermediate metrics, and
still get the original metric Gx.

submanifolds 93

∼ Ambient Riemannian metrics and submanifolds ∽

Sometimes observed data naturally comes with a Riemannian metric
rather than the Euclidean metric. We can then follow the same
procedure as in the previous section to bring this Riemannian metric
into our low-dimensional representation Ω.

More precisely, let M(D) denote RD equipped with the Rieman-
nian metric G(D), and let

f : Ω→M(D), Ω ⊆ Rd (11.11)

span a manifold M(d) = f(Ω) ⊆ M(D). We will then call M(d) a
submanifold of M(D). As a simple example, a curve on a manifold
is a one-dimensional submanifold of the said manifold.

We can then bring the metric from M(D) into Ω as

G(d)
x = J⊺

xG(D)
x Jx, (11.12)

where Jx is the Jacobian of f . Note that if G(D) = I, then M(D) is
just the ordinary Euclidean RD and we recover the metric used in
the previous chapters.

94 søren hauberg

∼ Exercises ∽

Exercise 11.1: Jacobians and metrics.
Consider the functions

f1(x) = Wx + b, f2(x) =


tanh([x]1)

...
tanh([x]D)

 , (11.13)

where W ∈ RD×d and b ∈ RD.

1. Derive the Jacobians of f1, f2 and f3 = f2 ◦ f1.

2. Derive the pull-back metrics G1 = J⊺
f1

Jf1 , G2 = J⊺
f2

Jf2 , and
G3 = J⊺

f3
Jf3 , and write Gf3 in terms of Gf2 .

1 Technically, an autoen-
coder does not optimize the
representations x1:N , but
rather optimizes a neural net-
work that predicts the repre-
sentation xn from an obser-
vation yn. This is irrelevant
from our perspective as it is
merely an approximation.

Chapter 12

Noisy manifolds

In which data ruins the party
only to randomly save it again.

From a statistics or machine learning perspective, our interest is
in manifolds that are estimated from data. As said data is practically
always finite in amount and subject to observation noise, we should
start off with the acknowledgment that the estimated manifold is
just that: an estimate. But how does this imperfection reveal itself
in the geometry of the manifold?

∼ Manifold learning revisited ∽

Assume we have some data y1:N = {y1, . . . ,yN} in RD and that we
want to fit a d-dimensional manifold to this data. As mentioned in
chapter 3, a common strategy, e.g., employed by autoencoders [34],
is to find a function f that minimizes the squared distance between
observations and projections thereof onto the manifold:

f∗ = argmin
f

N∑
n=1
∥f(xn)− yn∥2

, (12.1)

where xn is chosen such that f(xn) is the projection1 of yn onto
the manifold spanned by f :

xn = projM(yn) = argmin
x
∥f(x)− yn∥2

. (12.2)

96 søren hauberg

2 By smooth we refer to how
much the manifold ‘wiggles’,
i.e. if the spectrum of the
underlying function f is dom-
inated by low-frequency com-
ponents.

Combining Eqs. 12.1 and 12.2 into one optimization problem gives

f∗,x∗
1, . . . ,x∗

n = argmin
f,x1:N

N∑
n=1
∥f(xn)− yn∥2

. (12.3)

In the above, we write that we minimize our loss function with
respect to the function f . In practice this means that we minimize
with respect to the unspecified parameters governing f , e.g. if f is
a polynomial, the parameters are the coefficients, or if f is a neural
network, the parameters are the weights.

Figure 12.1 gives an example of this in practice. We start from
some data with a circular structure in R3 to which a function f is
fitted. Due to either implicit or explicit regularization, the result
is quite smooth.2 In the right-most panel of the figure, we observe
that geodesics on the manifold leverage this smooth structure to ‘cut
across’ the hole of the circular structure. Geodesics fails to capture
the structure hidden in the data.

Figure 12.1: Fitting a
manifold to data gives a
smooth function that well-
interpolates the data. The
geometry of the learned
manifold does, however,
not reflect the structure of
the observed data.

This example highlights an unfortunate situation: we want our
models to be smooth, as experience suggests that such models are
more stable, but then geodesics follow the structure induced by the
smoothness rather than that of the actual data. This suggests that
the Riemannian geometry induced by f is a poor match for the
geometry that governs the data. A rather depressing result. . .

∼ Gaussian noisy manifolds ∽

Perhaps the result of Fig. 12.1 is unsurprising. After all, we are
trying to estimate a function f : R2 → R3 that deforms R2 to match
a circle. This must imply that parts of R2 will be mapped to regions
of R3 that are not near data. The lack of data should imply that the
function f will be poorly estimated in such regions. We, therefore,

noisy manifolds 97

3 For now we focus on the
case of noisy data. The
case of truly uncertain mod-
els will handled in a chapter
that remains to be written.

4 That’s just a fancy way of
saying a matrix with random
entries.

turn our attention to other models that seek to estimate the quality
of the fit.

Instead of working with a deterministic model y = f(x), we now
consider a probabilistic model where we have additional uncertainty.3
We will consider the additive Gaussian noise model where

y = f(x) + ϵ σ(x), (12.4)

where the noise ϵ ∈ RD×D is a diagonal matrix with standard
Gaussian entries, i.e. [ϵ]ii ∼ N (0, 1). Here σ(x) ∈ RD is a vector
of standard deviations that may change smoothly with x. We can
alternatively write this model as a conditional distribution

p(y|x) = N
(
y|f(x),diag

(
σ2(x)

))
, (12.5)

where diag : RD → RD×D create a diagonal matrix from a vector,
and N denotes the density of the Gaussian distribution, i.e.

N (y|µ,Σ) = 1√
(2π)D det(Σ)

exp
(
−1

2(y− µ)⊺Σ−1(y− µ)
)
.

Examples of such models include the generative topographic map [7]
and the variational autoencoder [22, 30].

∼ Randomly projected manifolds ∽

Intuitively, we see that the model in Eq. 12.4 spans a ‘manifold
plus noise’, so it seems natural that our geometric tools should still
apply. But how? We can opt to disregard the noise and focus on the
mean, but then we recover the problems highlighted in the discussion
around Fig. 12.1, and nothing will be gained by the probabilistic
extension. Instead, we will take the view that our noisy manifold is
a random projection of a deterministic manifold.

To figure out what that means, let us rewrite Eq. 12.4 in matrix
form,

y = f(x) + ϵ σ(x) (12.6)

=
(

I ϵ
)(f(x)

σ(x)

)
= Ph(x). (12.7)

Here P = (I, ϵ) ∈ RD×2D is a random matrix 4 which we can choose

98 søren hauberg

to think of as performing a projection from R2D onto RD. We
can, thus, think of h(x) = (f(x);σ(x)) as spanning a d-dimensional
manifold in R2D, which is then randomly projected by P to form y.

The idea of y appearing through a random projection is interesting
because it gives us access to a (deterministic) manifold h(Ω) ∈ R2D,
which we can treat just as we have done in previous chapters. This
gives us access to a theoretical toolbox that we can use for analyzing
noisy manifolds of the form found in Eq. 12.4.

Practically speaking, this result tells us that we should simply
concatenate f(x) ∈ RD and σ(x) ∈ RD to form a vector in R2D,
and treat the corresponding map Rd 7→ R2D as spanning a manifold.

An example

To illustrate that the randomly projected manifold is useful, we set
out to solve a simple task. We randomly sample points on a circle in
R2 and pass these through a nonlinear map that embeds the circle
in R1000. The result is a collection of points along a ‘bend circle’ in
a high-dimensional space. To these points, we add Gaussian noise
and fit a randomly projected manifold of the type in Eq. 12.4.

Figure 12.2: Data dis-
tributed near a circle
in a high-dimensional
space is represented by a
low-dimensional manifold.
Left: geodesics under the
metric associated with
the mean of the esti-
mated manifold. Right:
geodesics under a metric
that takes the uncertainty
of the manifold into
account. In both plots,
the background color
represents the volume
measure associated with
the metric.

This procedure gives a low-dimensional representation, which
we can give a Riemannian metric. The panels of Fig. 12.2 show
this representation equipped with different metrics. The left panel
disregards the noise and considers the metric associated with f

alone, i.e. Gx = Jf (x)⊺Jf (x). The white curves correspond to
geodesics between randomly chosen points; it is quite evident that
here geodesics repeatedly move across the ‘hole’ in the circular
structure, which suggests that the geometry does a poor job of

noisy manifolds 99

Derived in exercise 12.1.

Figure 12.3: The summed
per-dimension variance
plotted in the latent
representation space,
i.e.

∑D

d=1 σ2(x), as
background. Dots cor-
respond to latent data
representations.

(valid for Gaussian distribu-
tions)

5 e.g. the categorical or multi-
nomial distribution cannot
be as simply decomposed.

reflecting the structure of the underlying data. This is in line with
Fig. 12.1. The right panel of Fig. 12.2 on the other hand considers
the Riemannian metric associated with h(x) = (f(x);σ(x)), which
take the form

Gx = Jf (x)⊺Jf (x) + Jσ(x)⊺Jσ(x). (12.8)

From the figure, it is evident that geodesics under this metric follow
the circular structure of the data, which suggests that the metric
does a better job of truthfully respecting the data.

Why does the uncertainty make such a difference? The differ-
ence between the panels of Fig. 12.2 is the choice of metric, and
the difference between these is the term Jσ(x)⊺Jσ(x) in Eq. 12.8.
Clearly, this makes an important improvement to the metric. In
this particular example, σ behaves such that it produces smaller
values near the observed data than it does far away from the data.
This rather natural behavior implies that the Jacobian of σ takes
large values when σ changes from small to large values. Curves
that pass through such regions then become rather long, and the
shortest curves (geodesics) naturally try to avoid these regions. In
the right panel of Fig. 12.2 the expensive regions appear as the yellow
‘walls’ that surround the data. On randomly projected manifolds,
uncertainty, thus, pushes geodesics toward the observed data.

∼ Statistical submanifolds ∽

The idea of projected manifolds rely crucially on the the decomposi-
tion in Eq. 12.6, which we here repeat

y = f(x) + ϵ σ(x). (12.9)

The Gaussian distribution can always be decomposed as a sum of a
deterministic mean and a stochastic deviation, but only a few other
distributions share this decomposability. Most likelihoods p(y|x)
used for generative models, in particular, cannot be decomposed
in this way.5 This prevents us from applying the idea of randomly
projected manifolds.

So far, our perspective has been that we have a map f from the
latent representations into the space of observations. Our studied

100 søren hauberg

geometries then appear by pulling the metric from the observation
space into the latent representation space.

We can construct an alternative geometry by foregoing this view
and instead think of a map between latent representations x and
conditional distributions p(y|x). For example, the Gaussian model
(12.5) can be viewed as

f : x 7→ N
(
y|f(x),diag

(
σ2(x)

))
. (12.10)

If we had access to a distance measure between distributions, then
we could pull this measure into the latent representation space.

Figure 12.4: Two differ-
ent perspectives leading to
different latent geometries.
In both views, we have la-
tent representations in Ω
that are mapped through
a function f . The ob-
servation space view (left)
maps latent representa-
tions to the space of ob-
servations. To account for
noise, this mapping must
be stochastic forcing us to
consider projected mani-
folds. In the distribution
view (right), we map to the
abstract space of distribu-
tions p(y|x). In this space,
one point corresponds to
a distribution thereby alle-
viating the need to model
data noise.

The space of distributions

The construction we are working towards requires first a space of
distributions, and second a distance measure over this space. This
may sound terribly abstract, but it’s actually rather straightforward.

The idea is simple: we consider distributions p(y|x) that are
governed by a set of parameters θ. The space of distributions will
then simply be the space in which θ resides.

For example, if p(y|x) is the univariate Gaussian N (µ, σ2) then
the parameters are θ = (µ, σ). The space of such distributions is
then H = R× R+ since µ is real-valued and σ is positive. Similarly,
in the multivariate case where p(y|x) = N (y|µ,Σ), we have θ =
(µ,Σ). Since µ ∈ RD and (the covariance is positive definite) Σ ∈
SymD×D

+ , we have that the space of such distributions is H =

noisy manifolds 101

Figure 12.5: The Eu-
clidean distance between
two univariate Gaussian
parametrized as θ = (µ, σ).
There is much arbitrari-
ness in this choice of dis-
tance measure.

RD × SymD×D
+ . Throughout the text, H will denote the space of

considered distributions.
As another example, the categorical distribution over D possible

classes has parameters θ = (p1, . . . , pD), where pd is the probability
of the dth class. The space of distributions H is then the unit simplex
(the set of positive numbers summing to one).

Distances between distributions (a naive approach)

Having a space of distributions H, we now seek a distance measure
on this space, i.e. a way to determine the similarity between two
distributions. Once we have such a measure, we can pull this into our
latent representation space to construct a latent distance measure.

An obvious candidate distance measure is the Euclidean distance
over H. For example, if we have two univariate Gaussian distribu-
tions, p1 = N (µ1, σ

2
1) and p2 = N (µ2, σ

2
2), and parameterize the

distributions as θ = (µ, σ), then the Euclidean distance becomes

dist(p1, p2) =
√

(µ1 − µ2)2 + (σ1 − σ2)2. (12.11)

However, we could have equally well chosen to parametrize the dis-
tributions as θ = (µ, σ2), which would result in a different Euclidean
distance. Like so many times before, we see that how we parametrize
things changes how we measure.

Arguably, it would be desirable if we had access to a distance
measure over the space of distributions which did not depend on how
we had chosen to parametrize the distributions. A reparametrization
invariant distance measure, that is.

Divergences are not distances

Fortunately, we already have a notion of similarity between distri-
butions that is invariant to how we parametrize the distribution:
statistical divergences. The most celebrated such divergence is the
Kullback–Leibler (KL) divergence, defined as

KL(p∥q) =
∫

log
(
p(y)
q(y)

)
p(y)dy = Ep(y)

[
log
(
p(y)
q(y)

)]
(12.12)

for two distributions p(y) and q(y). Since this divergence only
relies on the densities, and not their parameterizations, then it is by
construction reparametrization invariant.

102 søren hauberg

6 For a concave function ϕ,
ϕ(E[y]) ≥ E[ϕ(y)].

We can easily observe that the KL–divergence is positive for
distinct distributions using Jensen’s inequality6

KL(p∥q) = −
∫

log
(
q(y)
p(y)

)
p(y)dy (12.13)

≥ − log
∫
q(y)
p(y)p(y)dy︸ ︷︷ ︸

=1

= 0. (12.14)

By Jensen’s inequality, we also see that equality only holds when
p(y) = q(y) for all y.

The KL–divergence is, however, not a distance measure as it is
generally not symmetric, i.e. KL(p∥q) ̸= KL(q∥p). This prevents us
from directly pulling the KL–divergence into the latent representa-
tion space to form a metric.

Curve lengths and energies, revisited

It turns out that we actually can use the KL–divergence to arrive at
a distance measure in the latent representation space. To see this,
recall the initial definition of the length of a curve (4.3), which we
repeat here in a slightly modified form

Length(c) = lim
N→∞

N∑
i=0

dist (f(c(ti)), f(c(ti+1))) . (12.15)

Similarly, for the energy of a curve

E(c) = lim
N→∞

N∑
i=0

dist2 (f(c(ti)), f(c(ti+1))) . (12.16)

We, thus, see that we only need our choice of similarity measure
between distributions to be a distance function locally.

The Fisher–Rao metric

We can analyze the local behavior of the KL–divergence through a
Taylor expansion. To fix notation, let p(y) = pθ(y) be a distribution
parametrized by θ, and let q(y) = pθ+δ(y) be an infinitessimal
displacement with respect to θ. We will then make a second-order
Taylor expansion around θ,

noisy manifolds 103

We detail this computation
in exercise 12.3.

Derived in exercise 12.3.

KL(p∥q) = −1
2δ

⊺
∫
p(y)∇2

θ log p(y)dy︸ ︷︷ ︸
F

δ +O(∥δ∥3), (12.17)

where ∇2
θ denotes the Hessian. Infinitessimally, we, thus, see that

the KL–divergence is a simple quadratic equation, KL(p∥q) = δ⊺Fδ.
The matrix F can be rewritten in the more elegant form as

F = −1
2

∫
p(y)∇2 log p(y)dy (12.18)

= 1
2

∫
p(y)∇θ log p(y)∇θ log p(y)⊺dy (12.19)

That is, locally the KL–divergence is a quadratic function given as the
expectation of the outer product of the gradient of log p(y) by itself.
By construction, the matrix F is positive definite, such that we can
interpret F as a Riemannian metric over the space of distributions.
This metric is commonly known as the Fisher–Rao metric.

In summary, the KL–divergence is not a distance function be-
tween distributions, but locally it is. Even better, locally, the
KL–divergence is a Riemannian metric.

A desirable property of the Fisher–Rao metric is that it does
not depend on how we parametrize p(y). For example, if p(y) is a
normal distribution, it does not matter if we use a mean–variance or
mean–precision parametrization. Why does the parametrization not
matter? Because Fisher–Rao measures changes in the KL divergence.

Pulling back Fisher–Rao

Now we are finally equipped to provide a distribution-defined met-
ric over learned latent representations. Recall that we consider a
manifold spanned by f within the space of distributions, i.e.

f :Ω→ H, (12.20)

f :x 7→ pθ(y|x). (12.21)

We can, thus, define the energy of a curve c : [0, 1] → Ω in the

104 søren hauberg

Figure 12.6: The model
maps latent representa-
tions x to conditional dis-
tributions pθ(y|x). The
space of such distributions
H (the set of possible pa-
rameters θ) has a Rieman-
nian (Fisher–Rao) metric
F. We can bring this met-
ric into the latent repre-
sentation space to have
a reparametrization invari-
ant latent metric.

Here ∥∆∥2
Fct

= ∆⊺Fct ∆,
where Fct is the Fisher–Rao
metric at ct = c(t).

latent representation as

E(c) = lim
N→∞

N∑
i=0

KL
(
f(c(ti)) ∥ f(c(ti+1))

)
(12.22)

=
∫ 1

0

∥∥∥∥ d
dtf(ct)

∥∥∥∥2

Fct

dt (12.23)

=
∫ 1

0
ċ⊺t J⊺

ct
FctJct ċtdt. (12.24)

We, thus, see that placing a Fisher–Rao metric on the space of
distributions yields a latent Riemannian metric on the form

Gct
= J⊺

ct
Fct

Jct
. (12.25)

Unlike the randomly projected manifolds (12.8), this metric applies
to practically all models as it merely relies on the availability of a
KL–divergence.

Computational remarks

In practice, the Fisher–Rao metric can be computationally expensive
to evaluate, especially when the conditional distribution pθ(y|x)
has a high-dimensional parameter vector θ. Fortunately, many
computations can be carried out without instantiating the metric.

The energy of a curve, which is used for computing geodesics, can
be approximated using only evaluations of KL–divergences,

E(c) ≈
N∑
i=0

KL
(
f(c(ti)) ∥ f(c(ti+1))

)
, (12.26)

which, for most distributions, can be done efficiently.
In cases where the metric is required, it often suffices to evaluate

products of vectors with the metric, i.e. Gv for some vector v. Not-
ing that the Fisher–Rao metric is the Hessian of the KL–divergence,

noisy manifolds 105

allows us to evaluate products using automatic differentiation. Let-
ting hvpg(v) = ∇2gv denote the product between the Hessian of
some function g and the vector v, we can write

u⊺Gv = u⊺J⊺FJv = (Ju)⊺hvpKL(Jv). (12.27)

Similarly, letting jvpg(v) denote multiplication with the Jacobian
of g, we get

= jvpf (u)⊺hvpKLjvpf (v). (12.28)

This is relevant as systems for automatic differentiation generally
provide efficient algorithms for jvp and hvp.

106 søren hauberg

The ‘natural parametriza-
tion’ of the Gaussian.

∼ Exercises ∽

Exercise 12.1: Metric of randomly projected manifold.
Consider the manifold spanned by the mapping f : Rd → R2D

defined as

h(x) =
(
f(x)
σ(x).

)
(12.29)

1. Derive the pullback metric of this manifold.

Exercise 12.2: Choice of parametrization.
Consider two normal distributions

N1 = N (µ1, σ
2
1) and N2 = N (µ2, σ

2
2), (12.32)

where

µ1 = 0, µ2 = 1, σ1 = 1, σ2 = 2. (12.33)

1. Compute the Euclidean distance between these distributions in the
following parametrizations

θ = (µ, σ) (12.34)

θ = (µ, σ2) (12.35)

θ = (µ, σ−2) (12.36)

θ =
(
µ

σ2 ,−
1

2σ2

)
. (12.37)

2. Does one parametrization seem more natural (or better) than
another (this question is open-ended)?

3. Find parametrization of normal distributions such that the associ-
ated pullback metric corresponds to that of the randomly projected
manifold (12.8).

Exercise 12.3: Deriving Fisher–Rao.
Consider the distribution pθ(y) parametrized by θ, and let pθ+δ(y) be
an infinitessimal displacement with respect to θ. The KL–divergence
between these is

KL(pθ∥pθ+δ) =
∫

log (pθ(y)) pθ(y)dy

−
∫

log (pθ+δ(y)) pθ(y)dy.
(12.38)

noisy manifolds 107

1. Make a second-order Taylor expansion of log pθ(y) with respect
to θ.

2. Use the Taylor expansion to approximate pθ+δ to derive Eq. 12.17.

3. Show that the Hessian with respect to θ of log pθ(y) is

∇2
θ log pθ(y) = 1

log pθ(y)∇
2
θpθ(y)

−∇θ log pθ(y)∇θ log pθ(y)⊺.
(12.39)

4. Finally, show that the Fisher–Rao metric is

G = 1
2

∫
pθ(y)∇θ log pθ(y)∇θ log pθ(y)⊺dy. (12.40)

Exercise 12.4: Deriving the Gaussian KL–divergence.
Consider two Gaussian distributions over y ∈ RD

p(y) = N (µp,Σp) and q(y) = N (µq, σq). (12.41)

1. Assume that Σp = Σq = I and derive an expression for the
KL–divergence KL(p∥q).

2. Assume that Σp = Σq and derive an expression for the KL–
divergence KL(p∥q).

3. Assume that Σp ̸= Σq and derive an expression for the KL–
divergence KL(p∥q).

Exercise 12.5: Asymmetry of the KL–divergence.
The KL–divergence is inherently an asymmetric measure, i.e. KL(p∥q) ̸=
KL(q∥p). While this property can be annoying when we seek a dis-
tance measure, it is fundamentally a sound property. Consider two
Gaussian distributions over y ∈ R

p(y) = N (0, σ2
p) and q(y) = N (0, σ2

q), (12.42)

where σp ≫ σq.

1. Pick values of σp and σq and numerically draw 100 samples from
each distribution. Evaluate the log-likelihood under p of samples
from q and vice versa. Do samples from one distribution have a
higher likelihood than the other? Is this to be expected?

Figure 13.1: A second-
order polynomial with nor-
mally distributed coeffi-
cients.

Chapter 13

Expected Gaussian manifolds

In which great expectations
aren’t all that great.

We have considered manifolds expressed by functions f . When
these functions are estimated from data, they should, however,
inherently be treated as stochastic objects. It then makes sense to
talk of a random function. For a parametric function, we can make
a random version of said function by replacing its parameters with
random variables, e.g.

f(x) = ax2 + bx + c (13.1)

becomes random if we assign a density to the parameters (a, b, c).
The figure in the margin shows an example where (a, b, c) is normally
distributed. Extending this view to neural networks gives rise to
Bayesian neural networks, which is one way to be stochastic about
large parametrized models.

Statistically, the most common way to talk about random func-
tions is through the language of stochastic processes. This is beyond
the scope of this text, but we briefly discuss the special case of
Gaussian processes and the manifolds they span.

∼ Gaussian polynomials ∽

What matters most about a function is the value it takes for a given
input. Random functions are then naturally described by considering

110 søren hauberg

Note that (a, b, c) is random,
while (x2, x, 1) is determinis-
tic.

We will use this prop-
erty of normal distributions
throughout the chapter, so
keep it always fresh in mind.

We care about continuity
and smoothness as this is re-
quired to define metrics.

the distribution of function values for a given input, i.e., we write

y ∼ p(y|x) (13.2)

instead of y = f(x). For example, if we choose independent normally
distributed coefficients for the polynomial in Eq. 13.1,ab

c

 ∼ N

āb̄
c̄

 ,

σ2
a 0 0

0 σ2
b 0

0 0 σ2
c


 (13.3)

we get that

p(y|x) =

ab
c


⊺x2

x
1

 (13.4)

= N
(
y
∣∣ āx2 + b̄x + c̄, σ2

ax4 + σ2
bx2 + σ2

c

)
. (13.5)

To derive this, we used that for any normally distributed vector v

v ∼ N (µ,Σ) ⇒ Av ∼ N (Aµ,A⊺ΣA), (13.6)

which holds for any matrix A of suitable dimension.
The random function in Eq. 13.5 can be thought of as defining

a mean function µ(x) = āx2 + b̄x + c̄ and a variance function
σ2(x) = σ2

ax4 + σ2
bx2 + σ2

c , which is illustrated in the left panel of
Fig. 13.2. While intuitively appealing, this view is, however, lacking.

Sampling function values from Eq. 13.5 corresponds to evaluating
the mean function and adding Gaussian noise (scaled according to
the variance function), i.e. y = µ(x) + σ(x)ϵ, where ϵ ∼ N (0, 1).
This does not result in smooth function samples as the added noise
is not continuous with respect to x. At the same time, we note that
sampling the polynomial coefficients yields smooth functions that
can be evaluated for any inputs x.

Figure 13.2: Normally dis-
tributed polynomial coeffi-
cients lead to polynomial
mean and variance func-
tions (left panel). Inde-
pendently sampling p(y|x)
gives discontinuous func-
tions (center panel), unlike
randomly sampled coeffi-
cients (right panel).

expected gaussian manifolds 111

Figure 13.3: Recall that
a function is continuous if
for every every ϵ > 0 there
exists a δ > 0 such that
|x1 − x0| < δ ⇒ |f(x1) −
f(x0)| < ϵ.

The root of this discrepancy is covariance (or lack thereof). Con-
sider evaluating a smooth function at two nearby input points, then
the associated function values should also be near each other. Simi-
larly, a smooth stochastic function should produce highly correlated
values of nearby inputs.

Returning to the stochastic polynomial from Eq. 13.5, we can
write the joint distribution of two function values as

p(y1,y0|x1,x0) =

ab
c


⊺x2

1 x2
0

x1 x0

1 1

 (13.7)

= N (y1,y0|µ,Σ), (13.8)

where (using Eq. 13.6 as before)

µ =
(
āx2

1 + b̄x1 + c̄

āx2
0 + b̄x0 + c̄

)
(13.9)

Σ =
(

σ2
ax4

1 + σ2
bx2

1 + σ2
c σ2

ax2
1x2

0 + σ2
bx1x0 + σ2

c

σ2
ax2

1x2
0 + σ2

bx1x0 + σ2
c σ2

ax4
0 + σ2

bx2
0 + σ2

c

)
. (13.10)

Since the off-diagonal elements of the covariance Σ are nonzero, the
function values y1 and y0 affect each other (they are correlated).
We will later see that this allows us to talk about the smoothness of
the stochastic function. But first, we both simplify and generalize
the notation.

∼ Gaussian proceses ∽

The covariance associated with the stochastic polynomial (Eq. 13.10)
is a rather lengthy expression considering the model’s simplicity.
However, we note that all entries in this covariance matrix can be
written as

[Σ]ij = σ2
ax2

ix2
j + σ2

bxixj + σ2
c , (13.11)

which allows us to introduce the short notation [Σ]ij = k(xi,xj). We
call k a covariance function because it parametrizes the covariance
between arbitrary points.

We then say that the stochastic polynomial (13.5) is a Gaussian
process with mean function µ and covariance function k, and use
the short-hand notation y ∼ GP(µ, k).

112 søren hauberg

Rasmussen and Williams
[29] provide an in-depth in-
troduction, which is highly
recommended reading.

Formally, a Gaussian process GP(µ, k) is a collection of random
variables {yi} such that any finite subset thereof follows a normal
distribution,


y0
...

yn

 ∼ N


µ(x0)

...
µ(xn)

 ,


k(x1,x1) · · · k(x1,xn)

...
k(xn,x1) · · · k(xn,xn)


 . (13.12)

In most uses of Gaussian processes, we specify the covariance func-
tion directly rather than, e.g., starting with a polynomial. The only
requirement of this covariance function is that any resulting covari-
ance matrix must be positive definite (or semi-definite, depending
on how strict one wants to be).

∼ Gaussian processes models ∽

Most often, Gaussian processes are used to specify priors over func-
tions of interest. Given data, we then seek the data-conditioned
prediction for new inputs. Let’s consider the case of regression. Here
we are given input-output pairs {(xn,yn)}Nn=1 and seek a function
f such that yn ≈ f(xn). We can now assume a Gaussian process
prior over the unknown function f ,

f ∼ GP(µ, k). (13.13)

Our target is then the conditional distribution p(y|x, {(xn,yn)}Nn=1),
where x is the point where we seek to evaluate f and y is the
associated function value.

Arriving at this condition is merely a matter of applying the
Gaussian conditioning identity

(
v1

v2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ21

Σ12 Σ22

))
⇒ (13.14)

v2|v1 ∼ N
(
µ2 + Σ12Σ−1

11 (v1 − µ1), Σ22−Σ12Σ−1
11 Σ21

)
. (13.15)

To apply this identity, we first write the joint distribution of (x,y)

expected gaussian manifolds 113

This lengthy equation
is analog to Eq. 13.14

N
((

µ1
µ2

)
,

(
Σ11 Σ21
Σ12 Σ22

))

This covariance function is
also known as the Gaussian
covariance or the exponenti-
ated quadratic.

and {(xn,yn)}Nn=1,
y1
...

yn

y

 ∼ N



µ(x1)

...
µ(xN)

µ(x)

 ,


k(x1,x1) · · · k(xN ,x1) k(x,x1)

...
...

k(x1,xN) · · · k(xN ,xN) k(x,xN)

k(x1,x) · · · k(xN ,x) k(x,x)



 ,

where the vertical and horizontal lines splits the equation into term
corresponding to Eq. 13.14. Consequently, the conditioning used for
regression results in a normal distribution. This implies that the
conditional is also a Gaussian process, which can be written as

y|x,x1:N ,y1:N ∼ GP
(
µ̂, k̂

)
, (13.16)

where the cumbersome expression for the mean and covariance
functions follows from Eq. 13.15.

Figure 13.4: Samples from
a Gaussian process condi-
tioned on zero, one and
six observations. As the
number of conditioning
ponts increase, the esti-
mated function becomes
more certain.

Figure 13.4 illustrates how increasing the number of conditioning
points results in a more certain estimate of the underlying function.
Here, the prior Gaussian process is chosen to have a mean function
which is constantly zero. The covariance function can be chosen
as any positive definite function, and we here picked the so-called
squared exponential covariance function

k(xi,xj) = θ exp
(
−λ∥xi − xj∥2) . (13.17)

Here θ and λ are parameters that change the behavior of the Gaussian
process. There is a rich selection of similar functions available in
the literature, and we refer to Rasmussen and Williams [29] for a
more in-depth discussion.

114 søren hauberg

Figure 13.5: Top row: the
deterministic derivative is
the slope of a local lin-
ear approximation (green).
Bottom row: when func-
tion values are random, so
is the derivative.

due to symmetry
k(x + h, x) = k(x, x + h).

∼ Derivatives of Gaussian processes ∽

We aim to understand the geometry of manifolds spanned by Gaus-
sian processes, i.e., we consider the ‘usual’ setup where the manifold
is given by

M = f(Ω), Ω ⊂ Rd. (13.18)

Except now f is not deterministically given, but rather follows a
Gaussian process f ∼ GP(µ, k). For this to work out, we know
that we will require access to the derivatives of f , e.g. the Jacobian
determines the metric. But how do we talk about derivatives of
stochastic processes?

Recall that the derivative of a function can be defined as

df
dx = lim

h→0

f(x + h)− f(x)
h

= lim
h→0

∆(h). (13.19)

We can follow the same strategy in the stochastic case and first
define the difference

∆(h) =
(

1/h

−1/h

)⊺(
f(x + h)
f(x)

)
. (13.20)

When f ∼ GP(µ, k), we have that(
f(x + h)
f(x)

)
∼ N (m,Σ) , (13.21)

where

m =
(
µ(x + h)
µ(x)

)
, (13.22)

Σ =
(
k(x + h,x + h) k(x + h,x)
k(x + h,x) k(x,x)

)
. (13.23)

We can then compute the difference using Eq. 13.6 as

∆(h) ∼ N
((

1/h

−1/h

)⊺

m,

(
1/h

−1/h

)⊺

Σ
(

1/h

−1/h

))
(13.24)

= N
(
∆µ(h),∆2

k(h)
)
, (13.25)

expected gaussian manifolds 115

Intuitively, it is natural that
the covariance is twice differ-
entiated as it describes how
pairs of points interact.

Warning: heuristic notation!

where we have defined

∆µ(h) = µ(x + h)− µ(x)
h

, (13.26)

∆2
k(h) = k(x + h,x + h) + k(x,x)− 2k(x + h,x)

h2 . (13.27)

Now we can take the limit h→ 0, which gives

lim
h→0

∆µ(h) = dµ(x)
dx (13.28)

lim
h→0

∆2
k(h) = d2k(x1,x2)

dx1dx2
. (13.29)

We, thus, end up with the rather intuitive result that the derivative
of a Gaussian process is another Gaussian process with the once-
differentiated mean function and the twice-differentiated covariance
function,

df
dx ∼ GP

(
dµ(x)

dx ,
d2k(x1,x2)

dx1dx2

)
. (13.30)

Recall Eq. 13.6 saying that v ∼ N (µ,Σ) ⇒ Av ∼ N (Aµ,A⊺ΣA)
for any suitably-sized matrix A. Eq. 13.30 can be seen as a general-
ization in the sense that differentiation is a linear operator, and we
can heuristically write

v ∼ GP(µ, k) ⇒ ∂v ∼ GP(∂µ, ∂k∂), (13.31)

though we note that this is imprecise and should only be used as an
intuitive guide.

∼ Gaussian process manifolds ∽

Now we are finally ready to discuss the geometry of manifolds
spanned by Gaussian processes. To simplify notation, we write f
component-wise as

f(x) =


f1(x)

...
fD(x)

 , (13.32)

and then we assume that each function fi ∼ GP(µi, ki) is condition-
ally independent of each other, i.e. fi(x) ⊥ fj(x) for i ̸= j. This is

116 søren hauberg

using a slightly condensed
notation; see Eq. 13.30 for
the full notational gory.

Figure 13.6: Samples
from a Gaussian process
(gray) alongside the cor-
responding derivative pro-
cess (brown).

a somewhat crude assumption, but it drastically limits notation as
we can disregard how different functions covary.

We have previously seen that constructing tangent spaces is a
good starting point. These are spanned by the Jacobian of f , which
we write as

Jx =


∂f1
∂x
...

∂fD

∂x

 ∈ RD×d, (13.33)

where each row follows a Gaussian process

∂fi
∂x ∼ GP

(
∂µi
∂x ,

∂2ki
∂2x

)
. (13.34)

∼ Tangent vectors ∽

Since the Jacobian of a Gaussian process is another Gaussian process,
we see that the tangent space of our random manifold M is a
Gaussian process. Given a (deterministic) latent position x ∈ Rd

and an (infinitesimal) displacement ∆x, the corresponding tangent
vector to the manifold is then

Jx∆x + µ(x) ∼ N
(
µ(x) +

D∑
i=1

∂µi(x)
∂x [∆x]i,

D∑
i=1

∆x⊺ ∂
2ki
∂2x ∆x

)
.

(13.35)

Figure 13.6 shows samples from a Gaussian process and the corre-
sponding tangent spaces. The distribution of these tangents is then
given by Eq. 13.35.

From the distribution of tangent vectors, we can now ask how
long is ∆x? As a starting point, we will write the local squared
norm of a displacement

∥∆x∥2
Gx

= ∥Jx∆x∥2. (13.36)

This squared length is a random variable. To characterize this
variable, we first compute its mean by recalling that

E[v⊺v] = E[v]⊺E[v] + Tr(cov(v)). (13.37)

expected gaussian manifolds 117

(contribution of mean)

(contribution of covariance)

Start

Goal

Choosing v = Jx∆x then gives

E
[
∥Jx∆x∥2] =

∥∥∥∥∥
D∑
i=1

∂µi(x)
∂x

⊺

[∆x]i

∥∥∥∥∥
2

+ ∆x⊺
D∑
i=1

Tr
(
∂2ki
∂2x

)
∆x.

(13.38)

Assuming we can differentiate the mean and covariance function
(which we usually can), we can evaluate the expected local squared
length of a displacement ∆x.

A closer inspection of Eq. 13.38 sheds light on how uncertainty
impacts geometry. In expectation, the squared norm of a tangent
vector consists of two terms. The first is merely the norm of the
tangent vector associated with the mean manifold spanned by µ.
The second (and possibly more surprising) term is the trace of the
covariance. This term is strictly positive (since the covariance is
positive definite), implying that uncertainty increases local norms
in expectation. We further see that local expected norms grow with
the uncertainty.

This link between uncertainty and geometry has an intuitive
explanation. Imagine navigating according to a map. If this map is
less precise (more uncertain) in some regions, then we should not
expect our navigation to be optimal and we may take an unnecessary
detour. Uncertainty gives longer routes (distances). The treasure
map in the margin illustrates the situation.

∼ Expected energies ∽

The notion of expected local squared norms naturally generalizes
into expectations of curve energies. Consider a latent curve c :
[0, 1]→ Ω ⊆ Rd. Recall that the energy of this curve is given by

E [c] =
∫ 1

0
∥ċt∥2

Gct
dt (13.39)

=
∫ 1

0
∥Jct

ċt∥2dt. (13.40)

This energy is stochastic, so it does not lend itself to direct minimiza-
tion as we did for deterministic manifolds. A natural first choice is

118 søren hauberg

Figure 13.7: Example-
geodesics according to the
mean manifold and the ex-
pected energy. In the top
panel, dark brown regions
all map to the same point
in RD, such that distances
are zero in this region.

to look at curves of minimal expected energy,

Ē [c] = E
∫ 1

0
∥Jct

ċt∥2dt (13.41)

=
∫ 1

0
E
[
∥Jct

ċt∥2] dt, (13.42)

where the integrand can be evaluated with Eq. 13.38. Using the
numerical techniques from Chapter 8, we can directly minimize this
expected energy.

Figure 13.7 shows example geodesics in the latent space of a
manifold estimated from data with a circular structure. The top
panel shows geodesics on the mean manifold spanned by µ. Due to
how the Gaussian process is estimated, µ extrapolates to zero. This
implies that all latent regions far from the data map to the origin of
RD. Geodesics then have minimal energy if going through this origin
as all data is easily connected there. In contrast, the bottom panel
shows geodesics according to the expected energy. These naturally
avoid regions of high uncertainty as these have high expected energy
(due to Eq. 13.38).

∼ Expected metrics ∽

But which manifold are we actually working on when minimizing
expected energies? Since

∥Jct
ċt∥2 = ċ⊺t J⊺

ct
Jct

ċt (13.43)

we can write the expected energy as

Ē [c] =
∫ 1

0
E
[
∥Jct ċt∥2] dt (13.44)

=
∫ 1

0
E
[
ċ⊺t J⊺

ct
Jct

ċt
]

dt (13.45)

=
∫ 1

0
ċ⊺t E

[
J⊺
ct

Jct

]
ċtdt. (13.46)

This is merely the usual curve energy under the expected metric
given by

Ḡ = E [G] = E [J⊺J] . (13.47)

expected gaussian manifolds 119

Working with the expected energy, thus, corresponds to picking the
expected metric. Since this is deterministic, the tools from previous
chapters directly apply.

To gain a bit more insight into the expected metric, we can write
it in terms of the underlying Gaussian process. For convenience,
we repeat that the rows of the Jacobian are assumed to follow a
Gaussian process,

∂fi
∂x ∼ GP

(
∂µi
∂x ,

∂2ki
∂2x

)
. (13.48)

Since J⊺J =
∑
i
∂fi

∂x
∂fi

∂x
⊺, we can write the expected metric as

Ḡ =
D∑
i=1

E
[
∂fi
∂x

∂fi
∂x

⊺]
(13.49)

=
D∑
i=1

∂µi
∂x

∂µi
∂x

⊺

+
D∑
i=1

∂2ki
∂2x . (13.50)

Just as with the expected local norm (13.38), the expected metric
decomposes into two terms. The first is the metric of the mean
manifold spanned by µ, while the second term depends on the
covariance of the Jacobian. As the uncertainty of the Jacobian
grows, we see that the expected metric becomes larger. This implies
that geodesics are naturally attracted to regions where there is little
uncertainty. In practice, Gaussian process models tend to have low
uncertainty near training data, such that geodesics will be drawn
towards the data on which the model is trained.

In most practical scenarios, it is highly beneficial that geodesics
stay in regions of high data density as this gives more trustworthy
paths between points. In this regard, the expected metric is a
significalty better choice than the metric of the manifold spanned
by the mean function µ.

∼ Expected length ∽

In Chapter 7 we saw that any energy-minimizing curve was also
a length-minimizing. This result allows us to compute geodesics
without worrying about curve parametrizations. Unfortunately, this
is not the case when taking expectations.

120 søren hauberg

|⟨u, v⟩|2 ≤ ∥u∥2 · ∥v∥2

The variance is defined as
var(x) = E[(x − E[x])2] =
E[(x2 + E[x]2 − 2xE[x]] =
E[(x2] + E[x]2 − 2E[x]2.

Similarly to Chapter 7, we define two curves ut = E[∥ċt∥] and
vt = 1. The Cauchy-Scwartz’s inequality tells us that(∫ 1

0
E[∥ċt∥]dt

)2

≤
∫ 1

0
E[∥ċt∥]2dt ·

∫ 1

0
dt (13.51)

=
∫ 1

0
E[∥ċt∥]2dt. (13.52)

We then write the expected length as

L̄[c] = E
[∫ 1

0
∥ċt∥dt

]
=
∫ 1

0
E[∥ċt∥]dt (13.53)

such that ∫ 1

0
E[∥ċt∥]2dt ≥ L̄2[c]. (13.54)

Equality is achieved when ut and vt are parallel, that is when E[∥ċt∥]
is constant. We can always reparametrize c to have constant expected
speed and achieve equality.

Since var(x) = E[x2]− E[x]2, we see that∫ 1

0
E[∥ċt∥]2dt =

∫ 1

0
E[∥ċt∥2]dt−

∫ 1

0
var(∥ċt∥)dt (13.55)

= Ē [c]−
∫ 1

0
var(∥ċt∥)dt. (13.56)

If we assume that c has been parametrized to have constant expected
speed, we then get

Ē [c] = L̄2[c] +
∫ 1

0
var(∥ċt∥)dt. (13.57)

Minimizing expected curve energy, thus, does not always minimize
the expected curve length. Rather, this balances the minimization
of expected curve length and the minimization of curve variance.

expected gaussian manifolds 121

∼ Exercises ∽

Exercise 13.1: Expectations of products.
When tangent vectors are random, we must concern ourselves with
their products to determine lengths and angles. Here covariances
play a crucial role. Recall that the covariance between two random
vectors is given by

cov (v,u) = E [(v− E[v])(u− E[u])⊺] . (13.58)

1. Show that

E [vu⊺] = E[v]E[u]⊺ + cov (v,u) , (13.59)

E [v⊺u] = E[v]⊺E[u] + cov (v⊺,u⊺) , (13.60)

E
[
∥v∥2] = E[v]⊺E[v] + var (v) . (13.61)

Exercise 13.2: Tangential norms.
Let the stochastic Jacobian J ∈ RD×d be given by

J =


J⊺

1
...

J⊺
D

 , (13.69)

where the rows Ji ∼ N (µi,Σi) are independent. Further, consider
two displacements ∆x1,∆x2 ∈ Rd.

1. What is the distribution of J⊺
i ∆x1?

2. Show that

E
[
∥J∆1∥2] =

D∑
i=1

(µ⊺
i ∆x1)2 + ∆x⊺

1Σi∆x1. (13.70)

3. Show that

E [(J∆1)⊺(J∆2)] =
D∑
i=1

(µ⊺
i ∆x1)(µ⊺

i ∆x2) + ∆x⊺
1Σi∆x2. (13.71)

1 See page 100 for an intro-
duction to this space; in the
classifier-case, this space is
merely the set of positive vec-
tors that sum to one.

(assuming i.i.d. data)

Chapter 14

Parameter manifolds

In which everything is latent
and the distant is near.

So far, we have considered latent variable models, that compress
an observation y into a latent representation x. However, most of
our analysis applies to a broader collection of statistical models.

Consider a predictive model given by the function fθ that maps
an observation into the parameters of the distribution p(y|x). For
example, a classifier maps the observation into a vector of class-
probabilities. Abstractly, we write fθ : Rd 7→ H, where x ∈ Rd and
H is the space of probability distributions.1

The function parameters θ ∈ RP generally have to be estimated
from data, e.g. by maximizing the data log-likelihood

θopt = argmax
θ

N∑
n=1

log p(yn|xn), (14.1)

where we explicate the role of fθ by changing the notation to

θopt = argmax
θ

N∑
n=1

log p(yn|fθ(xn)). (14.2)

The elementary goal of this chapter is to determine the geometric
structure of the parameter space RP . Such structural information
can then guide methods for Bayesian approximations, optimization
algorithms and more.

124 søren hauberg

∼ Overparametrization ∽

To see how the parameter space can easily take a nontrivial geometric
structure, let’s start with a simple example. We define the function
fθ : R→ R as

fθ(x) = θ2 ReLU(θ1 x), (14.3)

where ReLU(·) = max(·, 0) is the rectified linear unit activation func-
tion commonly used with neural networks. The resulting function is
piece-wise linear, consting of two pieces.

We easily note that for any α ̸= 0 we can reparametrize the
function as

fθ(x) = θ2 ReLU(θ1 x) = θ2/α ReLU(α θ1 x). (14.4)

The parameter vectors θ = (θ1, θ2) and θ′ = (α θ1, θ2/α), thus, gener-
ate the same function, i.e.

fθ = fθ′ even if θ ̸= θ′, (14.5)

such that we clearly have an identifiability problem.

Figure 14.1: The func-
tion fθ(x) = θ2ReLU(θ1x)
is overparametrized such
that different parameters
can lead to the same func-
tion. The orange curves
in the left panel indi-
cate paths along which f

does not change even if θ

changes. For this simple
function, we can explicitly
characterize these paths,
but, in general, we cannot.

Since we only have two parameters, we can easily plot the asso-
ciated parameter space. Figure 14.1 shows example paths in the
parameter space,

α 7→

(
α θ1
θ2/α

)
, (14.6)

parameter manifolds 125

These derivations are com-
pletely anologous to those in
equations 5.10 to 5.12.

(under some assumptions; we
return to the details later)

along which the corresponding function is unchanged. Ideally, we
would like to give the parameter space a geometry such that

dist(θ, θ′) = 0 for θ = (θ1, θ2) and θ′ = (α θ1, θ2/α). (14.7)

Clearly, the Euclidean geometry does not have this property.

∼ Function-space metrics ∽

We have previously seen that pulling back a metric from the output
space gives the input space a natural geometric structure. In the
current regime, we would need a metric over the space of generated
functions to give the parameter space a natural metric.

One option is to consider the expected inner product between
function outputs with respect to a density p(x),

⟨fθ, fθ′⟩ = Ex∼p(x) [fθ(x)⊺fθ′(x)] . (14.8)

This inner product is constant when either function is reparametrized.
Pulling back this metric gives the usual infinitesimal inner product

⟨δ1, δ2⟩θ = Ex∼p(x) [(fθ+δ1(x)− fθ(x))⊺(fθ+δ2(x)− fθ(x))] (14.9)

= Ex∼p(x) [(Jθ(x)δ1)⊺(Jθ(x)δ2)] (14.10)

= δ⊺1 Ex∼p(x) [Jθ(x)⊺Jθ(x)] δ2. (14.11)

Here the Jacobian Jθ(x) = ∂fθ(x)/∂θ ∈ RD×P is with respect to the
parameters θ and, thus, depends on x.

Pulling back the expected inner product, thus, gives a local metric

Gθ = Ex∼p(x) [Jθ(x)⊺Jθ(x)] ∈ RP×P . (14.12)

The distance measure under this local metric, by construction, satis-
fies Eq. 14.7, such that reparamatrizations of a function are distance
zero apart.

The alert reader may question if this local metric is Riemannian.
It is not. For a metric to be Riemannian, we require that

θ ̸= θ′ ⇒ dist(θ, θ′) > 0, (14.13)

which, by design, is not the case with the function-space metric in
Eq. 14.12. We shall, however, soon see that we can still recover
a suitable Riemannian metric such that our previous arsenal of
methods still applies. But first, we consider an alternative choice of
metric.

126 søren hauberg

We drop the θ subscript to
reduce notational clutter.

∼ Information metrics ∽

Equation 14.8 assumes an Euclidean metric over the output space.
As discussed on page 103, this inner product depends on how we
choose to parametrize the density fθ(x), which introduces an element
of arbitrariness in our analysis. Since we only engage with the output-
space inner product locally, we can choose any Riemannian metric
Ffθ(x) for this space. Our infinitesimal inner product (14.11) then
becomes

⟨δ1, δ2⟩Fθ = δ⊺1 Ex∼p(x)
[
Jθ(x)⊺Ffθ(x)Jθ(x)

]
δ2. (14.14)

A natural choice of metric Ffθ(x) is the Fisher–Rao metric, which
measures local changes in terms of the KL divergence between
distributions. In this case, the parameter-space metric becomes

Gθ = Ex∼p(x)
[
Jθ(x)⊺Ffθ(x)Jθ(x)

]
. (14.15)

∼ Pseudo metrics ∽

We can understand the geometry of the parameter space by looking
more carefully at the metric. The analysis is the same if we consider
Eq. 14.12 or Eq. 14.15, so we let Gθ denote either choice.

Directions exist in parameter space in which the associated func-
tion does not change, implying that distances are zero in those
directions. This implies that the metric Gθ ∈ RP×P has a null
space. We let R denote the rank of Gθ such that the null space
has dimensionality P−R. In practice, we won’t know the rank R

analytically and will rely on numerical techniques to get an estimate.
To give ourselves a notation to work with, we introduce an eigen-

decomposition of the metric

Gθ = VθλθV⊺
θ , (14.16)

where λθ is a diagonal matrix containing the eigenvalues of Gθ. Due
to Gθ having a null space, some of these eigenvalues will be zero,
which we explicate as

Gθ =
(

Vim Vker

)(λim 0
0 0

)(
Vim Vker

)⊺
. (14.17)

parameter manifolds 127

The kernel of a matrix is
equivalent to its null space.
We use the term kernel as
it will allow us to define ker-
nel manifolds, which, bluntly
put, sounds better than null
space manifolds.

Here Vim ∈ RP×R is an orthonormal basis of the image of Gθ, i.e.
Vim contains the eigenvectors of Gθ that have nonzero eigenvalues.
Likewise, Vker ∈ RP×P−R is an orthonormal basis of the kernel of Gθ.

The metric eigendecomposition (14.17) suggests that, locally, the
parameter space decomposes into a kernel part, where functions
don’t change, and an image part, where functions change. These
parts turn out to be manifolds that we can engage with.

∼ Kernel manifolds ∽

The metric kernel is the possible directions in parameter space in
which functions do not change locally. Assuming fθ is a smooth
function, the Jacobian Jθ(x) changes smoothly. This, in turn, implies
that the eigenvectors and values of the metric also change smoothly.
It is then possible to trace out trajectories in parameter space with
zero length. Formally, we say that c : [0, 1] → RP is an improper
curve if its speed ∥ċt∥Gct

is zero for all t. From a given starting
point θ ∈ RP , we can consider the set of points along such improper
curves that connect to the starting point,

Mθ
ker =

{
θ′ ∈ RP | ∃c an improper curve such that

c0 = θ and c1 = θ′}. (14.18)

For any θ′ ∈Mθ
ker, we then have that fθ = fθ′ . We callMθ

ker the ker-
nel manifold and note that it characterizes the orange reparametriza-
tion curves in the exemplary Fig. 14.1 (repeated in the margin for
your convenience).

Neatly, Mθ
ker is a (path-connected) (P−R)-dimensional manifold.

The natural metric on this manifold suggests that all pairwise dis-
tances within Mθ

ker are zero. Sometimes it is convenient to give the
kernel manifold a (proper) Riemannian metric. The, by far, simplest
choice is to use the Euclidean parameter space metric on Mθ

ker,
which can be written as Gker

θ = VkerV⊺
ker. As an example, Roy et al.

[33] use such a metric to define distributions over reparametrizations
of neural networks. However, I want to emphasize that such a metric
is not invariant to reparametrizations.

128 søren hauberg

∼ Image manifolds ∽

Similarly, we can define the image manifold as the set of points
connected by paths with strictly positive speeds. To formalize, say
that c : [0, 1]→ RP is a proper curve if its speed ∥ċt∥Gct

is strictly
positive for all t. We then define the image manifold as

Mθ
im =

{
θ′ ∈ RP | ∃c a proper curve such that

c0 = θ and c1 = θ′}. (14.19)

Figure 14.2 shows image and kernel manifolds for the over-
parametrized function fθ(x) = θ2ReLU(θ1x). Note that the image
manifold changes with function parametrization.

Figure 14.2:
Reparametrizations
of fθ(x) = θ2ReLU(θ1x).
Akin to Fig. 14.1, orange
curves in the left panel
show kernel manifolds.
Green curves show image
manifolds relative to the
parameters indicated by
green circles.

As before, Mθ
im is an R-dimensional manifold and we can give

it a metric to practically engage with the manifold. Unlike for the
kernel manifold, we have a natural choice of Riemannian metric over
Mθ

im, which is simply

Gim
θ = VimλimV⊺

im = Gθ. (14.20)

Thus, if we restrict ourselves to parameters connected by proper
curves, the pull-back metric gives us access to a Riemannian manifold.
Points on this manifold correspond to distinct functions, while the
kernel manifold captures reparametrizations of a given function.

parameter manifolds 129

where δ is an infinitesimal
vector

Figure 14.3: The aver-
age metric (14.22) ensured
reparametrization invari-
ance at the sample points
on which the metric is es-
timated.

∼ Finite-sample metric estimators ∽

So far, we have considered metrics taken as expectations over a data
distribution,

Gθ = Ex∼p(x)
[
Jθ(x)⊺Ffθ(x)Jθ(x)

]
. (14.21)

In practice, we rarely have access to p(x) and if we had, we would
rarely be able to carry out the expectation in closed form. In practice,
we generally have to resort to a Monte Carlo estimate of the metric,

Ḡθ = 1
S

S∑
s=1

Jθ(xs)⊺Ffθ(xs)Jθ(xs), (14.22)

where the samples xs are assumed to be drawn from p(x). In practice,
the samples would constitute our training data or a subset thereof.

The average metric (14.22) is an instance of the so-called general-
ized Gauss-Newton matrix, which is commonly used in optimization
to approximate the Hessian of a function [12].

The average metric (14.22) has similar, but not identical, invari-
ance properties as the expected metric (14.21). Under the average
metric, we see that

dist2
Ḡθ

(θ, θ + δ) = δ⊺Ḡθδ (14.23)

= 1
S

S∑
s=1

δ⊺Jθ(xs)⊺Ffθ(xs)Jθ(xs)δ (14.24)

= 1
S

S∑
s=1
∥fθ+δ(xs)− fθ(xs)∥2

Ḡθ
. (14.25)

As the individual terms in the sum are non-negative, the distance is
only zero if the two functions fθ+δ and fθ take the same value at
the sample points {xs}Ss=1. Figure 14.3 illustrates the situation.

The kernel manifold associated with the average metric (14.22) is,
thus, less restricted than that of the expected metric (14.21). The
average metric only retains invariance properties on the sampled
data. This implies that caution should be taken when small amounts
of data are available as the invariance is potentially quite limited.

Consider an infinite sequence of independent samples {x1,x2, . . .}
from p(x) and let Mθ,S

ker the kernel manifold associated with the

130 søren hauberg

average metric estimated from the first S samples. Then we see that

Mθ
ker ⊆ . . . ⊆M

θ,S
ker ⊆M

θ,S−1
ker ⊆ . . . ⊆Mθ,1

ker. (14.26)

Said differently, when we increase the number of training data, we
get closer to achieving full reparametrization invariance.

Figure 14.4: Finite-sample
estimators of the expected
pullback metric (14.21)
are only partially invari-
ant to reparametrizations.
More observations implies
a greater extent of invari-
ance.

Chapter 15

Parting remarks & further reading

In which our story ends,
while many new begin.

No text is complete before acknowledging its incompleteness. This
book is incomplete in a multitude of ways.

First and foremost, this is a book on differential geometry, yet
it only scratches the surface of this topic. If you continue to study
geometry, I hope this book has given you the intuitions and practical
understanding that the traditional mathematical literature is more
easily approachable. One potential reference is the excellent book
by Lee [25].

∼ The books is not done yet ∽

First, I should mention that the book’s incompleteness is partly
due to it being unfinished. Several planned chapters have yet to be
finished.

A fundamental chapter that remains unwritten is an introduction
to calculus on manifolds. This gives us access to derivatives, which
we can use to define optimizers and much more. Fortunately, good
books already exist on this topic [8]. Much more could also be said
about information geometry and how it relates to optimization and
optimal transport.

Finally, the text has emphasized the construction of geometries
but has placed less focus on what we should use the geometries for.

132 søren hauberg

1 e.g. when do you know
the Betti numbers associated
with a dataset?

2 e.g. L2 weight regulariza-
tion, dropout, etc.

The summary here is highly
subjective and should mostly
be taken as an indication of
my interests rather than a
complete exposition.

Since we have a well-defined measure on the latent geometries, we can
easily define probability distributions. From these, many established
data analysis pipelines can be extended to the geometric setting.
The densities defined with respect to the geometries, however, tend
to lack closed-form expressions, which complicate analysis. But one
should never shy away from a good challenge. . .

∼ Disregarded material ∽

For a text on differential geometry, I have held out several topics
that are usually considered essential. Hopefully, this has not been
too upsetting to the reader. The two most glaring heldouts are
topology and curvature.

Riemannian geometry is concerned with making quantitative
statements about curved objects (manifolds). Topology is concerned
with the object itself, e.g. if are there holes in our manifold. One can
reasonably argue, that we cannot give a proper definition of what a
manifold is without first understanding topology (i.e. should we be
making measurements on an object that we do not understand?).

In the context of generative models, we rarely have much topo-
logical information a priori,1 making it difficult to incorporate topo-
logical information into our models. A more common scenario is
the desire to estimate the topology of a data manifold. Topological
data analysis [9] seeks to answer this question, though the associated
tools and algorithms are still in their infancy.

The other heldout topic, curvature, in contrast, plays a quite
central role in machine learning. In essence, the many different mea-
sures of curvature attempt to quantify how much our manifolds bend
and stretch. Practically all regularization techniques are designed
to minimize such bending. Yet regularization techniques are rarely
developed using geometric notions of curvature and instead, consider
much more simple alternatives.2 This could suggest that geometric
notions of curvature are overly complex to be practical or that there
is a missed opportunity for regularization research.

parting remarks & further reading 133

3 i.e. invertible smooth trans-
formations with smooth in-
verses

∼ Historical developments ∽

As far as I know, statistical identifiability was first discussed in 1919
in the seminal paper by Thomson [37]. It is interesting that many of
the same problems were studied, and solved, in a different context by
Gauss [15] and Riemann [31] in the mid-eightenhundreds. Arguably,
the identifiability problem is broader than those studied here, but
the order of events is interesting nonetheless.

There is a long and rich history of differential geometry in data
science. One of the key works in this direction is Ulf Grenander’s
pattern theory [17], which argues that statistical data analysis should
focus on how we transform one observation into another as the
grounding principle. For example, when studying Euclidean data
this transformation is merely a translation, but if we study data on
the unit sphere, the natural transformation is rather a rotation.

A similar line of thinking is everpresent in the analysis of shape
data. This started from the ideas of D’Arcy Thompson [13] who
studied the evolution of fish through changes in their shape. This
reduces the statistical analysis to focus on the transformations
between different fish, rather than on the individual fish (see figure).

Figure 15.1: D’Arcy
Thompson [13] pioneered
the idea of studying evolu-
tion through shape. Since
it’s difficult to parametrize
the actual shape of an
animal (here fish), he
opted to parametrize the
transformations between
shapes (background grid).
One can then think of
these transformations as
the observed data and
study these statistically.
The figure is taken from
the original book of
D’Arcy Thompson.

The idea of statistically analyzing transformations naturally leads
to differential geometry. In particular, the space of diffeomorphisms3

134 søren hauberg

4 i.e. the model before observ-
ing any data

is naturally modeled as a Riemannian manifold. The question of
how we best parametrize such transformations is heavily studied in
shape statistics. Much fundamental work on statistics on manifolds
is developed within this context, see e.g. the wonderful introduction
by Pennec [27].

This book focuses on the geometry induced by generative models.
The development of this was greatly inspired by the above works. To
the best of my knowledge, the first paper in this direction was the
work of Tosi et al. [40] who studied expectations of Riemannian met-
rics in models where the map from latent space to observation space
is a Gaussian process [29]. Arvanitidis et al. [5] revitalized this work
within neural network models. In this process, the mathematical
elegance of Gaussian processes was replaced by the empirical effec-
tiveness of neural networks. This sparked several following works,
including applications in clustering [43], biology [14], optimization [1]
and robotics [6, 35, 10].

The original Gaussian process model [40] has undergone deeper
theoretical study. Adler and Taylor [2] provide a thorough investiga-
tion of similar models for the case of a prior model.4 Hauberg [19]
discuss links between uncertainty and topology through studies of
Gaussian process extrapolations. Finally, Pouplin et al. [28] shows
that the original idea of looking at expected Riemannian metrics is
not entirely unproblematic. They show that random Riemannian
manifolds do not naturally result in Riemannian manifolds in expec-
tation, but rather in so-called Finsler manifolds. Fortunately, these
turn out to be remarkably similar.

Our objective is to use geometry to characterize latent variable
models. The wider goal of characterizing distributions is studied
in information geometry [3, 26]. We briefly touched on this topic
in Chapter 12, but the bulk of this field was ignored to focus the
text. Information geometry plays a key role in modern optimization
and sampling algorithms and many other areas [21, 16]. The classic
book by Amari [3] and the more recent primer by Nielsen [26] are
both highly recommended readings.

parting remarks & further reading 135

∼ What happens next? ∽

At this point, we should part ways, so I should not give too specific
pointers on your future endeavors. I do, however, thank you for
tagging along. I hope you enjoyed the ride as much as I did.

The choice of the interval
[0, 1] is arbitrary, and you
should feel free to change
to another interval if that’s
easier.

Chapter A

Ordinary differential equations

We use ordinary differential equations (odes) all the time in machine
learning, but we often do not talk about them. The text below is
by no means a complete exposition, but it should suffice for an
operational understanding.

∼ First-order ODEs and systems thereof ∽

A first-order ode is an equation of the form

ċt = f(t, ct), (A.1)

where c : [0, 1] → R is a curve, and ċ : [0, 1] → R is the curve
derivative, i.e. ċt = dc/dt. The function f : [0, 1] × R → R, thus,
evaluates the derivative of the curve c assuming we know the actual
value of the curve.

Usually, we work with odes when we are interested in a curve
c, but we only have access to the derivative of the curve. Our prime
use-case is when computing geodesics, we can derive an ode that
geodesics must satisfy and use this to arrive at a numerical algorithm.

Often the unknown curve lives in RD rather than being in a
one-dimensional space. In this case, the ode now take the form
f : [0, 1]× RD → RD, i.e. we have

f(t, ct) =


f1(t, [ct]1)

...
fD(t, [ct]D)

 . (A.2)

This is often known as a system of odes.

138 søren hauberg

0

-1
10

0

-1
10

1 1

0

-1
10

∼ Euler’s method ∽

The easiest way to understand odes is to consider how you might
solve one. That is, given an ode and an initial value

c(0) = c0, (A.3)

i.e. you should assume that we know the true value of the curve c
at time t = 0. From this knowledge, we can evaluate the ode to
provide us with the derivative of the unknown curve c at t = 0,

dc
dt

∣∣∣∣
t=0

= ċ0 = f(0, c0). (A.4)

If we make a Taylor expansion of the unknown curve around c0,
we get

c(t) = c0 + ċ0t+O(t2). (A.5)

This suggests that for small values of t we can evaluate the curve
as c(t) ≈ c0 + ċ0t = co + f(0, co)t. This is what Euler’s method
does to approximate the solution to an ode. Given a sequence of
time-steps {t1 = 0, t2, . . . , tN = 1}, we use the ode to form a local
Taylor expansion from which we extrapolate the solution curve and
proceed to the next time-step:

Euler’s method
Input: c0, f .

For i ∈ 0, 1, . . . , N :

ċti = f(τ, cti)

cti+1 = cti + ċti(ti+1 − ti)

Euler’s method is not a very good numerical algorithm, but it
is a great way to gain intuitions about the behavior of an ode.
More elaborate numerical algorithms for solving odes include the
Runge-Kutta family of solvers [41], which are often easily available
in most programming environments.

Euler’s method is practically identical to gradient descent, which
is everpresent in machine learning. Here we often define some
loss function, but during optimization, we mostly only consider its

ordinary differential equations 139

1 i.e. continuous and with
bounded derivatives

gradient. When applying gradient descent, you can view the function
that returns the gradient of the loss as an ode, which we then solve
with Euler’s method.

∼ The Picard-Lindelöf theorem ∽

One of the most fundamental results in the theory of odes is the
Picard-Lindelöf theorem. This formalizes the highly intuitive notion
that the solution to an ode is unique for a given initial value. Given
that Euler’s method is a fully deterministic algorithm, it is clear
that the solution recovered by this method is unique. If you imagine
taking infinitesimally small time steps with Euler’s method, you
basically arrive at the Picard-Lindelöf theorem.

Formally, the theorem states that if the ode is continuous in t

and Lipschitz continuous1 in ct, then there exists an ϵ > 0 such that
the ode has a unique solution for t ∈ [t0 − ϵ, t0 + ϵ].

Index

bayesian neural networks, 109
euler’s method, 138
fisher–rao metric, 103
fréchet mean, 87
gaussian conditioning, 112
gaussian processes, 109
gaussian process, 111, 134
gaussian, 113
jensen’s inequality, 102
kl, 101
kullback–leibler, 101
mercator’s projection, 21
monte carlo, 86
peter’s projection, 21
picard-lindelöf theorem, 63, 139
riemann integral, 83, 84
riemann sum, 83
riemannian geometry, 31
riemannian manifold, 47
riemannian metric, 47
runge-kutta, 138
theorema egregium, 19
topological data analysis, 132
abstract manifolds, 48
ambient space, 23
angle, 43
antipodal, 56
autoencoders, 95
autoencoder, 52
automatic differentiation, 67, 71,

105
average metric, 129

categorical, 101
classifier, 123
covariance function, 111
covariance, 111
curvature, 132
curve length, 34
decoder, 52
deep generative model, 52
diffeomorphisms, 133
direct energy minimization, 68
divergence, 101
embedded, 27
encoder, 52
energy, 59, 102
expected energy, 118
expected inner product, 125
expected length, 120
expected metric, 118
exponential map, 80
exponentiated quadratic, 113
first-order ode, 137
generalized gauss-newton, 129
generative topographic map, 97
geodesic distance, 34
geodesics, 55
geodesic, 34
gradient descent, 138
identifiability issue, 36
identifiability problem, 24
identifiable, 26
image manifold, 128
image, 127

immersed manifold, 28
improper curve, 127
information geometry, 134
initial value problems, 63
initial value, 138
injective, 27
integrand, 84
integration by substitution, 85
integration, 83
interpolant, 55
isometry, 19
joint distribution, 111, 112
kernel density, 52
kernel manifold, 127
kernel ridge regression, 29
kernel, 127
latent variable models, 12
left inverse, 28
locally invertible, 28
logarithm map, 79
loss function, 23
manifold hypothesis, 36
manifold, 27
mean function, 110
mean manifold, 117, 118
mean, 87
measure, 86, 132
metric, 45
natural parametrization, 106
noisy manifolds, 98
ordinary differential equations

(odes), 60

142 søren hauberg

pattern theory, 133
projected manifolds, 99
projection, 52
proper curve, 128
pseudo-riemannian, 54
random function, 109
random matrix, 97
random projection, 97
reconstruction error, 16
rectified linear unit, 124
regression, 112
regularization, 96, 132

reparametrization issue, 24
reparametrizations, 26
reparametrization, 26
reparametrized, 32
semi-riemannian, 54
shape statistics, 134
shooting geodesics, 64
singular value decomposition, 85
squared exponential, 113
statistical divergences, 101
statistical identifiability, 26
submanifold, 93

system of odes, 137
tangent space, 27, 42
topology, 132
two-point boundary value prob-

lem, 63
uniform density, 86
variance function, 110
variance, 87
variational autoencoder (vae), 25
variational autoencoder, 97
velocity, 41

Bibliography

[1] Gabriele Abbati, Alessandra Tosi, Michael Osborne, and Seth
Flaxman. Adageo: Adaptive geometric learning for optimiza-
tion and sampling. In International conference on artificial
intelligence and statistics, pages 226–234. PMLR, 2018.

[2] Robert J Adler and Jonathan E Taylor. Random fields and
geometry. Springer Science & Business Media, 2009.

[3] Shun-ichi Amari. Information geometry and its applications,
volume 194. Springer, 2016.

[4] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. A
locally adaptive normal distribution. In Advances in Neural
Information Processing Systems (NeurIPS), jun 2016.

[5] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg.
Latent space oddity: on the curvature of deep generative mod-
els. In International Conference on Learning Representations
(ICLR), 2018.

[6] Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis,
Gerhard Neumann, and Leonel Rozo. Learning riemannian
manifolds for geodesic motion skills. In Robotics: Science and
Systems (RSS), 2021.

[7] Christopher M Bishop, Markus Svensén, and Christopher KI
Williams. Gtm: The generative topographic mapping. Neural
computation, 10(1):215–234, 1998.

[8] Nicolas Boumal. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023.

144 søren hauberg

[9] Gunnar Carlsson. Topology and data. Bulletin of the American
Mathematical Society, 46(2):255–308, 2009.

[10] Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel
Benbouzid, and Patrick Van der Smagt. Active learning based
on data uncertainty and model sensitivity. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 1547–1554. IEEE, 2018.

[11] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
Advances in neural information processing systems, 31, 2018.

[12] F Dan Foresee and Martin T Hagan. Gauss-newton approxi-
mation to bayesian learning. In International Conference on
Neural Networks, volume 3, pages 1930–1935, 1997.

[13] D’Arcy Thompson. On Growth and Form. Cambridge Univer-
sity Press, 1917.

[14] Nicki Skafte Detlefsen, Søren Hauberg, and Wouter Boomsma.
Learning meaningful representations of protein sequences. Na-
ture communications, 13(1):1914, 2022.

[15] Carl Friedrich Gauss. Disquisitiones generales circa superfi-
cies curvas. Commentationes Societatis Regiae Scientiarum
Gottingensis Recentiores. Comm. Class., 1827.

[16] Mark Girolami and Ben Calderhead. Riemann manifold
langevin and hamiltonian monte carlo methods. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 73
(2):123–214, 2011.

[17] Ulf Grenander and Michael I Miller. Pattern theory: from
representation to inference. OUP Oxford, 2006.

[18] Peter E Hart, David G Stork, and Richard O Duda. Pattern
classification. Wiley, 2000.

[19] Søren Hauberg. Only bayes should learn a manifold, 2018.

[20] Søren Hauberg, Oren Freifeld, and Michael J. Black. A geo-
metric take on metric learning. In P. Bartlett, F.C.N. Pereira,

bibliography 145

C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems (NeurIPS)
25, pages 2033–2041. MIT Press, 2012.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on Repre-
sentation Learning (ICLR), 2015.

[22] Diederik P Kingma and Max Welling. Auto-Encoding Varia-
tional Bayes. In Proceedings of the 2nd International Conference
on Learning Representations (ICLR), 2014.

[23] Tjalling C Koopmans and Olav Reiersøl. The identification of
structural characteristics. The Annals of Mathematical Statis-
tics, 21(2):165–181, 1950.

[24] Guy Lebanon. Learning riemannian metrics. In Proceedings of
the Nineteenth conference on Uncertainty in Artificial Intelli-
gence, pages 362–369, 2002.

[25] John M. Lee. Introduction to Smooth Manifolds. Springer,
2012.

[26] Frank Nielsen. An elementary introduction to information
geometry. Entropy, 22(10):1100, 2020.

[27] Xavier Pennec. Intrinsic statistics on riemannian manifolds: Ba-
sic tools for geometric measurements. Journal of Mathematical
Imaging and Vision, 25:127–154, 2006.

[28] Alison Pouplin, David Eklund, Carl Henrik Ek, and Søren
Hauberg. Identifying latent distances with finslerian geometry.
Transactions on Machine Learning Research (TMLR), 2023.

[29] Carl Edward Rasmussen and Christopher K. I. Williams. Gaus-
sian Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2005.

[30] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra.
Stochastic Backpropagation and Approximate Inference in Deep
Generative Models. In Proceedings of the 31st International
Conference on Machine Learning (ICML), 2014.

146 søren hauberg

[31] Bernhard Riemann. On the hypotheses which lie at the bases
of geometry. Nature, 1873.

[32] Adam J Riesselman, John B Ingraham, and Debora S Marks.
Deep generative models of genetic variation capture the effects
of mutations. Nature methods, 15(10):816–822, 2018.

[33] Hrittik Roy, Marco Miani, Carl Henrik Ek, Philipp Hennig,
Marvin Pförtner, Lukas Tatzel, and Søren Hauberg. Reparam-
eterization invariance in approximate bayesian inference. In
Neural Information Processing Systems (NeurIPS), 2024.

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. nature,
323(6088):533–536, 1986.

[35] Aidan Scannell, Carl Henrik Ek, and Arthur Richards. Trajec-
tory optimisation in learned multimodal dynamical systems via
latent-ode collocation. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 12745–12751. IEEE,
2021.

[36] Bernhard Schölkopf and Alexander J Smola. Learning with
kernels: support vector machines, regularization, optimization,
and beyond. MIT press, 2002.

[37] Godfrey H Thomson. The proof or disproof of the existence of
general ability. British Journal of Psychology, 9(3):321, 1919.

[38] Michael E Tipping and Christopher M Bishop. Probabilistic
principal component analysis. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology), 61(3):611–622,
1999.

[39] Jakub M. Tomczak. Deep Generative Modeling. Springer, 2022.

[40] Alessandra Tosi, Søren Hauberg, Alfredo Vellido, and Neil D.
Lawrence. Metrics for probabilistic geometries. In The Confer-
ence on Uncertainty in Artificial Intelligence (UAI), 2014.

[41] Gerhard Wanner and Ernst Hairer. Solving ordinary differential
equations. Springer, 2009.

bibliography 147

[42] Robert Edwin Wengert. A simple automatic derivative eval-
uation program. Communications of the ACM, 7(8):463–464,
1964.

[43] Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and
Søren Hauberg. Geodesic clustering in deep generative models.
arXiv preprint arXiv:1809.04747, 2018.

	Introduction
	Example: Identifiability issues
	Outline & reading guide
	Exercises

	Making maps
	Exercises

	Embedded and immersed manifolds
	Manifold learning
	Reparametrizations in practice
	Relation to map-making
	Statistical identifiability
	Manifolds
	Embedded manifolds
	Immersed manifolds
	Exercises

	Distances on manifolds
	Euclidean curve lengths
	Reparametrization issues
	Measuring on immersed manifolds
	Reparametrization issues
	Exercises

	Riemannian metrics
	Tangent spaces
	Local inner products
	Local norms and angles
	Riemannian metrics
	Riemannian metrics and manifolds
	Measuring on abstract manifolds
	Exercises

	Examples of learned metrics
	Abstract density metrics
	Autoencoder metrics
	Classification metrics

	Geodesics
	What's in a name?
	Uniqueness?
	Constant speed parametrizations
	Curve energy
	Governing differential equations
	Deriving the geodesic ODE
	Alternative expression of the geodesic ODE
	Two types of geodesics
	Exercises

	Computing geodesics numerically
	Do yourself a favor…
	Direct length minimization
	Connecting geodesics
	Shooting geodesics
	Connecting geodesics, again
	Exercises

	Arithmetic on Riemannian manifolds
	Euclidean arithmetic
	Riemannian operators
	Exercises

	Integration on manifolds
	Ordinary integration
	Volume measures
	Densities and probabilities
	Expectations
	Exercises

	Submanifolds
	Composite functions
	Ambient Riemannian metrics and submanifolds
	Exercises

	Noisy manifolds
	Manifold learning revisited
	Gaussian noisy manifolds
	Randomly projected manifolds
	Statistical submanifolds
	Exercises

	Expected Gaussian manifolds
	Gaussian polynomials
	Gaussian proceses
	Gaussian processes models
	Derivatives of Gaussian processes
	Gaussian process manifolds
	Tangent vectors
	Expected energies
	Expected metrics
	Expected length
	Exercises

	Parameter manifolds
	Overparametrization
	Function-space metrics
	Information metrics
	Pseudo metrics
	Kernel manifolds
	Image manifolds
	Finite-sample metric estimators

	Parting remarks & further reading
	The books is not done yet
	Disregarded material
	Historical developments
	What happens next?

	Ordinary differential equations
	First-order ODEs and systems thereof
	Euler's method
	The Picard-Lindelöf theorem

	Index
	Bibliography

