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Abstract
Faithful visualizations of data residing on manifolds must take the underlying geometry into account when producing a flat pla-
nar view of the data. In this paper, we extend the stochastic neighbor embedding (SNE) algorithm to data on general Riemannian
manifolds. We replace standard Gaussian assumptions with Riemannian diffusion counterparts and propose an efficient approx-
imation that only requires access to calculations of Riemannian distances and volumes. We demonstrate that the approach also
allows for mapping data from one manifold to another, e.g. from a high-dimensional sphere to a low-dimensional one.

1. Introduction

Visualizations are crucial to investigators trying to make sense
of high-dimensional data. The most common visualization is a
two-dimensional plot (e.g. on a piece of paper or a computer
screen), so we rely on dimensionality reduction when handling
high-dimensional data. Most dimensionality reduction techniques
assume that data resides in an Euclidean domain, which presents a
problem when data is not quite that simple. Data residing on Rie-
mannian manifolds, such as the sphere, appear in many domains
where either known constraints or other modeling assumptions im-
pose a Riemannian structure. How should we visualize such data?

There are many concerns and questions when visualizing Rie-
mannian data. The first is generic: all dimensionality reduction
tools amplify parts of the signal while reducing the remainder. This
inherent limitation should always be in mind when interpreting the
visualization. Since some loss of information is inevitable, should
we then loosen our grip on the data or its underlying Riemannian
structure? Gauss’s Theorema Egregium [GP05] informs us that if
the final plot is to be presented on a flat screen or piece of paper,
then a distortion of the Riemannian structure is inevitable.

In practice, even if we accept the limitations of a visualiza-
tion, actual algorithms for Riemannian data are missing. In this
paper, we develop an extension of Stochastic Neighbor Embed-
ding (SNE) [HR03] to Riemannian data and thereby provide one
such tool. We call this Riemannian Stochastic Neighbor Embed-
ding, or Rie-SNE for short. Our approach can embed data observed
on one Riemannian manifold on another manifold. This allows for
mapping data from a Riemannian space to a two-dimensional Eu-
clidean plane (for plotting), but also mapping to a two-dimensional
sphere, or similar when the Euclidean topology is inappropriate.
Rie-SNE does not claim to solve the above-mentioned limitations
of visualization-through-dimensionality-reduction, but it does pro-
vide a working tool with practical merit.

Figure 1: Rie-SNE visualizes high-dimensional Riemannian data
by mapping to a low-dimensional Riemannian (or Euclidean) man-
ifold. The figure shows high-dimensional spherical data mapped to
either a low-dimensional sphere or a low-dimensional plane. The
method also supports other manifolds, both as input and output.

2. Background and related work

Euclidean visualization. General data visualization is a vast
topic, and a complete review is beyond our scope [Van16]. We here
focus on the setting where data is represented as vectors (points) in
an Euclidean space of high dimension. When data is two- or three-
dimensional a scatter plot can directly reveal its structure, and we
focus on the more difficult setting where data dimensions vastly
exceed the easily plottable. Here one may explore the data through
multiple projections, such as pairwise scatter plots, which are usu-
ally manageable for data of up to around 10 dimensions. Eventu-
ally, the approach tends to become unwieldy and the greater picture
is lost. Alternatives include continuously interpolating between di-
mensions to provide an (interactive) animation [Asi85].

The approach we here explore is to find a non-linear mapping
from the high-dimensional observation space into a two- or three-
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dimensional space, which is suitable for plotting. Principal compo-
nent analysis (PCA) [Jol02] is arguably the most commonly used
approach to dimensionality reduction. PCA is restricted to span-
ning a linear subspace of the observation space, which often im-
plies that the low-dimensional view reveals little structure. Several
non-linear variants exist (e.g. [Law05, TSL00, RS00, HR03]), but
they tend to be brittle [FHH21]. One of the currently most popular
tools is t-SNE [vdMH08], which we review in Sec. 2.1.

Riemannian data. Data is often equipped with additional
knowledge such as constraints or given smooth structures that
give the data a Riemannian structure. For example, if all observa-
tions have unit norm, they reside on the unit sphere, which has a
well-studied Riemannian manifold. The a priori available knowl-
edge giving rise to a Riemannian data interpretation differs be-
tween domains, and we here only name a few. The most promi-
nent example is that of directional statistics [MJM00, KGH13,
Hau18] where data resides on the unit sphere. Other examples
include shape data [Ken84, FB12, SJML05, You12, KKG∗12],
DTI images [LDF04, PFA06, WSCV14], image features [TPM06,
PTM06, FHB14], motion models [TVSC11, cV09], human poses
[SCLBS07, HSP12, HSP10, HLP11], robotics [GKJH15, JBS∗22],
social networks [MLLM∗19] and more.

Even if Riemannian data is becoming increasingly common,
tools for visualization have not followed. The most common ap-
proach for visualizing Riemannian data is to locate a point on
the manifold, e.g. the intrinsic mean [Pen06], and map the data
to its tangent space. That gives an Euclidean view of the data,
which can be visualized with one of the many methods for this do-
main. Applying PCA tangentially is the gold standard [FLPJ04].
Unless data concentrates around the point of tangency this ap-
proach gives a highly distorted view of the data, and in practice,
most knowledge reflected in the geometry is lost by the lineariza-
tion [SLHN10]. Several Riemannian PCA generalizations exist,
e.g. [HHM10, PPY14, JDM12]. These generalize the classic lin-
ear model, and less work has been done on extending nonlinear
methods. Two notable extensions are a ‘wrapped’ extension of the
GP-LVM [MHF18], and Riemannian principal curves [Hau15].

Measuring on Riemannian manifolds. A Riemannian man-
ifold is a space that is locally Euclidean. This implies that in a
neighborhood around a point µµµ on the manifold, we can get a Eu-
clidean view of the manifold in the form of a tangent space, which
is equipped with an inner product, ⟨xi,x j⟩µµµ = x⊤i Gµµµx j, where Gµµµ is
a symmetric positive definite matrix that reflects the inner product
at µµµ. This is allowed to change smoothly between tangent spaces,
to compensate for the approximation error induced by the linear
view of the manifold. This distortion can be characterized by the
change in volume between the manifold and its tangent, which fol-
lows

√
detGµµµ [Pen06].

The inner product allows us to define local distances, which
can be integrated to provide a notion of curve length. That is,
given a curve c on a manifold, we may compute its length as∫√

⟨ċt , ċt⟩ct
dt, where ct and ċt to denote the position and veloc-

ity of the curve, respectively. From the notion of a curve length,
it is trivial to define the distance between two points as the length
of the shortest curve, i.e dist = minc Length[c]. The shortest curve
commonly goes under the name geodesic.

2.1. Stochastic neighbor embedding

Stochastic neighbor embedding (SNE) [HR03] preserves similar-
ity between neighboring points when mapped to a low-dimensional
representation. Assume that we have access to functions shigh and
slow, which measure the similarity between observation pairs in the
high-dimensional observation space and the low-dimensional rep-
resentation space, respectively. Now define the conditional proba-
bility, p j|i that xi would pick x j as its neighbor [vdMH08]

p j|i =
shigh(x j|xi)

∑k ̸=i shigh(xk|xi)
, (1)

with pi|i = 0. We can renormalize this to form a distribution over
all n observations

pi j =
p j|i + pi| j

2n
. (2)

To learn a low-dimensional representation, the key idea is to repeat
the above over the low-dimensional space to form

q j|i =
slow(y j|yi)

∑k ̸=i slow(yk|yi)
, qi j =

q j|i +qi| j

2n
. (3)

We can now compare the similarity of our data and the representa-
tion with the Kullback-Leibler divergence between pi j and qi j,

KL(P||Q) =
n

∑
i=1

n

∑
j=1

pi j log
pi j

qi j
. (4)

This can then be minimized using gradient descent with respect
to the low-dimensional representation {yi}n

i=1. In its classic form,
SNE picks the measures of similarity as Gaussian functions

shigh(x j|xi) =
(

2πσ
2
i

)−D/2

exp

(
−
∥x j −xi∥2

2σ2
i

)
,

slow(y j|yi) = (2π)−
d/2 exp

(
−
∥y j −yi∥2

2

)
.

(5)

With this choice, the normalization constants of Eq. 5 cancel out
when computing p j|i and q j|i. Note that this approach gives a per-
observation variance σ

2
i , such that different points effectively can

have different sizes of neighborhoods. To determine σ
2
i , the user

specifies a perplexity parameter, which can be thought of as a mea-
sure of the effective number of neighbors [vdMH08],

perplexity = 2H(Pi), (6)

where H(Pi) is the Shannon entropy [Sha48] of Pi. For a specific
user-provided perplexity, we can perform a binary search over σ

2
i

such that Eq. 6 holds. In practice, the user experiments with differ-
ent choices of perplexities to see which reveals a pattern.

The t-distributed stochastic neighbor embedding (t-SNE) is
the most popular variant of SNE [vdMH08]. This is motivated
by the ‘crowding problem’, where the low-dimensional represen-
tations significantly overlap without revealing much underlying
structure. The idea is to use a similarity in representation space with
heavy tails. Specifically, slow is a t-distribution with one degree of
freedom centered around one representation,

slow(y j|yi) = π
−1
(

1+∥y j −yi∥2
)−1

. (7)
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Figure 2: Two-dimensional
Euclidean embeddings of
spherical MNIST. Rie-SNE
(left) discovers structure,
which is lost on tangent
space PCA (right).

3. Method

Brownian motion on a Riemannian manifold. The key building
block for generalizing SNE to Riemannian manifolds is a suitable
generalization of the Gaussian distribution. Here we consider a den-
sity derived from a Brownian motion on a Riemannian manifold for
high-dimensional probability computations.

The end-point x of Brownian motion in Euclidean space follows
a Gaussian distribution. Infinitessimal increments of the Brownian
motion can be projected onto the tangent space of corresponding
points on a Riemannian manifold without error. Then, a Brownian
motion starting at point λλλ running for some time t can be projected
onto a D-dimensional Riemannian manifold. The resulting random
variable can be interpreted as the probability that a Brownian mo-
tion starting at λλλ will end in point x on the manifold. This approxi-
mately has density [HS02, KEAH20]:

BM(x|λλλ, t)≈ (2πt)−
D
2 H0 exp

(
−dist2(x,λλλ)

2t

)
(8)

where t > 0 is the duration of the Brownian motion (variance in
Euclidean space), λλλ is the starting point of the Brownian motion,
and H0 is the ratio of Riemannian volume measures evaluated at
points x and λλλ respectively. Superficially, Eq. 8 looks like the den-
sity of the normal distribution, with the Euclidean distance being
replaced by its Riemannian counterpart. The normalization factor
H0, however, differs from the Euclidean distribution.

3.1. Rie-SNE

Rie-SNE works similarly as SNE and t-SNE, i.e. it will also pro-
duce two probability distributions P and Q from the data and aim
to make them as similar as possible and in the process capture
some underlying structure in the produced low dimensional embed-
ding. However, computing the high-dimensional probability distri-
bution P comes with an added cost. To preserve the Riemannian
nature of the data, a different density is used when computing high-
dimensional probabilities belonging to P, namely the approximate
density induced by the heat kernel of a Brownian motion on a Rie-
mannian manifold given in Eq. 8, i.e. we pick

shigh(x j|xi) = BMx j|xi, ti. (9)

The added computational cost is that the evaluation of BM(·|·)
is more demanding than the conventional Gaussian similarity (5).
Specifically, the normalization H0 and the geodesic distance may be
demanding, depending on the manifold on which the data resides.

With the Brownian motion model, we get

p j|i ≈
H0[i, j] · exp

(
− dist2[i, j]

2ti

)
∑

k ̸=i
H0[i,k] · exp

(
− dist2[i,k]

2ti

) , (10)

where we use the notations dist2[i, j] = dist2(xi,x j) and H0[i, j] =√
det Gxi/det Gx j

to emphasize that these quantities can be pre-
computed. As with SNE, we can optimize ti to match a pre-
specified perplexity using a binary search.

Choice of representation. As mentioned in Sec. 1, Gauss’s
Theorema Egregium [GP05] inform us that we cannot isometrically
embed data from a curved space into a space of different curva-
ture without introducing distortion. Specifically, if we embed data
from a nonlinear manifold onto a flat two-dimensional represen-
tation (for plotting) then the curvature mismatch between spaces
induces a distortion. This is a fundamental limitation that any vi-
sualization of Riemannian data will face, but we may nonetheless
try to limit its impact. One approach is to embed the data onto a
manifold of similar curvature as that of the manifold on which the
data resides. For example, if the data resides on a high-dimensional
sphere, it is perhaps more prudent to embed onto a two-dimensional
sphere for plotting, rather than a Euclidean space.

With this in mind, we choose different distributions over the low-
dimensional representation, depending on user preference.

• Euclidean. If the user prefers a Euclidean low-dimensional rep-
resentation, we use a student-t as in regular t-SNE.

• Spherical. If the data manifold has positive curvature it may be
beneficial to embed it on a sphere, in which case we opt to use a
von Mises-Fisher distribution [MJM00]. Spherical embeddings
have been explored elsewhere, e.g. [LCY19].

• Other. When the user wants to embed on another low-
dimensional manifold, we suggest using the Riemannian Brow-
nian over the low-dimensional representation.

Once we have defined both shigh and slow, we can estimate the
representations using gradient descent just as regular SNE. Hav-
ing performed T iterations (with a sufficiently large value for T ) of
the gradient descent, the two probability distributions P and Q will
have a minimal KL-divergence resulting in near-optimal positions
of the points in the low-dimensional embedding.

Implementation details. Our implementation of Rie-SNE re-
lies on two approximation techniques that are traditionally also
used when performing regular t-SNE. First, we compute the high-
dimensional probabilities in P using a sparse nearest neighbor-
based approximation technique [vdM14]. Second, we use the
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Figure 3: Four different
views of embeddings of
spherical MNIST. The
top row shows spherical
embeddings obtained us-
ing Rie-SNE, while the
bottom row shows three-
dimensional embeddings
using the gold standard
tangent space PCA. Note
that the clustering structure
is significantly more evident
in Rie-SNE.

Barnes-Hut approximation [BH86], whenever we use a student’s t-
distribution over the low-dimensional representation. This reduces
the complexity to O(n logn).

4. Results

The performance of Rie-SNE is shown by comparing it to the gold
standard of visualizing non-Euclidean data. This amounts to first
computing the intrinsic mean, mapping all data to the tangent space
at this point, and performing PCA over the tangential data.

Spherical MNIST. We start with the classic MNIST dataset
consisting of 24× 24 dimensional gray-scale images. We consider
digits 0–5 to reduce clutter. To induce a non-Euclidean data geom-
etry, we project the data onto the unit sphere of R24×24 and denote
the resulting data spherical MNIST. We visualize the resulting data
using both Rie-SNE and tangent space PCA. First, we embed the
data onto the plane, R2, and show the resulting plots in Fig. 2. Here
it can be seen that Rie-SNE captures well the underlying relation-

Figure 4: Embeddings of symmetric positive definite matrices us-
ing Rie-SNE (left) and tangent space PCA (right). The top row
shows two-dimensional Euclidean embeddings, while the bottom
row shows spherical and R3 embeddings, respectively. In both
cases, Rie-SNE recovers a one-dimensional signal matching the un-
derlying time series, while tangent space PCA does not.

ship between the data points (the same digits are grouped), while
tangent space PCA produces a cluttered view that does not reveal
the underlying structure. Since the data has a spherical geometry, it
may be beneficial to embed onto a low-dimensional sphere to pre-
serve topology and curvature better. Figure 3 shows the Rie-SNE
embedding onto S2, where the clustering is again evident. As a
baseline, the figure also shows a tangent space PCA embedding on
R3. Although some structure can be captured with tangent space
PCA here, Rie-SNE still gives better separation of the digit classes.

Crypto-tensors. Following Mallasto et al. [MHF18] we con-
sider the price of 10 popular crypto-currencies over the period
2.12.2014 — 15.5.2018. As is common in economy [WG10], the
relationship between prices is captured by a 10 × 10 covariance
matrix constructed from the past 20 days. This gives rise to a time
series of covariance matrices, each of which resides on the cone
of symmetric positive definite matrices. We provide visualizations
of the data in Fig. 4. Rie-SNE is used to produce visualizations on
both the plane R2 and the sphere S2, showing a one-dimensional
structure capturing the time evolution behind the data. In contrast,
tangent space PCA produces R2 and R3 visualizations showing lit-
tle to no structure in the embeddings.

5. Conclusions

We presented a new type of visualization technique, Rie-SNE, that
is aimed at data residing on Riemannian manifolds, such as spheres.
It is an SNE-based technique that can additionally produce differ-
ent kinds of low-dimensional embeddings depending on user pref-
erence and the curvature of the original data manifold. We achieve
favorable results using Rie-SNE compared to the gold standard tan-
gential PCA. We hope that the present work also paves the way for
other visualization tools for Riemannian data in order to support
investigators relying on geometric models.
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