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Abstract

Current uncertainty quantification is memory and compute expensive, which hin-
ders practical uptake. To counter, we develop SKETCHED LANCZOS UNCER-
TAINTY (SLU): an architecture-agnostic uncertainty score that can be applied to
pre-trained neural networks with minimal overhead. Importantly, the memory use
of SLU only grows logarithmically with the number of model parameters. We com-
bine Lanczos’ algorithm with dimensionality reduction techniques to compute a
sketch of the leading eigenvectors of a matrix. Applying this novel algorithm to the
Fisher information matrix yields a cheap and reliable uncertainty score. Empirically,
SLU yields well-calibrated uncertainties, reliably detects out-of-distribution exam-
ples, and consistently outperforms existing methods in the low-memory regime.

1 Introduction

The best-performing uncertainty quantification methods share the same problem: scaling. Practically
this prevents their use for deep neural networks with high parameter counts. Perhaps, the simplest
way of defining such a score is to independently train several models, perform inference, and check
how consistent predictions are across models. The overhead of the resulting ’Deep Ensemble’
[Lakshminarayanan et al., 2017] notably introduces a multiplicative overhead equal to the ensemble
size. Current approaches aim to reduce the growth in training time costs by quantifying uncertainty
through local information of a single pre-trained model. This approach has shown some success for
methods like Laplace’s approximation [MacKay, 1992, Immer et al., 2021, Khan et al., 2019], SWAG
[Maddox et al., 2019], SCOD [Sharma et al., 2021] or Local Ensembles [Madras et al., 2019]. They
avoid the need to re-train but still have impractical memory needs.

A popular approach to characterizing local information is the empirical Fisher information matrix,
which essentially coincides with the Generalized Gauss-Newton (GGN) matrix [Kunstner et al., 2019].
Unfortunately, for a p-parameter model, the GGN is a p× p matrix, yielding such high memory costs
that it cannot be instantiated for anything but the simplest models. The GGN is, thus, mostly explored
through approximations, e.g. block-diagonal [Botev et al., 2017], Kronecker-factorized [Ritter et al.,
2018a, Lee et al., 2020, Martens and Grosse, 2015] or even diagonal [Ritter et al., 2018b, Miani et al.,
2022]. An alternative heuristic is to only assign uncertainties to a subset of the model parameters
[Daxberger et al., 2021b, Kristiadi et al., 2020], e.g. the last layer.

Instead, we approximate the GGN with a low-rank matrix. A rank-k approximation of the GGN can
be computed using Lanczos algorithm [Madras et al., 2019, Daxberger et al., 2021a] or truncated

∗Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



singular value decomposition (SVD) [Sharma et al., 2021]. These approaches deliver promising
uncertainty scores but are limited by their memory footprint. Indeed all aforementioned techniques
require k · p memory. Models with high parameter counts are, thus, reduced to only being able to
consider very small approximate ranks.

In this work, we design a novel algorithm to compute the local ensemble uncertainty estimation
score introduced by Madras et al. [2019], reintroduced in Section 2.1. Our algorithm is substantially
more memory-efficient than the previous one both in theory and practice, thus circumventing the main
bottleneck of vanilla Lanczos and randomized SVD (Figure 1). To that end, we employ sketching
dimensionality-reduction techniques, reintroduced in Section 2.3, that trade a small-with-high-
probability error in some matrix-vector operations for a lower memory usage. Combining the latter
with the Lanczos algorithm (reintroduced in Section 2.2) results in the novel SKETCHED LANCZOS.
This essentially drops the memory consumption fromO(pk) toO(k2ε−2) in exchange for a provably
bounded error ε, independently on the number of parameters p (up to log-terms).

Applying this algorithm in the deep neural networks settings allows us to scale up the approach from
Madras et al. [2019] and obtain a better uncertainty score for a fixed memory budget.
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Figure 1: OoD detection performance (↙) on a ResNet.

Our contribution is twofold: (1) we
prove that orthogonalization approxi-
mately commutes with sketching in
Section 3, which makes it possible
to sketch Lanczos vectors on the fly
and orthogonalize them post-hoc, with
significant memory savings; (2) we
empirically show that, in the low-
memory-budget regime, the disad-
vantage of introducing noise through
sketching is outweighed by a higher-
rank approximation, thus performing
better than baselines when the same
amount of memory is used.

2 Background

Let fθ : Rd → Rt denote a neural network with parameter θ ∈ Rp, or equivalently f : Rp×Rd → Rt.
Let Jθ′(x) = ∇θfθ(x)|θ=θ′ ∈ Rt×p be its Jacobian with respect to the parameters, evaluated at
a datapoint x ∈ Rd. Given a training dataset D = {(xi, yi)}i=1,...,n and a loss function L(θ) =∑

(x,y)∈D ℓ(y, f(x, θ), the Generalized Gauss-Newton matrix (GGN) is defined as

Gθ =
n∑

i=1

Jθ(xi)
⊤H(xi)Jθ(xi), (1)

where H(xi) = ∇2
fθ(xi)

ℓ(yi|fθ(xi)) ∈ Rt×t is the Hessian of the loss with respect to the
neural network output. We reduce the notational load by stacking the per-datum Jacobians into
Jθ = [Jθ(x1); . . . ;Jθ(xn)] ∈ Rnt×p and similarly for the Hessians, and write the GGN matrix as
Gθ = J⊤

θ HJθ. For extended derivations and connections with the Fisher matrix we refer to the
excellent review by Kunstner et al. [2019]. In the following, we assume access to a pre-trained model
with parameter θ∗ and omit the dependency of G on θ∗.

Computationally we emphasize that Jacobian-vector products can be performed efficiently when f
is a deep NN. Consequently, the GGN-vector product has twice the cost of a gradient backpropagation,
at least for common choices of ℓ like MSE or cross-entropy [Khan and Rue, 2021].

2.1 Uncertainty score

We measure the uncertainty at a datapoint x as the variance of the prediction fθ(x) with respect to a
distribution over parameter θ defined at training time and independently of x. This general scheme
has received significant attention. For example, Deep Ensemble [Lakshminarayanan et al., 2017] uses
a sum of delta distribution supported on independently trained models, while methods that only train
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a single network θ∗ generally use a Gaussian N (θ|θ∗,M) with covariance M ∈ Rp×p. In the latter
case, a first-order approximation of the prediction variance is given by a M -norm of the Jacobian

VARθ∼N (θ|θ∗,M)[fθ(x)] ≈ VARθ∼N (θ|θ∗,M)

[
fL
θ (x)

]
= TR(Jθ∗(x) ·M · Jθ∗(x)⊤), (2)

where fL
θ (x) = fθ(x) + Jθ∗(x) · (θ∗ − θ) is a linearization of θ 7→ fθ(x) around θ∗.

The GGN matrix (or empirical Fisher; Kunstner et al. [2019]) is notably connected to uncertainty
measures and, more specifically, to the choice of the matrix M . Different theoretical reasoning leads
to different choices and we focus on two of them:

Meig = (G+ αIp)−1 Mnoeig = I−ΠG, (3)

where ΠG is the projection onto the non-zero eigenvectors of G and α > 0 is a constant.

Madras et al. [2019] justify Mnoeig through small perturbation along zero-curvature directions. 2

Immer et al. [2021] justify Meig in the Bayesian setting where α is interpreted as prior precision.
We do not question these score derivations and refer to the original works, but we highlight their
similarity. Given an orthonormal eigen-decomposition of G =

∑
i λiviv

⊤
i we see that

Meig =
∑
i

1

λi + α
viv

⊤
i Mnoeig =

∑
i

δ{λi=0}viv
⊤
i . (4)

Thus both covariances are higher in the directions of zero-eigenvalues, and the hyperparameter α
controls how many eigenvectors are relevant in Meig.

Practical choices. The matrix G is too big to even be stored in memory and approximations are
required, commonly in a way that allows access to either the inverse or the projection. A variety
of techniques are introduced like diagonal, block diagonal, and block KFAC which also allow for
easy access to the inverse. Another line of work, like SWAG [Maddox et al., 2019], directly tries
to find an approximation of the covariance M based on stochastic gradient descent trajectories.

Figure 2: GGN eigenvalues exponential
decay. Average and standard deviation
over 5 seeds. Details are in Appendix C.1.

Alternatively, low-rank approximations use the eigen-
decomposition relative to the top k eigenvalues, which
allows direct access to both inverse and projection.

Is low-rank a good idea? The spectrum of the GGN has
been empirically shown to decay exponentially [Sagun
et al., 2017, Papyan, 2018, Ghorbani et al., 2019] (see
Figure 2). We investigate this phenomenon further in
Appendix C.1 with an ablation over Lanczos hyperpa-
rameters. This fast decay implies that the quality of a
rank-k approximation of G improves exponentially w.r.t.
k if we measure it with an operator or Frobenius norm,
thus supporting the choice of low-rank approximation.
Moreover, in the overparametrized setting p ≫ nt, the
rank of the GGN is by construction at most nt, which is
closely linked with functional reparametrizations [Roy et al., 2024].

The low-rank approach has been applied intensively [Madras et al., 2019, Daxberger et al., 2021a,
Sharma et al., 2021] with success, although always limited by memory footprint of pk. Madras et al.
[2019] argue in favor of a not-too-high k also from a numerical perspective, as using the “small”
eigenvectors appears sensitive to noise and consequently is not robust.

2.2 The Lanczos algorithm

The Lanczos algorithm is an iterative method for tridiagonalizing a symmetric matrix G. If stopped
at iteration k, Lanczos returns a column-orthonormal matrix V = [V1| . . . |Vk] ∈ Rp×k and a
tridiagonal matrix T ∈ Rk×k such that V ⊤GV = T . The range space of V corresponds to the Krylov
subspace Kk = span{v,Gv, . . . , Gk−1v}, where v = V1 is a randomly chosen vector. Provably, Kk

2To be precise, Madras et al. [2019] uses the Hessian rather than the GGN, although their reasoning for
discarding the eigenvalues applies to both matrices. Thus, while the score with Mnoeig is technically novel, it is a
natural connection between Laplace approximations and local ensembles. Also note that some work uses the
Hessian in the eigenvalues setting [MacKay, 2003] despite this requires ad-hoc care for negative values.
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approximates the eigenspace spanned by the top-k eigenvectors of G, i.e. those corresponding to
the eigenvalues of largest values [Meurant, 2006]. Thus, V TV ⊤ approximates the projection of G
onto its top-k eigenspace. Notice that projecting G onto its top-k eigenspace yields the best rank-k
approximation of G under any unitarily-invariant norm [Mirsky, 1960]. Once the decomposition G ≈
V TV ⊤ is available, we can retrieve an approximation to the top-k eigenpairs of G by diagonalizing T
into T = WΛW⊤, which can be done efficiently for tridiagonal matrices [Dhillon, 1997]. It has both
practically and theoretically been found that this eigenpairs’ approximation is very good. We point the
reader to Meurant [2006] and Cullum and Willoughby [2002] for a comprehensive survey on this topic.

The benefits of Lanczos. Lanczos has two features that make it particularly appealing. First,
Lanczos does not need explicit access to the input matrix G, but only access to an implementation
of G-vector product u 7→ Gu. Second, Lanczos uses a small working space: only 3p floating point
numbers, where the input matrix is p× p. Indeed, we can think of Lanczos as releasing its output
in streaming and only storing a small state consisting of the last three vectors Vi−1, Vi and Vi+1.

The downsides of Lanczos. Unfortunately, the implementation of Lanczos described above is
prone to numerical instability, causing V1 . . . Vk to be far from orthogonal. A careful analysis of the
rounding errors causing this pathology was carried out by Paige [1971, 1976, 1980]. To counteract,
a standard technique is to re-orthogonalize Vi+1 against all {Vj}j≤i, at each iteration. This technique
has been employed to compute the low-rank approximation of huge sparse matrices [Simon and
Zha, 2000], as well as by Madras et al. [2019] to compute an approximation to the top-k eigenvectors.
Unfortunately, this version of Lanczos loses one of the two benefits described above, in that it must
store a larger state consisting of the entire matrix V . Therefore, we dub this version of the algorithm
hi-memory Lanczos and the memory-efficient version described above low-memory Lanczos. See
Appendix C for a comprehensive discussion on these two versions.

Post-hoc orthogonalization Lanczos. Alternatively, instead of re-orthogonalizing at every step
as in hi-memory Lanczos, we can run low-memory Lanczos, store all the vectors, and orthogonalize
all together at the end. Based on the observations of Paige [1980], we expect that orthogonalizing
the output of low-memory Lanczos post-hoc should yield an orthonormal basis that approximately
spans the top-k eigenspace, similar to hi-memory Lanczos. This post-hoc version of Lanczos is
however insufficient. It avoids the cost of orthogonalizing at every iteration but still requires storing
the vectors, thus losing again the benefit of memory requirement. Or at least it does unless we find
an efficient way to store the vectors.

2.3 Sketching

Sketching is a key technique in randomized numerical linear algebra [Martinsson and Tropp, 2020] to
reduce memory requirements. Specifically, sketching embeds high dimensional vectors from Rp into
a lower-dimensional space Rs, such that the expected norm error of vector dot-products is bounded,
and, as a result, also the score in Equation 2. Here we give a concise introduction to this technique.

Definition 2.1 (Subspace embedding). Fix ε > 0. A (1± ε) ℓ2-subspace embedding for the column
space of an p× k matrix U is a matrix S for which for all y ∈ Rk

∥SUy∥2 = (1± ε)∥Uy∥2. (5)

Time Memory

Dense JL O(pω) p2

Sparse JL O(p · εs) p · εs
SRFT O(p log p) p+ s

Table 1: Sketch complexities comparison.
Here ω is such that the current best matrix-
multiplication algorithm runs in time nω .

The goal is to design an oblivious subspace embed-
ding, that is a random matrix S such that, for any
matrix U , S is a subspace embedding for U with
sufficiently high probability. In our method, we use a
Subsampled Randomized Fourier Transform (SRFT)
to achieve this goal [Ailon and Chazelle, 2009].
A SRFT is a s × p matrix defined by the product
1/√spPHD, where D is a diagonal matrix where
each diagonal entry is an independent Rademacher
random variable, H is the discrete Fourier transform, and P is a diagonal matrix where s random di-
agonal entries are set to one and every other entry is set to zero. Thanks to the Fast Fourier Transform
algorithm, SRFT can be evaluated in O(p log p) time, and its memory footprint is only p+ s.

The following theorem shows that, as long as the sketch size s is big enough, SRFT is an oblivious
subspace embedding with high probability.
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Theorem 2.2 (Essentially, Theorem 7 in Woodruff et al. [2014]). For any p × k matrix U , SRFT
is a (1 ± ε)-subspace embedding for the column space of U with probability 1 − δ as long as
s = Ω((k + log p)ε−2 log(k/δ)).

We stress that, although several other random projections work as subspace embeddings, our choice
is not incidental. Indeed other sketches, including the Sparse JL transform [Kane and Nelson,
2014, Nelson and Nguyên, 2013] or the Dense JL transform (Theorem 4, Woodruff et al. [2014]),
theoretically have a larger memory footprint or a worse trade-off between s and k, as clarified in
Table 1. From such a comparison, it is clear that SRFT is best if our goal is to minimize memory
footprint. At the same time, evaluation time is still quasilinear.

3 Method

We now develop the novel SKETCHED LANCZOS algorithm by combining the ‘vanilla’ Lanczos
algorithm (Section 2.2) with sketching (Section 2.3). Pseudo-code is presented in Algorithm 1. Next,
we apply this algorithm in the uncertainty quantification setting and compute an approximation of the
score in Equation 2 due to Madras et al. [2019]. Our motivation is that given a fixed memory budget,
the much lower memory footprint induced by sketching allows for a higher-rank approximation of G.

3.1 Sketched Lanczos

We find the best way to explain our algorithm is to first explain a didactic variant of it, where sketching
and orthogonalization happen in reverse order.

Running low-memory Lanczos for k iterations on a p× p matrix iteratively constructs the columns
of a p× k matrix V . Then, post-hoc, we re-orthogonalize the columns of V in a matrix U ∈ Rp×k.
Such a matrix is expensive to store due to the value of p, but if we sample a SRFT sketch matrix
S ∈ Rs×p, we can then store a sketched version SU ∈ Rs×k, saving memory as long as s < p. In
other words, this is post-hoc orthogonalization Lanczos with a sketching at the end.

We observe that sketching the columns of U is sufficient to ε-preserve the norm of matrix-vector
products, with high probability. In particular, the following lemma holds (proof in Appendix A).
Lemma 3.1 (Sketching low-rank matrices). Fix 0 < ε, δ < 1/2 and sample a random s × p SRFT
matrix S. Then, for any v ∈ Rp and any matrix U ∈ Rp×k with ||v||2, ||U ||2 = O(1) we have

Pr
S

(
∥(SU)⊤(Sv)∥2 = ∥U⊤v∥2 ± ε

)
> 1− δ. (6)

as long as s = Ω(kε−2 · log p · log(k/δ)).

This algorithm may initially seem appealing since we can compute a tight approximation of ∥U⊤v∥
by paying only s× k in memory (plus the neglectable cost of storing S). However, as an intermediate
step of such an algorithm, we still need to construct the matrix U , paying p× k in memory. Indeed,
we defined U as a matrix whose columns are an orthonormal basis of the column space of V and we
would like to avoid storing V explicitly and rather sketch each column Vi on the fly, without ever
paying p× k memory. This requires swapping the order of orthogonalization and sketching.

This motivates us to prove that if we orthonormalize the columns of SV and apply the same orthonor-
malization steps to the columns of V , then we obtain an approximately orthonormal basis. Essentially,
this means that sketching and orthogonalization approximately commute. As a consequence, we can
use a matrix whose columns are an orthonormal basis of the column space of SV as a proxy for SU
while incurring a small error. Formally, the following holds (proof in Appendix A).
Lemma 3.2 (Orthogonalizing the sketch). Fix 0 < ε, δ < 1/2 and sample a random s × p SRFT
matrix S. As long as s = Ω(kε−2 · log p · log(k/δ)) the following holds with probability 1− δ.

Given any p × k full-rank matrix V , decompose V = UR and SV = USRS so that U ∈ Rp×k,
US ∈ Rs×k and both U and US have orthonormal columns. For any unit-norm v ∈ Rp we have

∥U⊤
S (Sv)∥2 = ∥U⊤v∥2 ± ε. (7)

In Lemma 3.1, we proved that given a matrix U with orthonormal columns we can store SU instead
of U to compute v 7→ ||U⊤v||2 while incurring a small error. However, in our use case, we do
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not have explicit access to U . Indeed, we abstractly define U as a matrix whose columns are an
orthonormal basis of the column space of V , but we only compute US as a matrix whose columns
are an orthonormal basis of the column space of SV , without ever paying p · k memory. Lemma 3.2
implies that the resulting error is controlled.

Algorithm 1 lists the pseudocode of our new algorithm: SKETCHED LANCZOS.

Algorithm 1 SKETCHED LANCZOS

1: Input: Rank k, sketch matrix S∈Rs×p, matrix-vector product function v 7→ Gv for G∈Rp×p.
2: Initialize v0 ∈ Rp as a uniformly random unit-norm vector.
3: for i in 1, . . . k do
4: vi ← LANCZOSITERATION(vi−1, v 7→ Gv) (glossing over the tridiagonal detail)
5: Sketch and store vSi ← Svi
6: end for
7: Construct the matrix VS = [vS1 , . . . , v

S
k ] ∈ Rs×k

8: Orthogonalize the columns of VS and return US ∈ Rs×k

Preconditioned SKETCHED LANCZOS. We empirically noticed that low-memory Lanczos’ stability
is quite dependent on the conditioning number of the considered matrix. From this observation, we
propose a slight modification of SKETCHED LANCZOS that trades some memory consumption for
numerical stability.

The idea is simple, we first run hi-memory Lanczos for k0 iterations, obtaining an approximation of
the top-k0 eigenspectrum U0 ∈ Rp×k0 ,Λ0 ∈ Rk0×k0 . Then we define a new matrix-vector product

Ḡv = (G− U0Λ0U
⊤
0 )v (8)

and run SKETCHED LANCZOS for k1 iterations on this new, better-conditioned, matrix Ḡ. This results
in a US ∈ Rs×k1 with sketched orthogonal columns. With k = k1 + k0, the simple concatenation
[SU0|US ] ∈ R(k0+k1)×s is a sketched orthogonal k-dimensional base of the top-k eigenspace of G,
analogous to non-preconditioned SKETCHED LANCZOS. The extra stability comes at a memory cost
of k0 · p, thus preventing k0 from being too large.

3.2 Sketched Lanczos Uncertainty score (SLU)

The uncertainty score in Equation 2 is computed by first approximating the Generalized Gauss-
Newton matrix G. The approach of constructing an orthonormal basis U ∈ Rp×k of the top-k
eigenvectors of G with relative eigenvalues Λ, leads to the low-rank approximation G ≈ UΛU⊤.
This step is done, for example, by Madras et al. [2019] through hi-memory Lanczos and by Sharma
et al. [2021] through truncated randomized SVD. In this step, we employ our novel SKETCHED
LANCZOS. Similar to Madras et al. [2019], we focus on the score with Mnoeig and thus we neglect
the eigenvalues.

Having access to U , we can compute the score for a test datapoint x ∈ Rd as

VAR[fθ(x)] ≈ TR
(
Jθ∗(x) · (I− UU⊤) · Jθ∗(x)⊤

)
= ∥Jθ∗(x)∥2F − ∥Jθ∗(x)U∥2F , (9)

which clarifies that computing ||Jθ∗(x)U ||F is the challenging bit to retrieve the score in Equation 2.
Note that ∥Jθ∗(x)∥2F can be computed exactly with t Jacobian-vector products.

Computing the uncertainty score through sketching. Employing the novel SKETCHED LANCZOS
algorithm we can ε-approximate the score in Equation 9, with only minor modifications. Running the
algorithm for k iterations returns a matrix US ∈ Rs×k, which we recall is the orthogonalization of
SV where V ∈ Rp×k are the column vectors iteratively computed by Lanczos.

Having access to US , we can then compute the score for a test datapoint x ∈ Rd as

SLU(x) = ∥Jθ∗(x)∥2F − ∥U⊤
S

(
SJθ∗(x)⊤

)
∥2F (10)

where parentheses indicate the order in which computations should be performed: first a sketch of
Jθ∗(x) is computed, and then it is multiplied by U⊤

S . Algorithm 2 summarizes the pipeline.

Approximation quality. Recall that the Jacobian Jθ∗(x) is a t× p matrix, where t is the output size
of the neural network. A slight extension of Lemma 3.2 (formalized in Lemma A.1) implies that the
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Algorithm 2 SKETCHED LANCZOS Uncertainty score (SLU)

1: Input: Observed data D, trained MAP parameter θ∗ ∈ Rp, approximation rank k, sketch size s.
2: Initialize SRFT sketch matrix S∈Rs×p

3: Initialize GGN-vector product v 7→ Gv =
∑

xi∈D Jθ∗(xi)
⊤H(xi)Jθ∗(xi)v

4: US ← SKETCHED LANCZOS(k, S, v 7→ Gv)
5: At query time, for a test point x return ∥Jθ∗(x)∥2F − ∥U⊤

S (SJθ∗(x)⊤)∥2F

score in Equation 9 is guaranteed to be well-approximated by the score in Equation 10 up to a factor
1± ε with probability 1− δ as long as the sketch size is big enough s = Ω(ktε−2 log p log(kt/δ)).
Neglecting the log terms to develop some intuition, we can think of the sketch size to be s ≈ ktε−2,
thus resulting in an orthogonal matrix US of size ≈ ktε−2 × k, which also correspond to the memory
requirement. From an alternative view, we can expect the error induced by the sketching to scale as
ε ≈

√
kt/s, naturally implying that a larger k will have a larger error, and larger sketch sizes s will

have lower error. Importantly, the sketch size s (and consequently the memory consumption and the
error bound) depends only logarithmically on the number of parameters p, while the memory-saving-
ratio s/p clearly improves a lot for bigger architectures.

Memory footprint. The memory footprint of our algorithm is at most 4p+ s(k + 1) floating point
numbers. Indeed, the SRFT sketch matrix uses p + s numbers to store S, whereas low-memory
Lanczos stores at most 3 size-p vectors at a time. Finally, US is a s× k matrix. At query time, we
only need to store S and US , resulting in a memory footprint of p+ s(k + 1). Therefore, our method
is significantly less memory-intensive than the methods of Madras et al. [2019], Sharma et al. [2021],
and all other low-rank Laplace baselines, that use Ω(kp) memory.

Time footprint. The time requirement is comparable to Vanilla Lanczos. We need k SRFT
sketch-vector products and each takes O(p log p) time, while the orthogonalization of SV = USR
through QR decomposition takes O(pk2) time. Both Vanilla and Sketched algorithm performs
k GGN-vector products and each takes O(pn) time, where n is the size of the dataset, and that
is expected to dominate the overall O(pk(log p + k + n)). Query time is also fast: sketching,
Jacobian-vector product and US-vector product respectively add up to O(tp(log p + 1) + tsk).

Memory Time

Preprocessing 4p+ s(k + 1) O(pk(log p+ k + n))
Query p+ s(k + 1) O(tp(log p+ 1) + tsk)

Table 2: Recall that through the whole paper p is number of
parameters, n is dataset size, t is output dimensionality, k is
rank approximation and s is sketch size.

Note that the linear scaling with out-
put dimension t can slow down infer-
ence for generative models. We refer
to Immer et al. [2023] for the effect of
considering a subset on dataset size n
(or on output dimension t).

4 Related work

Modern deep neural networks tend to be more overconfident than their predecessors [Guo et al., 2017].
This motivated intensive research on uncertainty estimation. Here we survey the most relevant work.

Perhaps, the simplest technique to estimate uncertainty over a classification task is to use the softmax
probabilities output by the model [Hendrycks and Gimpel, 2016]. A more sophisticated approach,
combine softmax with temperature scaling (also Platt scaling) [Liang et al., 2017, Guo et al., 2017].
The main benefit of these techniques is their simplicity: they do not require any computation besides
inference. However, they do not extend to regression and do not make use of higher-order information.
Moreover, this type of score relies on the extrapolation capabilities of neural networks since they use
predictions made far away from the training data. Thus, their poor performance is not surprising.

To alleviate this issue, an immense family of methods has been deployed, all sharing the same common
idea of using the predictions of more than one model, either explicitly or implicitly. A complete
review of these methods is unrealistic, but the most established includes Variational inference [Graves,
2011, Hinton and Van Camp, 1993, Liu and Wang, 2016], Deep ensembles [Lakshminarayanan
et al., 2017], Monte Carlo dropout [Gal and Ghahramani, 2016, Kingma et al., 2015] and Bayes by
Backprop [Blundell et al., 2015].
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More closely related to us, the two uncertainty quantification scores introduced in Equation 2 with
covariances Meig and Mnoeig (Equation 3) have been already derived from Bayesian (with Laplace’s
approximation) and frequentist (with local perturbations) notions of underspecification, respectively:

Laplace’s approximation. By interpreting the loss function as an unnormalized Bayesian log-
posterior distribution over the model parameters and performing a second-order Taylor expansion,
Laplace’s approximation [MacKay, 1992] results in a Gaussian approximate posterior whose covari-
ance matrix is the loss Hessian. The linearized Laplace approximation [Immer et al., 2021, Khan
et al., 2019] further linearize fθ at a chosen weight θ∗, i.e. fθ(x) ≈ fθ∗(x) + Jθ∗(x)(θ− θ∗). In this
setting the posterior is exactly Gaussian and the covariance is exactly Meig.

Local perturbations. A different, frequentist, family of methods studies the change in optimal
parameter values induced by change in observed data. A consequence is that the parameter directions
corresponding to functional invariance on the training set are the best candidates for OoD detection.
This was directly formalized by Madras et al. [2019] which derives the score with covariance
Mnoeig, which they call a local ensemble. A similar objective is approximated by Resampling Under
Uncertainty (RUE, Schulam and Saria [2019]) perturbing the training data via influence functions,
and by Stochastic Weight Averaging Gaussian (SWAG, Maddox et al. [2019]) by following stochastic
gradient descent trajectories.

Sketching in the deep neural networks literature. Sketching techniques are not new to the deep
learning community. Indeed several works used randomized SVD [Halko et al., 2011], which is a
popular algorithm [Tropp and Webber, 2023] that leverages sketch matrices to reduce dimensionality
and compute an approximate truncated SVD faster and with fewer passes over the original matrix. It
was used by Antorán et al. [2023] to compute a preconditioner for conjugate gradient and, similarly,
by Mishkin et al. [2018] to extend Variational Online Gauss-Newton (VOGN) training [Khan et al.,
2018]. More related to us, Sketching Curvature for OoD Detection (SCOD, Sharma et al. [2021]) uses
Randomized SVD to compute exactly the score in Equation 2 with Meig, thus serving as a baseline
with an alternative to Lanczos. We compare to it more extensively in Appendix B.

To the best of our knowledge no other work in uncertainty estimation for deep neural networks uses
sketching directly to reduce the size of the data structure used for uncertainty estimation. Nonetheless,
a recent line of work in numerical linear algebra studies how to apply sketching techniques to Krylov
methods, like Lanczos or Arnoldi [Balabanov and Grigori, 2022, Timsit et al., 2023, Simoncini
and Wang, 2024, Güttel and Schweitzer, 2023]. We believe sketching is a promising technique to
be applied in uncertainty estimation and, more broadly, in Bayesian deep learning. Indeed, all the
techniques based on approximating the GGN could benefit from dimensionality reduction.

5 Experiments

With a focus on memory budget, we benchmark our method against a series of methods, models, and
datasets. The code for both training and testing is implemented in JAX [Bradbury et al., 2018] and it
is publicly available3. Details, hyperparameters and more experiments can be found in Appendix D.

To evaluate the uncertainty score we measure the performance of out-of-distribution (OoD) detection
and report the Area Under Receiver Operator Curve (AUROC). We choose models with increasing com-
plexity and number of parameters: MLP, LeNet, ResNet, VisualAttentionNet and SwinTransformer
architectures, with the number of parameters ranging from 15K to 200M. We train such models on
5 different datasets: MNIST [Lecun et al., 1998], FASHIONMNIST [Xiao et al., 2017], CIFAR-10
[Krizhevsky et al., 2009], CELEBA [Liu et al., 2015] and IMAGENET [Deng et al., 2009]. We test
the score performance on a series of OoD datasets, including rotations and corruptions [Hendrycks,
2019] of ID datasets, as well as SVHN [Netzer et al., 2011] and FOOD101 [Bossard et al., 2014].
For CELEBA and IMAGENET we hold out some classes from training and use them as OoD datasets.

We compare to the most relevant methods in literature: Linearized Laplace Approximation with a
low-rank structure (LLA) [Immer et al., 2021] and Local Ensemble (LE) are the most similar to us. We
also consider Laplace with diagonal structure (LLA-D) and Local Ensemble Hessian variant (LE-H)
[Madras et al., 2019]. Another approach using randomized SVD instead of Lanczos is Sketching Curva-
ture for OoD Detection (SCOD) [Sharma et al., 2021], which also serves as a Lanczos baseline. Lastly,
we include SWAG [Maddox et al., 2019] and Deep Ensemble (DE) [Lakshminarayanan et al., 2017].

3https://github.com/IlMioFrizzantinoAmabile/uncertainty_quantification
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Figure 3: Sketch sizes s comparison for: LeNet p = 40K on FASHIONMNIST vs MNIST (left), ResNet
p = 300K on CIFAR-10 vs CIFAR-corrupted with defocus blur (center), and VisualAttentionNet
p = 4M on CELEBA vs FOOD101 (right). The lower the ratio s/p, the stronger the memory efficiency.

Effect of different sketch sizes. We expect the error induced by the sketching to scale as ϵ ≈
√

k/s,
thus a larger k will have a larger error, and larger sketch sizes s will have a lower error, independently
on number of parameters up to log-terms. On the other hand, a larger parameter count will have a
better memory-saving-ratio s/p, leading to an advantage for bigger architectures as shown in Figure 3.

model MLP p = 15K LeNet p = 40K ResNet p = 200K
ID data MNIST vs FASHIONMNIST vs CIFAR-10 vs

OoD data FASHIONMNIST KMNIST Rotation (avg) MNIST Rotation (avg) SVHN CIFAR-100 Corrupt (avg)

SLU (us) 0.26 ± 0.02 0.42 ± 0.04 0.59 ± 0.02 0.94 ± 0.01 0.74 ± 0.03 0.76 ± 0.05 0.54 ± 0.02 0.57 ± 0.04
LLA 0.27 ± 0.03 0.30 ± 0.03 0.49 ± 0.01 0.80 ± 0.03 0.70 ± 0.03 0.67 ± 0.07 0.54 ± 0.02 0.57 ± 0.05
LLA-D 0.94 ± 0.03 0.98 ± 0.01 0.73 ± 0.01 0.68 ± 0.07 0.61 ± 0.05 0.55 ± 0.10 0.52 ± 0.02 0.52 ± 0.04
LE 0.27 ± 0.03 0.30 ± 0.03 0.49 ± 0.01 0.80 ± 0.03 0.70 ± 0.03 0.67 ± 0.07 0.54 ± 0.02 0.57 ± 0.05
LE-H 0.27 ± 0.03 0.30 ± 0.03 0.49 ± 0.01 0.80 ± 0.03 0.70 ± 0.03 0.66 ± 0.07 0.54 ± 0.02 0.57 ± 0.05
SCOD 0.27 ± 0.03 0.31 ± 0.03 0.51 ± 0.01 0.84 ± 0.02 0.71 ± 0.03 0.68 ± 0.07 0.54 ± 0.02 0.58 ± 0.04
SWAG 0.29 ± 0.05 0.19 ± 0.02 0.41 ± 0.03 0.75 ± 0.02 0.70 ± 0.04 0.48 ± 0.11 0.49 ± 0.01 0.52 ± 0.06
DE 0.94 ± 0.04 0.96 ± 0.00 0.71 ± 0.02 0.92 ± 0.01 0.79 ± 0.02 0.46 ± 0.02 0.51 ± 0.00 0.50 ± 0.01

model VisualAttentionNet p = 4M SWIN p = 200M
ID data CELEBA vs IMAGENET vs

OoD data FOOD-101 Hold-out (avg) Castle Flamingo Lighter Odometer Parachute Pineapple Triceratops Volcano

SLU (us) 0.95 ± 0.003 0.72 ± 0.02 0.57 0.64 0.63 0.37 0.70 0.56 0.69 0.83
LLA 0.93 ± 0.001 0.67 ± 0.02 0.49 0.56 0.59 0.41 0.56 0.45 0.67 0.78
LLA-D 0.80 ± 0.02 0.52 ± 0.03 0.51 0.54 0.52 0.32 0.45 0.48 0.68 0.70
LE 0.93 ± 0.001 0.67 ± 0.02 0.51 0.58 0.62 0.41 0.59 0.47 0.67 0.80
LE-H 0.91 ± 0.002 0.64 ± 0.03 0.50 0.57 0.60 0.41 0.57 0.47 0.67 0.80
SCOD 0.94 ± 0.00 0.68 ± 0.02 na na na na na na na na
SWAG 0.69 ± 0.04 0.46 ± 0.04 0.46 0.54 0.55 0.52 0.44 0.36 0.64 0.72
DE 0.88 ± 0.02 0.63 ± 0.02 na na na na na na na na

Table 3: AUROC scores of SKETCHED LANCZOS Uncertainty vs baselines with memory budget of 3p.
Results for all OoD datasets are illustrated more extensively in Figure 4. Mean values and standard
deviations for each table block obtained over 10, 10, 5, 3, 1 independently trained models, respectively.

Summary of the experiments. For most of the ID-OoD dataset pairs we tested, our SKETCHED
LANCZOS Uncertainty outperforms the baselines, as shown in Table 3 and more extensively in
Figure 4 where we fix the memory budget to be 3p. Deep Ensemble performs very well in the small
architecture but progressively deteriorates for bigger parameter sizes. SWAG outperforms the other
methods on some specific choices of CIFAR-10 corruptions, but we found this method to be extremely
dependent on the choice of hyperparameters. SCOD is also a strong baseline in some settings, but
we highlight that it requires instantiating the full Jacobian with an actual memory requirement of
tp. These memory requirements make SCOD inapplicable to ImageNet. In this setting, given the
significant training time, also DEEP ENSEMBLE becomes not applicable.

The budget of 3p is an arbitrary choice, but the results are consistent with different values. More
experiments, including a 10p memory budget setting, a study on the effect of preconditioning, and a
synthetic-data ablation on the trade-off sketch size vs low rank, are presented in Appendix D.3.

6 Conclusion

We have introduced SKETCHED LANCZOS, a powerful memory-efficient technique to compute
approximate matrix eigendecompositions. We take a first step in exploiting this technique showing
that sketching the top eigenvectors of the Generalized Gauss-Newton matrix leads to high-quality
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Figure 4: AUROC scores of SKETCHED LANCZOS Uncertainty vs baselines with memory budget 3p.
SLU outperforms the baselines on several choices of ID (4a, 4b, 4c, 4d, 4e) and OoD (x-axis) datasets
pairs. Dashed lines are for improved visualization only; see Table 3 for values and standard deviations.
Plots 4a, 4b, 4c, 4d, 4e are averaged respectively over 10, 10, 5, 3, 1 independently trained models.

scalable uncertainty measure. We empirically show the superiority of the SKETCHED LANCZOS
Uncertainty score (SLU) among a variety of baselines in the low-memory-budget setting, where the
assumption is that the network has so many parameters that we can only store a few copies.

Limitations. The data structure produced by Sketched Lanczos is sufficiently rich to evaluate the
predictive variance, and consequently the uncertainty score. However, from a Bayesian point of view,
it is worth noting that the method does not allow us to sample according to the posterior.
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A Dimensionality Reduction

A.1 Proof of “Sketching low-rank matrices" Lemma

In this section, we prove Lemma 3.1. We restate it below for convenience.
Lemma 3.1 (Sketching low-rank matrices). Fix 0 < ε, δ < 1/2 and sample a random s × p SRFT
matrix S. Then, for any v ∈ Rp and any matrix U ∈ Rp×k with ||v||2, ||U ||2 = O(1) we have

Pr
S

(
∥(SU)⊤(Sv)∥2 = ∥U⊤v∥2 ± ε

)
> 1− δ. (6)

as long as s = Ω(kε−2 · log p · log(k/δ)).

Proof. In order to prove that ||(SU)⊤(Sv)||2 = ||U⊤v||2 ± ε with probability ≥ 1 − δ we prove
the following stronger statement. Denote with [u]i the i-th coordinae of u, then for each i = 1 . . . k

we have [(SU)⊤(Sv)]i = [U⊤v]i ± ε/
√
k with probability at least 1− δ/k. Apparently, the former

follows from the latter by union bound.

Notice that [(SU)⊤(Sv)]i = (SU i)⊤(Sv), where U i is the i-th column of U . Moreover, as long as
s = Ω(kε−2 · log p · log(k/δ)), then S is a (1± ε/

√
k)-subspace embedding for the 2-dimensional

subspace spanned by v and U i with probability 1− δ/k (Theorem 2.2). Therefore, conditioning on
this event:

(SU i)⊤(Sv) =
1

4

(
||S(U i + v)||22 − ||S(U i − v)||22

)
=

1

4

(
||(U i + v)||22 − ||(U i − v)||22

)
±O(ε/

√
k)

= (U i)⊤v ±O(ε/
√
k)

= [U⊤v]i ±O(ε/
√
k).

The second equality sign holds because of the subspace embedding property, together with ||U i +
v||2, ||U i − v||2 = O(1).

A.2 Proof of “Orthogonalizing the sketch" Lemma

In this section, we prove Lemma 3.2. We restate it below for convenience.
Lemma 3.2 (Orthogonalizing the sketch). Fix 0 < ε, δ < 1/2 and sample a random s × p SRFT
matrix S. As long as s = Ω(kε−2 · log p · log(k/δ)) the following holds with probability 1− δ.

Given any p × k full-rank matrix V , decompose V = UR and SV = USRS so that U ∈ Rp×k,
US ∈ Rs×k and both U and US have orthonormal columns. For any unit-norm v ∈ Rp we have

∥U⊤
S (Sv)∥2 = ∥U⊤v∥2 ± ε. (7)

Essentially, the proof of Lemma 3.2 was already known, see for example Corollary 2.2 in Balabanov
and Grigori [2022]. Nonetheless, we include a short proof for completeness’ sake.

Proof. Since V is full-rank, it is easy to verify that SV is also full rank with high probability. Thus,
R is non-singular and we can define Ū = V R−1

S . Notice that US = SŪ . Now, we prove that

∥UU⊤ − Ū Ū⊤∥2 ≤ ε (11)
where ∥·∥2 is the operator norm. By definition of US , we have Ik = U⊤

S US = ŪS⊤SŪ⊤ By
subspace embedding property of S, we have that

∥Ū Ū⊤ − Ik∥2 = ∥Ū Ū⊤ − ŪS⊤SŪ⊤∥2 ≤ ε

with probability 1 − δ. Conditioning on this event, the singular values of Ū lie in [1 − ε, 1 + ε].
Moreover, Ran(U) = Ran(Ū). Therefore, taking the singular value decomposition (SVD) of U and
Ū yields Equation 11.

Now we are left to prove that ∥Ū⊤v∥2 = ∥U⊤
S Sv∥2±ε. We have U⊤

S S = Ū⊤S⊤S and by Lemma 3.1
we have ∥Ū⊤S⊤Sv∥2 = ∥Ū⊤v∥2 ± ε with probability 1− δ. Thus, ∥Ū⊤v∥2 = ∥U⊤

S Sv∥2 ± ε and
combined with Equation 11 gives Equation 7, up to constant blow-ups in ε and δ.
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A.3 Extension of Lemma 3.2

In this section we extend Lemma 3.2 to the case where instead of having a query vector v ∈ Rp we
have a query matrix J ∈ Rp×t. In our application, J is the Jacobian Jθ∗(x).

Lemma A.1 (Orthogonalizing the sketch, for matrix queries). Fix 0 < ε, δ < 1/2 and sample a
random s× p SRFT matrix S. As long as s = Ω(tkε−2 · log p · log(tk/δ)) the following holds with
probability 1− δ.

Given any p × k full-rank matrix V , decompose V = UR and SV = USRS so that U ∈ Rp×k,
US ∈ Rs×k and both U and US have orthonormal columns. For any J ∈ Rp×t we have

∥J∥2F − ∥U⊤
S (SJ)∥2F = (1± ε)∥J∥2F − ∥U⊤J∥2F . (12)

Proof. Let J i the i-th column of J . Suppose that the following intermediate statement holds: for
each i, ∥U⊤

S (SJ i)∥2 = ∥U⊤J i∥2 ± ∥J∥F · ε/
√
t with probability 1− δ/t. If the statement above

holds, then we have

|∥U⊤
S (SJ)∥2F − ∥U⊤J∥2F | =

(∥U⊤
S (SJ)∥F + ∥U⊤J∥F ) · |∥U⊤

S (SJ)∥F − ∥U⊤J∥F | ≤

O(∥J∥F ) ·
√∑

i

(∥U⊤
S (SJ i)∥2 − ∥U⊤J i∥2)2 ≤

O(∥J∥2F · ε).

The penultimate inequality holds because of triangle inequality, whereas the last inequality holds
with probability 1− δ by union bound.

To prove the intermediate statement above, it is sufficient to apply Lemma 3.2 with ε′ = ε/
√
t and

δ′ = δ/t.

B Extended Related Work

Local ensembles. In Madras et al. [2019], they consider local ensembles, a computationally efficient
way to detect underdetermination without training an actual ensemble of models. A local ensemble
is a distribution over models obtained by perturbing the parameter along zero-curvature directions.
Small parameter perturbations along zero-curvature directions cause small perturbation of the model
prediction. Given a test point, Madras et al. [2019] define the local ensemble score as the first-order
term of the predictive variance for small perturbations along zero-curvature directions.

Moreover, in Madras et al. [2019] they prove that the aforementioned score is equivalent to
∥ΠkJθ∗(x)∥F where Πk is a projection onto a subspace defined as the orthogonal of the zero-
curvature subspace at θ∗, Jθ∗(x) is the Jacobian of the test datapoint and ∥·∥F is the Frobenius norm.
Computationally, they approximate their score by setting Πk = I − UkU

⊤
k , where Uk is a p × k

matrix which columns are the top-k eigenvectors of the Hessian of the loss L(θ).
Their method uses Lanczos algorithm to compute the top-k eigenvectors of the Hessian and uses k · p
memory. This is costly, indeed Madras et al. [2019] write

“The main constraint of our method is space rather than time — while estimating
the first k eigenvectors enables easy caching for later use, it may be difficult to
work with these eigenvectors in memory as k and model size p increase. [. . .] we
note in some cases that increasing k further could have improved performance
[. . .] This suggests that further work on techniques for mitigating this tradeof.”

Comparison with SCOD. SCOD, the uncertainty estimation score introduced in Sharma et al.
[2021], has gained traction lately and it has been used as an uncertainty estimation baseline in
applications Qiao et al. [2023], Elhafsi et al. [2023]. SCOD can be interpreted as a Bayesian method
that approximates the posterior with a Gaussian having a covariance matrix of the form identity
+ low-rank. Computing such approximation of the variance boils down to computing a low-rank
approximation of the inverse of F + αI , where F is the Fisher information matrix and α depends
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on the variance of the isotropic Gaussian prior on θ. Ultimately, the SCOD score is defined as
∥(I − UkΛU

⊤
k )Jθ∗(x)∥F , where Uk is a p× k matrix which columns are the top-k eigenvectors of

F and Λ is a k × k diagonal matrix such that Λii = λi/(λi + α).

SCOD and Local Ensembles scores are extremely similar. Indeed, the only difference between their
scores is that SCOD weighs projection onto different eigenvectors according to Λ. However, in
Sharma et al. [2021] they observe empirically that different values of α yield the same score accuracy,
hinting that replacing Λ with the identity (that essentially gives local ensembles score) should have
a modest impact on accuracy. From a computational point of view, both methods compute the
top-k eigenvectors of the Hessian / Fisher accessing it solely through matrix-vector product. Local
ensembles achieves that using Lanczos algorithm, whereas SCOD uses truncated randomized singular
values decomposition (SVD). In both cases the space complexity k · p. Similarly to Madras et al.
[2019], also Sharma et al. [2021] observed that the most prominent limiting factor for their method
was memory usage4:

“The memory footprint of the offline stage of SCOD is still linear, i.e., O(kp). As a
result, GPU memory constraints can restrict k [. . .] substantially for large models.”

GGN / Fisher vs Hessian. Local Ensembles uses computes the top-k eigenvalue of the Hessian of
L(θ∗), whereas Sharma et al. [2021], Immer et al. [2021] employs the Fisher / GGN. Implementing
matrix-vector product for both Hessian and Fisher /GGN is straightforward, thanks to the power of
modern software for automatic differentiation. However, we believe that using the GGN / Fisher is
more appropriate in this context. Indeed, the latter is guaranteed to be positive semi-definite (PSD),
whereas the Hessian is not necessarily PSD for non-convex landscapes.

C Lanczos algorithm

Lanczos algorithm is an iterative method for tridiagonalizing an Hermitian5 matrix G. If stopped at
iteration k, Lanczos returns a column-orthogonal matrix V = [V1| . . . |Vk] ∈ Rp×k and a tridiagonal
matrix T ∈ Rk×k such that V ⊤GV = T . The range space of V corresponds to the Krylov
subspace Kk = span{v,Gv, . . . , Gk−1v}, where v = V1 is a randomly chosen vector. Provably Kk

approximates the eigenspace spanned by the top-k eigenvectors (those corresponding to eigenvalues
of largest modulus) of G. Thus, V TV ⊤ approximates the projection of G onto its top-k eigenspace.
Notice that projecting G onto its top-k eigenspace yields the best rank-k approximation of G under
any unitarily-invariant norm Mirsky [1960]. Moreover, as observed in the previous section the
spectrum of the GGN decays rapidly, making low-rank decomposition particularly accurate.

Once the decomposition G ≈ V TV ⊤ is available, we can retrieve an approximation to the top-k
eigenpairs of G by diagonalizing T into T = WΛW⊤, which can be done efficiently for tridiagonal
matrices Dhillon [1997]. The quality of eigenpairs’ approximation has been studied in theory and
practice. We point the reader to Meurant [2006], Cullum and Willoughby [2002] for a comprehensive
sourvey on this topic.

Lanczos, in a nutshell. Here we give a minimal description of Lanczos algorithm. Lanczos
maintains a set of vectors V = [V1| . . . |Vk], where V1 is initialized at random. At iteration i + 1,
Lanczos performs a matrix-vector product Vi+1 ← G · Vi, orthogonalizes Vi+1 against Vi and
Vi−1 and normalizes it. The tridiagonal entries of T are given by coefficients computed during
orthogonalization and normalization. See Chapter 1 of Meurant [2006] for a full description of
Lanczos algorithm.

The benefits of Lanczos. Lanczos has two features that make it particularly appealing for our
uses case. First, Lanczos does not need explicit access to the input matrix G, but only access to an
implementation of u 7→ Gu. Second, Lanczos uses a small working space: only 3p floating point
numbers, where the input matrix is p× p. Indeed, we can think of Lanczos as releasing its output in
streaming and only storing a tiny state consisting of the last three vectors Vi−1, Vi and Vi+1.

The curse of numerical instability. Unfortunately, the implementation of Lanczos described above
is prone to numerical instability, causing V1 . . . Vk to be far from orthogonal. A careful analysis of

4The original version statest that the memory footprint is O(Tp), where T ≥ k is a parameter of their SVD
algorithm.

5In this work, we are only concerned with real symmetric matrices.
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Figure 5: We study the GGN of a LeNet model with 44.000 parameters trained on MNIST. We
run 40 iterations of hi-memory Lanczosand low-memory Lanczos. Let H = [H1| . . . |H40], ΛH ,
L = [L1| . . . |L40], and ΛL be the eigenvectors and eigenvalues computed by the two algorithms
respectively. We sort both sets of eigenvectors in decreasing order of corresponding eigenvalues. In
position (i, j) we plot ⟨Hi, Lj⟩. It is apparent that multiple eigenvectors Lj correspond to the same
eigenvector Hi.

the rounding errors causing this pathology was carried out by Paige in his PhD thesis as well as a
series of papers Paige [1971, 1976, 1980].

To counteract this, a standard technique is to re-orthogonalize Vi+1 against all {Vj}j≤i, at each
iteration. This technique has been employed to compute the low-rank approximation of huge sparse
matrices Simon and Zha [2000], as well as in Madras et al. [2019] to compute an approximation to
the top-k eigenvectors. Unfortunately, this version of Lanczos loses one the two benefits described
above, in that it must store a larger state consisting of the whole matrix V . Therefore, we dub this
version of thew algorithm hi-memory Lanczosand the cheaper version described above low-memory
Lanczos.

Paige Paige [1980] proved that the loss of orthogonality in low-memory Lanczosis strictly linked
to the convergence of some of the approximate eigenpairs to the corresponding eigenpairs of G.
Moreover, the vectors V1 . . . Vk are not orthogonal because they are tilted towards such eigenpairs.
Accordingly, he observed that among the eigenpairs computed by low-memory Lanczosthere are
multiple eigenpairs approximating the same eigenpair of G. This can easily be observed while
running both low-memory Lanczosand hi-memory Lanczosand computing the dot products of the
their retrieved eigenvectors; see Figure 5.

Post-hoc orthogonalization. Based on the observations of Paige Paige [1980], we expect that
orthogonalizing the output of low-memory Lanczos post-hoc should yield an orthonormal basis that
approximately spans the top-k eigenspace. Since in our method we only need to project vectors onto
the top-k eigenspace, this suffices to our purpose.

We confirm this expectation empirically. Indeed, using the same setting of Figure 5 we define ΠLM

as the projection onto the top-10 principal components of LΛL, and define ΠHM likewise. Then, we
measure the operator norm6 (i.e., the largest singular value) of ΠLM −ΠHM and verify that it is fairly
low, only 0.03. Taking principal components was necessary, because there is no clear one-to-one
correspondence between Lis and His, in that as observed in Figure 5 many Lis can correspond to a
single Hi. Nonetheless, this proves that low-memory Lanczos is capable of approximating the top
eigenspace.

C.1 Spectral properties of the Hessian /GGN

Spectral property of the GGN and Hessian have been studied both theoretically and empirically. In
theory, it was observed that in the limit of infinitely-wide NN, the Hessian is constant through training
Jacot et al. [2018]. However, this is no longer true if we consider NN with finite depth Lee et al.
[2019]. In Sagun et al. [2017], Papyan [2018], Ghorbani et al. [2019], they show empirically that the

6This can be done efficiently via power method.
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Figure 6: Eigenspectrum obtained from hi-memory Lanczos on: ResNet model (p = 300K) trained
on CIFAR-10 (top), LeNet model (p = 40K) trained on FashionMNIST (middle) and MLP model
(p = 20K) trained on MNIST (bottom). Standard deviations over 5 Lanczos random seeds.
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spectrum of the GGN / Hessian is composed of two components: a bulk of near-zero eigenvalues, and
a small fraction of outliers away from the bulk. Moreover, in Ghorbani et al. [2019], they observe a
large concentration of the gradients along the eigenspace corresponding to the outlier eigenvalues.

In summary, the spectrum of the GGN / Hessian of a deep NN is expected to decay rapidly, having
a few outlier eigenvalues, along which most gradients are oriented. Therefore, we would expect a
low-rank approximation of the GGN to capture most relevant information.

We test this phenomenon by using hi-memory Lanczosand performing an ablation over both number
of iterations and random initialization of the first vector. Figure 6 shows the results over three
different model trained on different datasets. The plots cointains means and std bars over 5 random
initializations of the first Lanczos vector. It is interesting to observe how, varying the number of
iterations, approximately the first 90% values are the same, while the tail quickly drop down to
numerical precision. Based on this observation we choose to only use the top 90% vectors returned
by Lanczos.

D Experimental setting and extended results

Experiments are reproducible and the code is available at https://github.com/
IlMioFrizzantinoAmabile/uncertainty_quantification. As explained later in greater
details, calling the scripts train_model.py and score_model.py with the right parameters is
enough to reproduce all the numbers we presented.

Reproducibility. The script bash/plot_figure_4.sh collects the entire pipeline of setup, training,
scoring and plotting and finally reproduce Figure 4 and save them in the folder figures. The first
three plots takes approximately 3 days to complete on a NVIDIA H100 80GB GPU.

The code is implemented in JAX [Bradbury et al., 2018] in order to guarantee max control on the
randomness, and, given a trained model and a random seed, the scoring code is fully deterministic
(and thus fully reproducible). Nonetheless, the dataloader shuffling used at training time depends on
PyTorch (bad) randomness management, and consequently it can be machine-dependent.

D.1 Training details

All experiments were conducted on models trained on one of the following datasets: MNIST [Lecun
et al., 1998], FASHIONMNIST [Xiao et al., 2017], CIFAR-10 [Krizhevsky et al., 2009], CELEBA [Liu
et al., 2015] and IMAGENET [Deng et al., 2009]. Specifically we train:

• on MNIST with a MLP consisting of one hidden layer of size 20 with tanh activation
functions, we trained with ADAM for 50 epochs with a batch size 128 and a learning rate
10−3; parameter size is p = 15910;

• on FASHIONMNIST with a LeNet consisting of two convolution layers with maxpool
followed by 3 fully connected layers with tanh activation functions, we trained with ADAM
for 50 epochs with a batch size 128 and a learning rate 10−3; parameter size is p = 44426;

• on CIFAR-10 with a ResNet with (3, 3, 3) blocks of channel sizes (16, 32, 64) with relu
activation functions, we trained with SGD for 200 epochs with a batch size 128 and a
learning rate 0.1, momentum 0.9 and weight decay 10−4; parameter size is p = 272378;

• on CELEBA with a VisualAttentionNetwork with blocks of depths (3, 3, 5, 2) and embedded
dimensions of (32, 64, 160, 256) with relu activation functions, we trained with Adam for 50
epochs with a batch size 128 and a learning rate decreasing from 10−3 to 10−5; parameter
size is p = 3858309.

• on IMAGENET with a SWIN model with an embed dimension of 192, blocks of depths
(2, 2, 18, 2) and number of heads (6, 12, 24, 48), we trained with Adam with weight decay
for 60 epochs plus a 10 epoch warmup, with a batch size 128 and a learning rate decreasing
from 10−3 to 10−5; parameter size is p = 196517106.

For training and testing the default splits were used. All images were normalized to be in the
[0, 1] range. For the CELEBA dataset we scale the loss by the class frequencies in order to avoid
imbalances. The cross entropy loss was used as the reconstruction loss in all models but the
VisualAttentionNetwork one, on which multiclass binary cross entropy was used.
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We train all models with 10 different random seed, (except for ImageNet, that we only trained with
one seed) which can be reproduced by running

bash/setup.sh
source virtualenv/bin/activate
echo "Train all models"
for seed in {1..10}
do

python train_model.py --dataset MNIST --likelihood classification --model MLP
--seed $seed --run_name good --default_hyperparams

python train_model.py --dataset FMNIST --likelihood classification --model
LeNet --seed $seed --run_name good --default_hyperparams

python train_model.py --dataset CIFAR-10 --likelihood classification --model
ResNet --seed $seed --run_name good --default_hyperparams

python train_model.py --dataset CelebA --likelihood binary_multiclassification
--model VAN_tiny --seed $seed --run_name good --default_hyperparams

python train_model.py --dataset ImageNet --likelihood classification --model
SWIN_large --seed $seed --run_name good --default_hyperparams

done

The trained model test set accuracies are: 0.952±0.001, 0.886±0.003, 0.911±0.003, 0.889±0.002,
0.672, respectively for the 5 different settings.

D.2 Scoring details

The standard deviations of the scores presented are obtained scoring the indepentently trained models.
For all methods we use: 10 seeds for MNIST, 10 seeds for FMNIST, 5 seeds for CIFAR-10, 3
seeds for CELEBA and 1 seeds for IMAGENET. The only exception is Deep Ensemble for which we
used only 3 independent scores for the budget3 experiment (for a total of 9 models used) and only 1
score for the budget10 experiments (using all the 10 trained model).

For the fixed memory budget experiments we fix the rank k to be equal to the budget (3 or 10) for
all baseline, while for our method we were able to have a higher rank thanks to the memory saving
induced by sketching, specifically:

• for experiments with MNIST as in-distribution we used a sketch size s = 1000 and a rank
k = 45 for the budget3 and k = 150 for the budget10;

• for experiments with FASHIONMNIST as in-distribution we used a sketch size s = 1000
and a rank k = 132 for the budget3 and k = 440 for the budget10;

• for experiments with CIFAR-10 as in-distribution we used a sketch size s = 10000 and
a rank k = 81 for the budget3 and a sketch size s = 50000 and a rank k = 50 for the
budget10;

• for experiments with CELEBA as in-distribution we used a sketch size s = 10000 and a
rank k = 100 both for the budget3 and for the budget10.

• for experiments with IMAGENET as in-distribution we used a sketch size s = 20000000
and a rank k = 30.

Baseline-specific details:

• SWAG: we set the parameter collecting frequency to be once every epoch; we perform a grid
search on momentum and learning rate hyperparameter: momentum in [0.9, 0.99] resulting
in the latter being better, and learning rate in [0.1, 1, 10] times the one used in training
resulting in 1 being better. Although we spent a decent amount of effort in optimizing these,
it is likely that a more fine search may yield slighlty better results;

• SCOD: the truncated randomized SVD has a parameter T and we refer to the paper for full
explanation. Importantly to us, the default value is T = 6k + 4 and the memory usage
at preprocessing is Tp, which is greater than kp. Nonetheless at query time the memory
requirement is pk and we consider only this value in order to present the score in the most
fair way possible;
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• LOCAL ENSEMBLE: the method presented in the original paper actually makes use of
the Hessian, rather than the GGN. And we denoted them as LE-H and LE respectively,
which is not fully respectful of the original paper but we think this approach helps clarity.
Anyway, we extensively test both variant and the resulting tables show that they perform
very similarly;

• DEEP ENSEMBLE: each ensemble consists of either 3 or 10 models, depending on the
experiment, each initialized with a different random seed;

• DIAGONAL LAPLACE: has a fixed memory requirement of 1p.

All the scores relative to the budget3 experiment on CIFAR-10 reported in Table 3 can be reproduced
by running the following bash code

bash/setup.sh
source ./virtualenv/bin/activate
dataset="CIFAR-10"
ood_datasets="SVHN CIFAR-100 CIFAR-10-C"
model_name="ResNet"
for seed in {1..5}
do

echo "Sketched Lanczos"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --subsample_trainset
10000 --lanczos_hm_iter 0 --lanczos_lm_iter 81 --lanczos_seed 1 --sketch
srft --sketch_size 10000

echo "Linearized Laplace"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --subsample_trainset
10000 --lanczos_hm_iter 3 --lanczos_lm_iter 0 --lanczos_seed 1
--use_eigenvals

echo "Local Ensembles"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --subsample_trainset
10000 --lanczos_hm_iter 3 --lanczos_lm_iter 0 --lanczos_seed 1

echo "Local Ensemble Hessian"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --subsample_trainset
10000 --lanczos_hm_iter 3 --lanczos_lm_iter 0 --lanczos_seed 1 --use_hessian

echo "Diag Laplace"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --score diagonal_lla
--subsample_trainset 10000

echo "SCOD"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --score scod
--n_eigenvec_hm 3 --subsample_trainset 10000

echo "SWAG"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --score swag
--swag_n_vec 3 --swag_momentum 0.99 --swag_collect_interval 1000

done
for seed in (1,4,7)

echo "Deep Ensembles"
python score_model.py --ID_dataset $dataset --OOD_datasets $ood_datasets

--model $model_name --model_seed $seed --run_name good --score ensemble
--ensemble_size 3

do
done

Disclaimer. We did not include the KFAC approximation as a baseline, although its main selling point
is the memory efficiency. The reason is that it is a layer-by-layer approximation (and so it neglects
correlation between layers) and its implementation is layer-dependent. There exist implementations
for both linear layers and convolutions, which makes the method applicable to MLPs and LeNet.
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But, to the best of our knowledge, there is no implementation (or even a formal expression) for
skip-connections and attention layers, consequently making the method inapplicable to ResNet,
Visual Transformer, SWIN, or more complex architectures.

Disclaimer 2. We did not include the max logit values [Hendrycks and Gimpel, 2016] as a baseline.
The reason is that it is only applicable for classification tasks, so for example would not be applicable
for CelebA which is a binary multiclassfication task.

Out-of-Distribution datasets. In an attempt to evaluate the score performance as fairly as possible,
we include a big variety of OoD datasets. For models trained on MNIST we used the rotated versions
of MNIST, and similarly for FASHIONMNIST. We also include KMNIST as an MNIST-Out-of-
Distribution. For models trained on CIFAR-10 we used CIFAR-100, SVHN and the corrupted
versions of CIFAR-10, of the 19 corruption types available we only select and present the 14 types
for which at least one method achieve an AUROC≥ 0.5. For models trained on CELEBA we used the
three subsets of CELEBA corresponding to faces with eyeglasses, mustache or beard. These images
were of course excluded from the In-Distribution train and test dataset. Similarly for models trained
on IMAGENET we used excluded from the In-Distribution train and test dataset 10 classes (Carbonara,
Castle, Flamingo, Lighter, Menu, Odometer, Parachute, Pineapple, Triceratops, Volcano) and use
them as OoD datasets. We do not include the results for Carbonara and Menu in thr Table since no
method was able to achive an AUROC≥ 0.5.

Note that rotations are meaningful only for MNIST and FASHIONMNIST since other datasets will
have artificial black padding at the corners which would make the OoD detection much easier.

D.3 More experiment

Here we present more experimental results. Specifically we perform an ablation on sketch size s
in Appendix D.3.1 (on synthetic data) and on preconditioning size in Appendix D.3.2. Then in
Appendix D.3.3 we perform again all the experiments in Figure 4, where the budget is fixed to be
3p, but now with a higher budget of 10p. We score the 62 pairs ID-OoD presented in the previous
section (each pair correspond to a x-position in the plots in Figure 9), with the exception of ImageNet
because a single H100 GPU is not enough for it.

D.3.1 Synthetic data

Here we motivate the claim “the disadvantage of introducing noise through sketching is outweighed
by a higher-rank approximation" with a synthetic experiment. For a fixed “parameter size" p = 106

and a given ground-truth rank R = 100 we generate an artificial Fisher matrix M . To do so, we
sample R uniformly random orthonormal vectors v1 . . . vR ∈ Rp and define M =

∑
i λiviv

⊤
i for

some λi > 0. Doing so allows us to (1) implement x 7→Mx without instantiating M and (2) have
explicit access to the exact projection vector product so we can measure both the sketch-induded
error and the lowrank-approximation-induced error, so we can sum them and observe the trade-off.

For various values of k (on x-axis) and s (on y-axis), we run Skeched Lanczos on x 7→
Mx for k iteration with a sketch size s, and we obtain the sketched low rank approxima-
tion US . To further clarify, on the x-axis we added the column “inf" which refers to the
same experiments done without any sketching (thus essentially measuring Lanczos lowrank-
approximation-error only) which coincides with the limit of s → ∞. The memory require-
ment of this “inf" setting is Pk, that is the same as the second to last column where s = P .
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Figure 7: Ablation on rank k and sketch size s.

We generate a set of test Jacobians as random
unit vectors conditioned on their projection onto
Span(v1 . . . vR) having norm 1√

2
. We compute

their score both exacltly (as in Equation 9) and
sketched (as in Equation 10). In the Figure we
show the difference between these two values.
As expected, higher rank k leads to lower error,
and higher sketch size s leads to lower error.
Note that the memory requirement is propor-
tional to the product ks, and the figure is in
log-log scale.
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D.3.2 Effect of different preconditioning sizes
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Figure 8: Preconditioning comparison for LeNet p = 40K on FASHIONMNIST vs FASHIONMNIST-
rotated-30° (left), and ResNet p = 300K on CIFAR-10 vs SVHN (center) or CIFAR-pixelated (right).

Preconditioning can be thought of as a smooth bridge between high-memory Lanczos and SKETCHED
LANCZOS. We run the former for a few steps and then continue with the latter on the preconditioned
matrix. Consequently, the preconditioning scores “start” from the vanilla Lanczos curve, and improve
quicker memory-wise, as shown in Figure 8.

D.3.3 Budget 10

The results with memory bugdet 10p are in Table 4, Table 5 and more extensively in Figure 9.

MNIST FASHIONMNIST
vs vs

FASHIONMNIST KMNIST Rotation (avg) MNIST Rotation (avg)

SLU (us) 0.28 ± 0.02 0.46 ± 0.04 0.61 ± 0.02 0.95 ± 0.01 0.75 ± 0.03
LLA 0.27 ± 0.03 0.34 ± 0.03 0.52 ± 0.01 0.88 ± 0.03 0.72 ± 0.03
LLA-D 0.94 ± 0.03 0.98 ± 0.01 0.73 ± 0.01 0.68 ± 0.06 0.61 ± 0.04
LE 0.27 ± 0.03 0.34 ± 0.03 0.52 ± 0.01 0.88 ± 0.03 0.72 ± 0.03
LE-H 0.27 ± 0.03 0.34 ± 0.03 0.52 ± 0.01 0.88 ± 0.03 0.72 ± 0.03
SCOD 0.27 ± 0.02 0.36 ± 0.03 0.54 ± 0.01 0.89 ± 0.02 0.72 ± 0.03
SWAG 0.26 ± 0.05 0.18 ± 0.03 0.39 ± 0.03 0.77 ± 0.04 0.72 ± 0.04
DE 0.90 1.00 0.79 0.99 0.90

Table 4: AUROC scores of Sketched Lanczos Uncertainty vs baselines with a memory budget of 10p.

CIFAR-10 CELEBA
vs vs

SVHN CIFAR-100 Corruption (avg) FOOD-101 Hold-out (avg)

SLU (us) 0.76 ± 0.06 0.54 ± 0.02 0.57 ± 0.04 0.95 ± 0.003 0.72 ± 0.02
LLA 0.72 ± 0.06 0.53 ± 0.02 0.57 ± 0.04 0.94 ± 0.001 0.70 ± 0.02
LLA-D 0.55 ± 0.10 0.52 ± 0.02 0.52 ± 0.04 0.80 ± 0.02 0.52 ± 0.03
LE 0.72 ± 0.06 0.53 ± 0.02 0.57 ± 0.04 0.94 ± 0.001 0.70 ± 0.02
LE-H 0.72 ± 0.07 0.53 ± 0.02 0.57 ± 0.04 0.93 ± 0.002 0.67 ± 0.02
SCOD 0.75 ± 0.05 0.54 ± 0.02 0.58 ± 0.04 0.94 ± 0.002 0.70 ± 0.02
SWAG 0.52 ± 0.06 0.44 ± 0.02 0.51 ± 0.05 0.78 ± 0.13 0.55 ± 0.09
DE 0.45 0.51 0.50 0.96 0.68

Table 5: AUROC scores of Sketched Lanczos Uncertainty vs baselines with a memory budget of 10p.
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Figure 9: AUROC scores of Sketched Lanczos Uncertainty vs baselines with a memory budget of 10p.
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