Riemannian Laplace approximations for Bayesian

neural networks

Federico Bergamin, Pablo Moreno-Muiioz, Segren Hauberg, Georgios Arvanitidis
Section for Cognitive Systems, DTU Compute, Technical University of Denmark
{fedbe, pabmo, sohau, gear}@dtu.dk

Abstract

Bayesian neural networks often approximate the weight-posterior with a Gaussian
distribution. However, practical posteriors are often, even locally, highly non-
Gaussian, and empirical performance deteriorates. We propose a simple parametric
approximate posterior that adapts to the shape of the true posterior through a
Riemannian metric that is determined by the log-posterior gradient. We develop
a Riemannian Laplace approximation where samples naturally fall into weight-
regions with low negative log-posterior. We show that these samples can be drawn
by solving a system of ordinary differential equations, which can be done efficiently
by leveraging the structure of the Riemannian metric and automatic differentiation.
Empirically, we demonstrate that our approach consistently improves over the
conventional Laplace approximation across tasks. We further show that, unlike
the conventional Laplace approximation, our method is not overly sensitive to the

choice of prior, which alleviates a practical pitfall of current approaches.

1 Introduction

Bayesian deep learning estimates the weight-posterior
of a neural network given data, i.e. p(d|D). Due to the
generally high dimensions of the weight-space, the nor-
malization of this posterior is intractable and approximate
inference becomes a necessity. The most common para-
metric choice approximates the posterior with a Gaussian
distribution, p(8|D) = q(0|D) = N (0|u, X), which is es-
timated variationally [Blundell et al., 2015], using Laplace
approximations [MacKay, 1992] or with other techniques
[Maddox et al., 2019]. Empirical evidence, however, sug-
gests that the log-posterior is not locally concave [Sagun
et al., 2016], indicating that the Gaussian approximation
is overly crude. Indeed, this approximation is known
to be brittle as the associated covariance is typically ill-

* Riem. LA (ours)

Figure 1: Our Riemannian Laplace ap-
proximation is a simple parametric dis-
tribution, which is shaped according to
the local loss landscape through a Rie-
mannian metric.

conditioned implying a suboptimal behavior [Daxberger et al., 2021a, Farquhar et al., 2020], and for
this reason, alternative approaches have been proposed to fix this issue [Mackay, 1992]. Nonetheless,
the Gaussian approximation is widely used due to the many benefits of parametric distributions, over
e.g. Monte Carlo sampling [Neal, 1995] or deep ensembles [Lakshminarayanan et al., 2017].

In this paper we argue that the underlying issue is not with the Gaussian approximation, but rather
with the weight-space over which the approximation is applied. We show that a Gaussian approxima-
tion can locally adapt to the loss by equipping the weight-space with a simple Riemannian metric and
performing the approximation tangentially to the associated manifold. Practically, this ensures that
samples from the Riemannian approximate posterior land in regions of weight-space yielding low
training loss, which significantly improves over the usual Gaussian approximation. We obtain our

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Riemannian approximate posterior using a generalization of the Laplace approximation [MacKay,
1992] to general Riemannian manifolds. Sampling from this distribution requires solving a system
of ordinary differential equations, which we show can be performed efficiently by leveraging the
structure of the used Riemannian metric and automatic differentiation. Empirically, we demonstrate
that this significantly improves upon conventional Laplace approximations across tasks.

2 Background

Notation & assumptions. We consider independent and identically distributed (i.i.d.) data D =
{%n,yn}N_,, consisting of inputs x € R” and outputs y € RC. To enable probabilistic modeling,
we use a likelihood p(y|fy(x)) which is either Gaussian (regression) or categorical (classification).
This likelihood is parametrized by a deep neural network fy : RP? — R¢, where § € RX represent
the weights for which we specify a Gaussian prior p(6). The predictive distribution of a new test
point x’ equals p(y|x") = [p(y|x’,0)p(6|D)df where p(f|D) is the true weight-posterior given the
data D. To ensure tractability, this posterior is approximated. This paper focuses on the Laplace
approximation, though the bulk of the methodology applies to other approximation techniques as well.

2.1 The Laplace approximation

The Laplace approximation (LA) is widely considered in probabilistic models for approximating
intractable densities [Bishop, 2007]. The idea is to perform a second-order Taylor expansion of an
unnormalized log-probability density, thereby yielding a Gaussian approximation. When considering
inference of the true posterior p(6| D), LA constructs an approximate posterior distribution g, , (6|D) =
N(0]6., %) that is centered at the maximum a-posteriori (MAP) estimate

N
0. = argmax {log p(f|D)} = arg min {— Z logp(yn | Xn,0) — logp(G)} . (1)
0 0

n=1

£(0)

A Taylor expansion around 6, of the regularized loss £(6) then yields
1
L(0) =~ L(6.) + (VoL(0)] 5y, (6 = 0.)) + 5{(6 = 0.), Ho[L](O)],_y (0 = 0.)), ()

where we know that Vo£(0)|,_, ~ 0, and Hp[L](§) € R¥*X denotes the Hessian of the
loss. This expansion suggests that the approximate posterior covariance should be the inverse
Hessian ¥ = Hpy [/J](H)’(:o. The marginal likelihood of the data is then approximated as

p(D) ~ exp(—L(6))(27)"/> det(X)"/>. This is commonly used for training hyper-parameters of
both the likelihood and the prior [Immer et al., 2021a, Antoran et al., 2022]. We refer to appendix A
for further details.

Tricks of the trade. Despite the simplicity of the Laplace approximation, its application to modern
neural networks is not trivial. The first issue is that the Hessian matrix is too large to be stored in
memory, which is commonly handled by approximately reducing the Hessian to being diagonal,
low-rank, Kronecker factored, or only considered for a subset of parameters (see Daxberger et al.
[2021a] for a review). Secondly, the Hessian is generally not positive definite [Sagun et al., 2016],
which is commonly handled by approximating the Hessian with the generalized Gauss-Newton
approximation [Foresee and Hagan, 1997, Schraudolph, 2002]. Furthermore, estimating the predictive
distribution using Monte Carlo samples from the Laplace approximated posterior usually performs
poorly [Lawrence, 2001, Chapter 5][Ritter et al., 2018] even for small models. Indeed, the Laplace
approximation can place probability mass in low regions of the posterior. A solution, already proposed
by [Mackay, 1992, Chapter 4], is to consider a first-order Taylor expansion around 6., and use the
sample to use the “linearized” function fi"(x) = fy, (x) + (Vo fo(x)| g—g.+ 0 — 0s) as predictive,

where Vg fo(x) | o—p. € RE*K is the Jacobian. Recently, this approach has been justified by Khan

et al. [2019], Immer et al. [2021b], who proved that the generalized Gauss-Newton approximation is
the exact Hessian of this new linearized model. Even if this is a linear function with respect to the
parameters 6, empirically it achieves better performance than the classic Laplace approximation.

Although not theoretically justified, optimizing the prior precision post-hoc has been shown to play
a crucial role in the Laplace approximation [Ritter et al., 2018, Kristiadi et al., 2020, Immer et al.,
2021a, Daxberger et al., 2021a]. This is usually done either using cross-validation or by maximizing
the log-marginal likelihood. In principle, this regularizes the Hessian, and the associated approximate
posterior concentrates around the MAP estimate.

Strengths & weaknesses. The main strength of the Laplace approximation is its simplicity in
implementation due to the popularization of automatic differentiation. The Gaussian approximate
posterior is, however, quite crude and often does not capture the shape locally of the true posterior
[Sagun et al., 2016]. Furthermore, the common reduction of the Hessian to not correlate all model
parameters limit the expressive power of the approximate posterior.

3 Riemannian Laplace approximations

We aim to construct a parametric approximate posterior that better reflects the local shape of the
true posterior and captures nonlinear correlations between parameters. The basic idea is to retain
the Laplace approximation but change the parameter space © to locally encode the training loss. To
realize this idea, we will first endow the parameter space with a suitable Riemannian metric (Sec. 3.1)
and then construct a Laplace approximation according to this metric (Sec. 3.2).

3.1 A loss-aware Riemannian geometry

For a given parameter value § € ©, we can measure the
training loss £(6) of the associated neural network. As-
suming that the loss changes smoothly with 6, we can
interpret the loss surface M = g(0) = [0, £L(0)] € REH
as a K -dimensional manifold in R®*, The goal of Rie-
mannian geometry [Lee, 2019, do Carmo, 1992] is to do
calculations that are restricted to such manifolds. Figure 2: The parameter space © of the

The metric. We can think of the parameter space © BNN together with examples of the Rie-
as being the intrinsic coordinates of the manifold A, Mmannian metric and the exponential map.
and it is beneficial to do all calculations directly in these Note that the Riemannian metric adapts
coordinates. Note that a vector tangential to the manifold t© the shape of the loss which causes the
can be written as J,()v € RETL, where J, : © — geodesic to follow its shape.

RE+IXK ig the Jacobian of g that spans the tangent space T4(6)M atthe point g(f) € Mand v € RE
is the vector of tangential coordinates for this basis of the tangent space. We can take inner products
between two tangent vectors in the same tangent space as (J,(0)v1, J4(0)va) = v I, (0)TT4(0)va,
which, we note, is now expressed directly in the intrinsic coordinates. From this observation, we
define the Riemannian metric M(0) = J,(0)7J4(6), which gives us a notion of a local inner product
in the intrinsic coordinates of the manifold (see ellipsoids in Fig. 2). The Jacobian of g is particularly
simple J,(0) = [Ix, Vo L]T such that the metric takes the form

M(@) =1+ V9£(9)V9£(9)T. 3)

%
o
%
4

The exponential map. A local inner product allows us to define the length of a curve ¢ : [0,1] — O
as length[c] = fol V(€(), M(c(t))é(t))dt, where é(t) = yc(t) is the velocity. From this, the
distance between two points can be defined as the length of the shortest connecting curve, where
the latter is known as the geodesic curve. Such geodesics can be expressed as solutions to a system
of second-order non-linear ordinary differential equations (ODEs), which is given in appendix B
alongside further details on geometry. Of particular interest to us is the exponential map, which
solves these ODESs subject to an initial position and velocity. This traces out a geodesic curve with a
given starting point and direction (see Fig. 2). Geometrically, we can also think of this as mapping a
tangent vector back to the manifold, and we write the map as Exp : M x TgyM — M.

The tangential coordinates v can be seen as a coordinate system for the neighborhood around 6, and
since the exponential map is locally a bijection we can represent any point locally with a unique
tangent vector. However, these coordinates correspond to the tangent space that is spanned by
J4(9), which implies that by changing this basis the associated coordinates change as well. By

(a) True posterior (b) LA sample (c) OUR sample (d) LA model (e) OUR model

Figure 3: The LA assigns probability mass to regions where the true posterior is nearly zero, and
a sample from this region corresponds to a poor classifier. Considering this sample as the initial
velocity for the exponential map, the generated sample falls within the true posterior and the associated
classifier performs well. As a result, our model quantifies better the uncertainty.

orthonormalizing this basis we get the normal coordinates where the metric vanishes. Let v the
tangential coordinates and v the corresponding normal coordinates, then it holds that

(v, M(O)v) = (¥,¥) = v = A(0)v with A(0) = M(6)"">. @

We will use the normal coordinates when doing Taylor expansions of the log-posterior, akin to
standard Laplace approximations.

3.2 The proposed approximate posterior

In order to Taylor-expand the loss according to the metric, we first express the loss in normal
coordinates of the tangent space at 6., h(v) = L(Exp,_(M(0,)~"/?v)). Following the standard
Laplace approximation, we perform a second-order Taylor expansion of / as

h(v) = h(0) + (9sh(V)]

N _ _
om0 V) + 3V H P (9) |5 ¥), 5)
where Ogh(v)|._, = A(0.)TVeL(D)|,_,
A(0.)THg[L](0)A(0s)],_, with Hp[L](0) the standard Euclidean Hessian matrix of the loss. Further
details about this step can be found in appendix B.

~ 0 as #, minimize the loss and Hg[h] (‘7)|\7:0 =

Tangential Laplace. Similar to the standard Laplace approximation, we get a Gaussian approximate
posterior ¢(v) = N(v | 0, X) on the tangent space in the normal coordinates with covariance

¥ = Hy[h](¥) |;io' Note that changing the normal coordinates ¥ to tangential coordinates v is a
linear transformation and hence v ~ N(0, A(6,)XA(6,)T), which means that this covariance is
equal to Hy[L](6) ‘9_:1 o, Since A (6.) is a symmetric matrix, and hence, it cancels out. The approximate

posterior ¢7-(v) = N(v | 0, X) in tangential coordinates, thus, matches the covariance of the standard
Laplace approximation.

The predictive posterior. We can approximate the predictive posterior distribution using Monte
Carlo integration as p(y|x’,D) = [p(y|x',D,0)q(0)d0 = [p(y|x’,D,Exp, (v))gr(v)dv =

< Zsszl p(y|x’, D,Expy_(vs)), Vs ~ g7(Vv). Intuitively, this generates tangent vectors according to
the standard Laplace approximation and maps them back to the manifold by solving the geodesic ODE.
This lets the Riemannian approximate posterior take shape from the loss landscape, which is largely
ignored by the standard Laplace approximation. We emphasize that this is a general construction that
applies to the same Bayesian inference problems as the standard Laplace approximation and is not
exclusive to Bayesian neural networks.

The above analysis also applies to the linearized Laplace approximation. In particular, when the
fin(x) is considered instead of the fp(x) the loss function in (1) changes to £(9). Consequently,
our Riemannian metric is computed under this new loss, and V4 £'"(9) appears in the metric (3).

Example. To build intuition, we consider a logistic regressor on a linearly separable dataset (Fig. 3).
The likelihood of a point x € R? to be in one class is p(C = 1|x) = o(x70 + b), where o(-) is
the sigmoid function, 6 € R? and b € R. After learning the parameters, we fix b, and show the
posterior with respect to 6 together with the corresponding standard Laplace approximation (Fig. 3a).

We see that the approximation assigns significant probability mass to regions where the true posterior
is near-zero, and the result of a corresponding sample is a poor classifier (Fig. 3b). Instead, when we
consider this sample as the initial velocity and compute the associated geodesic with the exponential
map, we generate a sample at the tails of the true posterior which corresponds to a well-behaved
model (Fig. 3c). We also show the predictive distribution for both approaches and even if both solve
easily the classification problem, our model better quantifies uncertainty (Fig. 3e).

3.3 Efficient implementation

Our approach is a natural extension of the standard Laplace approximation, which locally adapts the
approximate posterior to the true posterior. The caveat is that computational cost increases since we
need to integrate an ODE for every sample. We now discuss partial alleviations.

Integrating the ODE. In general, the system of second-order nonlinear ODEs (see appendix B for
the general form) is non-trivial as it depends on the geometry of the loss surface, which is complicated
in the over-parametrized regime [Li et al., 2018]. In addition, the dimensionality of the parameter
space is high, which makes the solution of the system even harder. Nevertheless, due to the structure
of our Riemannian metric (3), the ODE simplifies to

é(t) = =V L(c(t)) (1 + VoL (e(t)TVoL(c(t)) ™ (¢(t), Ho[L](c(t))é(t)), (6)

which can be integrated reasonably efficiently with standard solvers. In certain cases, this ODE can be
further simplified, for example when we consider the linearized loss £'"(#) and Gaussian likelihood.

Automatic-differentiation. =~ The ODE (6) requires computing both gradient and Hessian, which
are high-dimensional objects for modern neural networks. While we need to compute the gradient
explicitly, we do not need to compute and store the Hessian matrix, which is infeasible for large
networks. Instead, we rely on modern automatic-differentiation frameworks to compute the Hessian-
vector product between Hy[L](c(t)) and ¢é(¢) directly. This both reduces memory use, increases
speed, and simplifies the implementation.

Mini-batching. The cost of computing the metric, and hence the ODE scales linearly with the
number of training data, which can be expensive for large datasets. A reasonable approximation is to
mini-batch the estimation of the metric when generating samples, i.e. construct a batch B of B random
data points and use the associated loss in the ODE (6). As usual, we assume that £(0) ~ (N/B)Lp(0).
Note that we only mini-batch the metric and not the covariance of our approximate posterior ¢7(v).

We analyze the influence of mini-batching in our methods RIEM-LA
and provide empirical evidence in Fig. 4. In principle, the “1|g®— Test NLL Performance
geometry of the loss surface £(6) controls the geodesics Computation Tine
via the associated Riemannian metric, so when we con-

sider the full dataset we expect the samples to behave =
similarly to fy, (x). In other words, our approximate pos-
terior generates weights near 6, resulting in models with 0.
similar or even better loss. When we consider a batch the \‘\/
geometry of the associated loss surface £Lz(6) controls the ~ **
generated geodesic. So if the batch represents well the

50 100 150 200 250

structure of the full dataset, then the resulting model will Batch size

be meaningful with respect to the original problem, and LIN-RIEM-LA

in addition, it may exhibit some variation that is beneficial —— Test NLL Performance
Computation Time

from the Bayesian perspective for the quantification of the
uncertainty. The same concept applies in the linearized
version, with the difference that when the full dataset is
considered the geometry of £'""(#) may over-regularize
the geodesics. Due to the linear nature of fi"(6) the asso-
ciated Riemannian metric is small only close to 8, so the ~
generated samples are similar to fp, (x). We relax this be-
havior and potentially introduce variations in the resulting = T o o o
models when we consider a different batch whenever we Batch size

generate a sample. Find more details in appendix D. Figure 4: Analysis of mini-batching

0.40

Test NLL

0.30

4 Related work

Bayesian neural networks. Exact inference for BNNs is generally infeasible when the number of
parameters is large. Several methods rely on approximate inference, which differs in their trade-off
between computational cost and the goodness of the approximation. These techniques are usually
based on the Laplace approximation [MacKay, 1992], variational inference [Graves, 2011, Blundell
et al., 2015, Khan et al., 2018], dropout [Gal and Ghahramani, 2016], stochastic weight averaging
[Izmailov et al., 2018, Maddox et al., 2019] or Monte Carlo based methods [Neal, 1995], where the
latter is often more expensive.

Laplace approximations. In this work, we are primarily focused on Laplace approximations,
although the general geometric idea can be used in combination with any other inference approach
listed above. Particularly, Laplace’s method for BNNs was first proposed by Mackay [1992] in his
evidence framework, where a closed-form approximation of predictive probabilities was also derived.
This one uses a first-order Taylor expansion, also known as linearization around the MAP estimate.
For long, Laplace’s method was infeasible for modern architectures with large networks due to the
exact computation of the Hessian. The seminal works of Martens and Grosse [2015] and Botev
et al. [2017] made it possible to approximate the Hessian of large networks, which made Laplace
approximations feasible once more [Ritter et al., 2018]. More recently, the Laplace approximation
has become a go-to tool for turning trained neural networks into BNNs in a post-hoc manner, thanks to
easy-to-use software [Daxberger et al., 2021a] and new approaches to scale up computation [Antordn
et al., 2022]. In this direction, other works have only considered a subset of the network parameters
[Daxberger et al., 2021b, Sharma et al., 2023], especially the last-layer. This is de facto the only
current method competitive with ensembles [Lakshminarayanan et al., 2017].

Posterior refinement. Much work has gone into building more expressive approximate posteriors.
Recently, Kristiadi et al. [2022] proposed to use normalizing flows to get a non-Gaussian approximate
distribution using the Laplace approximation as a base distribution. Although this requires training
an additional model, they showed that few bijective transformations are enough to improve the
last-layer posterior approximation. Immer et al. [2021b], instead, propose to refine the Laplace
approximation by using Gaussian variational Bayes or a Gaussian process. This still results in a
Gaussian distribution, but it has proven beneficial for linearized Laplace approximations. Other
approaches rely on a mixture of distributions to improve the goodness of the approximation. Miller
et al. [2017] expand a variational approximation iteratively adding components to a mixture, while
Eschenhagen et al. [2021] use a weighted sum of posthoc Laplace approximations generated from
different pre-trained networks. Havasi et al. [2021], instead, introduces auxiliary variables to make a
local refinement of a mean-field variational approximation.

Differential geometry. Differential geometry is increasingly playing a role in inference. Arvanitidis
et al. [2016] make a Riemannian normal distribution locally adapt to data by learning a suitable
Riemannian metric from data. In contrast, our metric is derived from the model. This is similar
in spirit to work that investigates pull-back metrics in latent variable models [Tosi et al., 2014,
Arvanitidis et al., 2018, Hauberg, 2018b]. A similar Riemannian metric has been used as a surrogate
for the Fisher metric for Riemannian Hamiltomian Monte-Carlo sampling [Hartmann et al., 2022].
In addition to that, the geometry of the latent parameter space of neural networks was recently
analyzed by Kristiadi et al. [2023] focusing on the invariance of flatness measures with respect to
re-parametrizations. Finally, we note that Hauberg [2018a] considers Laplace approximations on the
sphere as part of constructing a recursive Kalman-like filter.

S Experiments

We evaluate our Riemannian LA (RIEM-LA) using illustrative examples, image datasets where we use
a convolutional architecture, and real-world classification problems. We compare our method and its
linearized version to standard and linearized LA. All predictive distributions are approximated using
Monte Carlo (MC) samples. Although last-layer LA is widely used lately, we focus on approximating
the posterior of all the weights of the network. In all experiments, we maximize the marginal
log-likelihood to tune the hyperparameters of the prior and the likelihood as proposed in [Daxberger
et al., 2021a]. To evaluate the performance in terms of uncertainty estimation we considered the
standard metrics in the literature: negative log-likelihood (NLL), the Brier score (BRIER), the
expected calibration error (ECE), and the maximum calibration error (MCE). More experiments are

(a) VANILLA LA (b) RIEM-LA (c) LIN-LA (d) LIN-RIEM-LA

Figure 6: Binary classification confidence estimate using 100 Monte-Carlo samples on the banana
dataset. Vanilla LA underfit, while the other three methods are able to be certain within the data and
uncertain far away. Note, for linearized RIEM-LA we solve the expmap using a different subset of the
data. Confidence plots of all different methods can be found in the supplementary material. Black
lines are the decision boundaries.

available in appendix D together with the complete training and modeling details. In appendix C.2
we analyze the runtime to compute the exponential map over different dataset and model sizes.
Code to reproduce the results is publicly available at https://github.com/federicobergamin/
riemannian-laplace-approximation

5.1 Regression problem Our samples
31 LA samples
We consider the toy-regression problem proposed by Snel- TR
son and Ghahramani [2005]. The dataset contains 200
data points, and we randomly pick 150 examples as our
training set and the remaining 50 as a test set. As shown by
Lawrence [2001], Ritter et al. [2018], using samples from
the LA posterior performs poorly in regression even if the
Hessian is not particularly ill-conditioned, i.e. when the -31

= Our mean

prior precision is optimized. For this reason, the lineariza-

tion approach is necessary for regression with standard " ' * % ' * °
LA. Instead, we show that even our basic approach fixes ‘ Our samples

this problem when the prior is optimized. We tested our | el

approach by considering two fully connected networks, 240N Y

one with one hidden layer with 15 units and one with two 1 MAP 7 P

layers with 10 units each, both with tanh activations. Our
approach approximates well the true posterior locally, so
the resulting function samples follow the data. Of course,
if the Hessian is extremely degenerate our approach also
suffers, as the initial velocities are huge. When we con- 3]
sider the linearized version of our approach the resultis -4
the same as the standard L A-linearization, which we in-

clude in the appendix D, where we also report results for Figure 5: Posterior samples under a sim-
in-between uncertainty as proposed by Foong et al. [2019] Ple (top) and an overparametrized model

and a comparison with Hamiltonian Monte Carlo. (bottom). Vanilla LA is known to gener-
ate bad models, while our samples from

RIEM-LA quantify well the uncertainty.

5.2 Classification problems

Illustrative example. We consider a 2-dimensional binary classification problem using the banana
dataset which is shown in Fig. 6. We train a 2-layer fully connected neural net with 16 hidden
units per layer and tanh activation. For all methods, we use 100 MC samples for the predictive
distribution.

As in regression, direct samples from the vanilla LA lead to a really poor model (Fig. 6a) with high
uncertainty both within and away from the data support. Instead, the other three methods (Fig. 6b-6d)
show a better-behaved confidence that decreases outside of the data support. This is also supported
by the metrics in Table 1, where remarkably RIEM-LA performs better in terms of NLL and Brier
score on a separate test set.

https://github.com/federicobergamin/riemannian-laplace-approximation
https://github.com/federicobergamin/riemannian-laplace-approximation

Table 1: In-distribution results in the banana dataset. We use 100 MC samples both for the LA and
our variants. ECE and MCE are computed using M = 10 bins. We report mean and standard error
over 5 different seeds.

BANANA DATASET

PRIOR OPTIMIZED PRIOR NOT OPTIMIZED

METHOD Accuracy 1 NLLJ Brier). Accuracy T NLLJ] Brier)

MAP 86.69 + 0.34 0.333 £ 0.005 0.0930 £ 0.0015 86.69 £+ 0.34 0.333 £ 0.005 0.0930 £ 0.0015

VANILLA LA 59.50 + 5.07 0.678 £ 0.009 0.2426 + 0.0046 48.85 £ 2.32 0.700 £ 0.003 0.2534 £ 0.0017
LIN-LA 86.99 + 0.37 0.325 £ 0.008 0.0956 £+ 0.0023 86.92 + 0.40 0.403 £ 0.012 0.1196 4+ 0.0044
RIEM-LA 87.57+0.07 0.287+0.002 0.0886 + 0.0006 87.14+0.20 0.285+0.001 0.0878 £ 0.0006
RIEM-LA (BATCHES) 87.30 + 0.08 0.286 +0.001 0.0890 4+ 0.0000 87.32+£0.17 0.294+0.002 0.0895 + 0.0004
LIN-RIEM-LA 87.02 + 0.38 0.415 £ 0.029 0.0967 £ 0.0024 85.33 £0.31 0.884 £ 0.037 0.1252 £ 0.0022
LIN-RIEM-LA (BATCHES) 87.77 £0.24 0.298 + 0.006 0.0887 £+ 0.0011 86.16 £ 0.21 0.352 £ 0.002 0.0994 + 0.0011

As we discussed in Sec. 3.3, using a subset of the dataset for computing the exponential map can
be beneficial for our linearized manifold in addition to speeding up computation. In Fig. 6d we
plot the confidence for our linearized approach using batches while in appendix D we show the
confidence of the same approach using the full data for solving the ODEs. We can see that our
linearized RIEM-LA tends to be overconfident outside the data region and also close to the decision
boundary. This behaviour can be found in the high NLL that linearized RIEM-LA gets compared to
our vanilla approach and linearized LA.

UCI datasets. We compare our approach against the standard LA on a set of six UCI classification
datasets using a fully connected network with a single layer, 50 hidden units and tanh activation.
The predictive distribution is estimated using MC with 30 samples from the approximate posterior of
each approach. In Table 2 we compare the methods in terms of their negative log-likelihood (NLL)
in the test set. All other metrics are reported in appendix D. We are considering the setting where
we optimize the prior-precision post-hoc, which is the optimal setting for LA and linearized LA. We
consider our standard approaches without using batches, which we have seen that specifically for our
linearized approach may lead to sub-optimal performance.

From the results in Table 2 we see that our RIEM-LA consistently performs better in terms of negative
log-likelihood than vanilla and linearized LA. We also observe that in two datasets the performance
of our linearized RIEM-LA is not optimal. This implies that the loss surface of the linearized loss
potentially over-regularizes the geodesics as we analyzed in Sec. 3.3, and in this case, considering
mini-batching could have been beneficial.

Table 2: Negative log-likelihood (lower is better) on UCI datasets for classification. Predictive
distribution is estimated using 30 MC samples. Mean and standard error over 5 different seeds.

PRIOR PRECISION OPTIMIZED

DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 0.975 £ 0.081 1.209 4+ 0.020 0.454 + 0.024 0.875 £ 0.020 0.494 + 0.044
GLASS 2.084 + 0.323 1.737 £ 0.037 1.047 + 0.224 1.365 + 0.058 1.359 4+ 0.299
IONOSPHERE 1.032 £ 0.175 0.673 £ 0.013 0.344 + 0.068 0.497 £+ 0.015 0.625 £ 0.110
WAVEFORM 1.076 £+ 0.110 0.888 £ 0.030 0.459 + 0.057 0.640 £ 0.002 0.575 £ 0.065
AUSTRALIAN 1.306 + 0.146 0.684 £0.011 0.541 +0.053 0.570 + 0.016 0.833 £ 0.108
BREAST CANCER 0.225 + 0.076 0.594 £+ 0.030 0.176 + 0.092 0.327 £+ 0.022 0.202 £ 0.073

Image classification.

We consider a small convolutional neural network on MNIST and Fash-

1onMNIST. Our network consists of two convolutional layers followed by average pooling layers
and three fully connected layers. We consider a model of this size as the high dimensionality of
the parameter space is one of the main limitations of the ODE solver. For the training of the model,
we subsample each dataset and we consider 5000 observations by keeping the proportionality of
labels, and we test in the full test set containing 8000 examples. In Table 3 we compare the different
methods with the prior precision optimized as this is the ideal setting for the linearized LA. We refer
to appendix D for the setting with the prior precision not optimized.

From the results we observe that our standard RIEM-LA performs better than all the other methods
in terms of NLL and Brier score, meaning that the models are better calibrated, but it also leads to
a more accurate classifier than the MAP. In terms of ECE, it seems that considering the linearized

Table 3: Image classification results using a CNN on MNIST and FashionMNIST. The network is
trained on 5000 examples and we test the in-distribution performance on the test set, which contains
8000 examples. We use 25 Monte Carlo samples to approximate the predictive distribution and 1000
datapoints per batch in our batched manifolds. Calibration metrics are computed using M = 15 bins.
We report mean and standard error for each metric over 3 different seeds.

CNN ON MNIST - PRIOR PRECISION OPTIMIZED

METHOD Accuracy T NLLJ Brier] ECE] MCE]
MAP 95.02 £ 0.17 0.167 £ 0.005 0.0075 £ 0.0002 1.05+0.14 39.94 + 14.27
VANILLA LA 88.69 + 1.84 0.871 £+ 0.026 0.0393 + 0.0013 42.11 +£1.22 50.52 + 1.45
LIN-LA 94.91 + 0.26 0.204 + 0.006 0.0087 4 0.0003 6.30 £ 0.08 39.30 £ 16.77
RIEM-LA 96.74 +£0.12 0.115+0.003 0.0052 + 0.0002 2.48 £ 0.06 38.03 £ 15.02
RIEM-LA (BATCHES) 95.67 £ 0.19 0.170 £ 0.005 0.0072 4 0.0002 5.40 £+ 0.06 22.40 + 0.51
LIN-RIEM-LA 95.44 + 0.18 0.149 + 0.004 0.0068 £ 0.0003 0.66 + 0.03 39.40 £ 14.75

LIN-RIEM-LA (BATCHES) 95.14 + 0.20 0.167 £ 0.004 0.0076 £ 0.0002 3.23 £0.04 18.10 + 2.50

CNN ON FASHIONMNIST - PRIOR PRECISION OPTIMIZED

METHOD Accuracy T NLL| Brier] ECEJ MCE]
MAP 79.88 4+ 0.09 0.541 £ 0.002 0.0276 4+ 0.0000 1.66 + 0.07 24.07 + 1.50
VANILLA LA 74.88 4+ 0.83 1.026 4 0.046 0.0482 4+ 0.0019 31.63 +1.28 43.61 £ 2.95
LIN-LA 79.85 +0.13 0.549 £ 0.001 0.0278 £+ 0.0000 3.23+£0.44 37.88 £17.98
RIEM-LA 83.33 £0.17 0.472 £ 0.001 0.0237 4+ 0.0001 3.13 £0.48 10.94 £+ 2.11
RIEM-LA (BATCHES) 81.65 + 0.18 0.525 £ 0.004 0.0263 4 0.0002 5.80 £ 0.73 35.30 £ 18.40
LIN-RIEM-LA 81.33 £ 0.10 0.521 £+ 0.004 0.0261 £ 0.0002 1.59 £ 0.40 25.53 + 0.10

LIN-RIEM-LA (BATCHES) 80.49 £ 0.13 0.529 + 0.003 0.0269 + 0.0002 2.10 +0.42 6.14 +1.42

approach is beneficial in producing better-calibrated models in both datasets. This holds both for our
approach linearized RIEM-LA and the standard LA. Optimizing the prior precision post-hoc is crucial
for the vanilla LA and associated results can be seen in appendix D. Instead, both our methods appear
to be robust and consistent, as they achieve similar performance no matter if the prior precision is
optimized or not.

Note that for the mini-batches for our approaches, we consider 20% of the data by randomly selecting
1000 observations while we respect the label frequency based on the full dataset. Clearly, the batch-
size is a hyperparameter for our methods and can be estimated systematically using cross-validation.
Even if we do not optimize this hyperparameter, we see that our batched version of RIEM-LA and
LIN-RIEM-LA perform better than the standard LA and on-par with our LIN-RIEM-LA without batches,
implying that a well-tuned batch-size can potentially further improve the performance. Nevertheless,
this also shows that our method is robust with respect to the batch-size.

6 Conclusion and future directions

We propose an extension to the standard Laplace approximation, which leverages the natural geometry
of the parameter space. Our method is parametric in the sense that a Gaussian distribution is estimated
using the standard Laplace approximation, but it adapts to the true posterior through a nonparametric
Riemannian metric. This is a general mechanism that, in principle, can also apply to, e.g., variational
approximations. In a similar vein, while the focus of our work is on Bayesian neural networks,
nothing prevents us from applying our method to other model classes.

Empirically, we find that our Riemannian Laplace approximation is better or on par with alternative
Laplace approximations. The standard Laplace approximation crucially relies on both lineariza-
tion and on a fine-tuned prior to give useful posterior predictions. Interestingly, we find that the
Riemannian Laplace approximation requires neither. This could suggest that the standard Laplace
approximation has a rather poor posterior fit, which our adaptive approach alleviates.

Limitations. The main downside of our approach is the computational cost involved in integrating
the ODE, which is a common problem in computational geometry [Arvanitidis et al., 2019]. The cost
of evaluating the ODE scales linearly with the number of observations, and in particular it is O(SW N),
where S is the number of steps of the solver, W is the number of model parameters and [V is the
dataset size. Indeed, the solver needs all the training data points to compute both gradient and hvp at
each step. We refer to appendix C.1 for a detailed explanation. For big datasets, we have considered

the “obvious” trick of using a random (small) batch of the data when solving the ODE to reduce
the complexity. Empirically, we find that this introduces some stochasticity in the sampling, which
sometimes is beneficial to explore the posterior distribution better and eventually boost performance,
motivating further research. The computational cost also grows with the dimensionality of the
parameter space, as the number of necessary solver steps increases, as well as the cost of the Hessian
vector products. Our implementation relies on an off-the-shelf ODE solver which runs on the CPU
while our automatic-differentiation based approach runs on the GPU, which is inefficient. We expect
significant improvements by using an ODE solver that runs exclusively on GPU, while tailor-made
numerical integration methods are also of particular interest.

Future directions. We showed that equipping the weight-space with a simple Riemannian metric
is a promising approach that solves some of the classic LA issues. We believe that this opens up
different interesting research directions that either aim to use different metrics instead of the one
used in this work or to make this method scale to bigger dataset. Regarding the metric, a possible
extension of this work would be to consider the Fisher information matrix in the parameter space.
Potential ideas to improve efficiency is to consider approximations of the Riemannian metric leading
to simpler ODE systems, for example by using the KFAC instead of the full-Hessian in (6). Another
directions, instead, would be to focus on developing a better solver. Indeed, we know the structure
and behavior of our ODE system, i.e. geodesics start from low loss which increases along the curve,
therefore, a potential direction would be to develop solvers that exploit this information. Usually,
general purpose solvers aim for accuracy, while in our case even inexact solutions could be potentially
useful if computed fast.

Acknowledgments and Disclosure of Funding

This work was funded by the Innovation Fund Denmark (0175-00014B) and the Novo Nordisk Foun-
dation through the Center for Basic Machine Learning Research in Life Science (NNF200C0062606).
It also received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research, innovation programme (757360). SH was supported in part by a research
grant (42062) from VILLUM FONDEN.

References

P.-A. Absil, R. Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton
University Press, 2008.

Javier Antoran, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano, Eric Nalisnick, and
José Miguel Herndndez-Lobato. Adapting the linearised laplace model evidence for modern deep learning. In
International Conference on Machine Learning (ICML), 2022.

Georgios Arvanitidis, Lars K Hansen, and Sgren Hauberg. A locally adaptive normal distribution. In Neural
Information Processing Systems (NeurlPS), 2016.

Georgios Arvanitidis, Lars Kai Hansen, and Sgren Hauberg. Latent space oddity: on the curvature of deep
generative models. In International Conference on Learning Representations (ICLR), 2018.

Georgios Arvanitidis, Sgren Hauberg, Philipp Hennig, and Michael Schober. Fast and robust shortest paths on
manifolds learned from data. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2019.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International conference on machine learning (ICML), 2015.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep learning.
In International Conference on Machine Learning (ICML), 2017.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig.

Laplace redux—effortless Bayesian deep learning. In Neural Information Processing Systems (NeurIPS),
2021a.

10

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antordn, and José Miguel Herndndez-Lobato.
Bayesian deep learning via subnetwork inference. In International Conference on Machine Learning (ICML),
2021b.

M.P. do Carmo. Riemannian Geometry. Mathematics (Boston, Mass.). Birkhduser, 1992.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of computational and
applied mathematics, 6(1):19-26, 1980.

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of Laplace approxima-
tions for improved post-hoc uncertainty in deep learning. In NeurIPS Workshop of Bayesian Deep Learning,
2021.

Sebastian Farquhar, Michael A Osborne, and Yarin Gal. Radial bayesian neural networks: Beyond discrete
support in large-scale bayesian deep learning. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Andrew YK Foong, Yingzhen Li, José Miguel Herndndez-Lobato, and Richard E Turner. "In-Between’ Uncer-
tainty in Bayesian Neural Networks. arXiv preprint arXiv:1906.11537, 2019.

F Dan Foresee and Martin T Hagan. Gauss-Newton approximation to Bayesian learning. In Proceedings of
International Conference on Neural Networks (ICNN). IEEE, 1997.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In International Conference on Machine Learning (ICML), 2016.

Alex Graves. Practical variational inference for neural networks. In Neural Information Processing Systems
(NeurIPS), 2011.

Marcelo Hartmann, Mark Girolami, and Arto Klami. Lagrangian manifold monte carlo on monge patches. In
International Conference on Artificial Intelligence and Statistics, 2022.

Sgren Hauberg. Directional statistics with the spherical normal distribution. In FUSION 2018, 2018a.
Sgren Hauberg. Only bayes should learn a manifold. arXiv preprint, 2018b.

Marton Havasi, Jasper Snoek, Dustin Tran, Jonathan Gordon, and José Miguel Herndndez-Lobato. Refining the
variational posterior through iterative optimization. Entropy, 2021.

E Heirer, SP Ngrsett, and G Wanner. Solving ordinary differential equations i: Nonstiff problems, 1987.

Philipp Hennig and Sgren Hauberg. Probabilistic solutions to differential equations and their application to
riemannian statistics. In Proceedings of the 17th international Conference on Artificial Intelligence and
Statistics (AISTATS), 2014.

Richard Zou Horace He. functorch: Jax-like composable function transforms for pytorch. https://github.
com/pytorch/functorch, 2021.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Ritsch, and Khan Mohammad Emtiyaz. Scalable
marginal likelihood estimation for model selection in deep learning. In International Conference on Machine
Learning (ICML), 2021a.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of Bayesian neural nets via local
linearization. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021b.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In Uncertainty in Artificial Intelligence (UAI), 2018.

Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava. Fast and scalable
bayesian deep learning by weight-perturbation in adam. In International Conference on Machine Learning
(ICML), 2018.

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate inference
turns deep networks into Gaussian Processes. In Neural Information Processing Systems (NeurIPS), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR, 2015.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes overconfidence in
ReLU networks. In International Conference on Machine Learning (ICML), 2020.

11

https://github.com/pytorch/functorch
https://github.com/pytorch/functorch

Agustinus Kristiadi, Runa Eschenhagen, and Philipp Hennig. Posterior refinement improves sample efficiency
in bayesian neural networks. In Neural Information Processing Systems (NeurIPS), 2022.

Agustinus Kristiadi, Felix Dangel, and Philipp Hennig. The geometry of neural nets’ parameter spaces under
reparametrization. arXiv preprint, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. In Neural Information Processing Systems (NeurlPS), 2017.

Neil David Lawrence. Variational inference in probabilistic models. PhD thesis, Citeseer, 2001.

JM. Lee. Introduction to Riemannian Manifolds. Graduate Texts in Mathematics. Springer International
Publishing, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural
nets. In Neural Information Processing Systems (NeurIPS), 2018.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th International
Conference on Learning Representations, ICLR, 2017.

David J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation,
1992.

David John Cameron Mackay. Bayesian methods for adaptive models. California Institute of Technology, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A simple
baseline for Bayesian uncertainty in deep learning. In Neural Information Processing Systems (NeurIPS),
2019.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate curvature.
In International Conference on Machine Learning (ICML), 2015.

Andrew C Miller, Nicholas J Foti, and Ryan P Adams. Variational boosting: Iteratively refining posterior
approximations. In International Conference on Machine Learning (ICML), 2017.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

Xavier Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. Journal
of Mathematical Imaging and Vision, 2006.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks. In
International Conference on Learning Representations (ICLR), 2018.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity and
beyond. arXiv preprint arXiv:1611.07476, 2016.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
computation, 2002.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian Neural Networks Need
To Be Fully Stochastic? In International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Neural Information
Processing Systems (NeurIPS), 2005.

Alessandra Tosi, Sgren Hauberg, Alfredo Vellido, and Neil D. Lawrence. Metrics for probabilistic geometries.
In Uncertainty in Artificial Intelligence (UAI), 2014.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antonio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

12

Riemannian Laplace approximations for Bayesian
neural networks
(Appendix)

Contents of the Appendix

A Laplacebackground L
B Riemannian geOmetry oo e e e
C Implementationdetails
C.1 Costofsolvingthe ODEsystemo v ...
C.2 Analysisof exponentialmap oo
D Experiments details and additional results 0oL L.
D.1 Regressionexample L e e
D.2 Tllustrative 2D classificationexample oL
D.3 An additional illustrative example
D.4 Additional results in the UCI classification tasks
D.5 Complete results on MNIST and FMNIST
D.6 Out-of-distributionresults

O O 0 N N N 9 D=

A Laplace background

We provide a more detailed introduction to Laplace approximation and discuss the optimiziation of
the prior and likelihood hyperparameters by maximizing the marginal likelihood. In BNNs, Laplace
approximation is use to approximate the posterior distribution, i.e.:

p(D10)p(0) _ p(D | 0)p(0) :lp
p(D) Jopr(D|0)p(6) Z

p(0 | D) = (D[0)p(0). (A1)

This is done by fitting a Gaussian approximation to the unnormalized distribution p(D | 0)p(6)
at its peak, where p(D | 0) is the likelihood distribution and p(0) is the prior over the weights.
In standard training of neural networks the mean-squared error loss is usually used for regression.
This corresponds to optimizing a Gaussian log-likelihood up to a scaling factor while using the
cross-entropy loss in classification correspond to minimizing the negative log-likelihood. The usual
weight decay, or L2 regularization, corresponds instead to a Gaussian prior p(6) distribution. More

specifically, training with \||#||3 corresponds to a Gaussian prior N (6; 0, ’\7721)

Therefore a natural peak to choose is given by the 6., which is the set of weights obtained at the end
of the training. Indeed, 6, is usually computed by:

N
0, = arg min {— Z logp(yn | Xn,0) — logp(e)} . (A.2)
6

n=1

£(0)

Once we have 6., the Laplace approximation uses a a second-order Taylor expansion of £(6) around
6., which yields:

£(0) % £(0.) + (VoL(6)],y - (6~ 00) + 540 — 6.) Ho[£O)],_, (0 —6.)), (A3

where the first-order term V£ (6 ~ (because the gradient at 6, is 0.

)|9:9*

By looking at £(6), we can notice that the Hessian is composed by two terms: a data fitting term and
a prior term. Assuming p(#) = N(6;0,~%I), then the Hessian can be expressed as

Ho[L](0)|g_g. =7 "I+ > Vilogp(yi | ;) lo.= (H + o), (A4)

i=1

where we defined o = i.e. the prior precision.

1
772’
Using the fact that £(0) is the negative log-numerator of (A.1), we can get p(D | 6)p(0) by taking
the exponential of —L£(6). By doing so we have:

(0 —0.)"(H+ al)(0 —6.)). (A.5)

p(D | O)p(6) ~ exp(~L(0)) = exp(—L(0.) ~

For simplicity, we can define ¥ = (H + oI)~! and rewrite the equation above to obtain:

p(D | 0)p(0) ~ exp(—L(0.)) exp(—5 (0 — 0.)"E71(0 - 0.))) (A.6)

1
2

We can then use this approximation to estimate the normalizing constant of our approximate posterior,
which corresponds to the marginal log-likelihood p(D):

p(D)=Z~ / exp(—L(6.)) exp(—%(é’ —0.)TS710 —06.)))ds. (A7)
(S]
This can be rewritten as
1 Ty—1
§(D) = exp(~£(6.)) [exp(~5(6 - 0.7 76~ 0.))), (A8)
©

and by using the Gaussian integral properties we can write it as:
p(D) ~ exp(—L(6,))(2m)%?(det £)1/2, (A9)
and by taking the logarithm we get
log p(D) ~ —L(0,) + log(2m)¥/? + log(det £)'/2, (A.10)

which is the approximation of the log marginal likelihood that we want to maximize to optimize the
parameters that appears in £(6,). In a regression problem, we are interested in optimizing both the
variance of the Gaussian likelihood and the prior precision. In classification, instead, we just have the
prior precision as a hyperparameter to tune.

B Riemannian geometry

We rely on Riemannian geometry [Lee, 2019, do Carmo, 1992] in order to construct our approximate
posterior. In a nutshell, a d-dimensional Riemannian manifold can be seen intuitively as a smooth
d-dimensional surface that lies within a Euclidean space of dimension D > d, which allows one to
compute distances between points that respect the geometry of the surface.

Definition B.1. A Riemannian manifold M is a smooth manifold together with a Riemannian metric
M(x) that acts on the associated tangent space TxM at any point x € M.

Definition B.2. A Riemannian metric M : M — RIM(M)xdim(M) j5 3 smoothly changing positive
definite metric tensor that defines an inner product on the tangent space T M at any point x € M.

We focus on the Bayesian neural network framework where © = R¥ is the parameter space of the
associated deep network, and we consider the manifold M = g(0) = [0, L(0)]. This is essentially
the loss surface which is K -dimensional and lies within a (K + 1)-dimensional Euclidean space. In
order to satisfy the smoothness condition for M we restrict to activation functions as the tanh, while
common loss function as the mean squared error and softmax are also smooth.

The parameter space © is a parametrization of this surface and technically represents the intrinsic
coordinates of the manifold, which is known as the global chart in the literature. The Jacobian
J,(0) € RETIXK of the map g spans the tangent space on the manifold, and a tangent vector can be
written as J4(6)v, where v € R¥ are the tangential coordinates. We can thus compute the inner
product between two tangent vectors in the ambient space using the Euclidean metric therein as

{(Jg(0)v,J4(0)u) = (v,M(6)u). (B.1)

Here the matrix M(6) = J,(0)7J,(8) = Ix + VoL(9)VeL(0)T is a Riemannian metric that is
known in the literature as the pull-back metric. Note that the flat space © is technically a smooth
manifold and together with M () is transformed into a Riemannian manifold. This can be also seen
as the abstract manifold definition where we only need the intrinsic coordinates and the Riemannian
metric to compute geometric quantities, and not the actual embedded manifold in the ambient space.

One example of a geometric quantity is the shortest path between two points 6,05 € ©. Leta
curve ¢ : [0,1] — © with ¢(0) = 0 and ¢(1) = 05, the its length defined under the Riemannian
metric as length[c] = fol V/{(¢(t), M(c(t))é(t))dt. This quantity is computed intrinsically but it
also corresponds to the length of the associated curve on M. The shortest path then is defined as
c*(t) = argmin, length[c|, but as the length is invariant under re-parametrizations of time, we
consider the energy functional instead, which we optimize using the Euler-Lagrange equations. This
gives the following system of second-order nonlinear ordinary differential equations (ODESs)

M~1(c(t)) [2 {3M(c(t)) OM(c(t))] dvec[M(c(t)]
2 dci(t) 77 dek(t) Ac(t)

where vec[-] stacks the columns of a matrix and ® the Kronecker product [Arvanitidis et al., 2018].
A curve that satisfies this system is known as geodesic and is potentially the shortest path. When the
system is solved as a Boundary Value Problem (BVP) with initial condition ¢(0) = 6; and ¢(1) = 65,
we get the geodesic that connects these two points. Let v = ¢(0) be the velocity of this curve at
t = 0. When the system is solved as an Initial Value Problem (IVP) with conditions ¢(0) = 6; and
¢(0) = v, we get the geodesic ¢y (t) between ¢, (0) = 67 and ¢, (1) = 6. This operation is known
as the exponential map and we use it for our approximate posterior.

é(t) = —

(e(t) ® ¢(t), (B.2)

In general, an analytic solution for this system of ODEs does not exist [Hennig and Hauberg, 2014,
Arvanitidis et al., 2019], and hence, we rely on an approximate numerical off-the-shelf ODE solver.
Note that this is a highly complicated system, especially when the Riemannian metric depends on a
finite data set, while it is computationally expensive to evaluate it. As we show below, the structure
of the Riemannian metric that we consider, allows us to simplify significantly this system.

Lemma B.3. For the Riemannian metric in (3) the general ODEs system in (B.2) becomes
e VoL(c(t)) . .

(B.3)

Proof. We consider the general system, and we compute each term individually. To simplify notation
we will use M := M(c(¢)), V := Vo L(c(t)), H := Hg[L](c(t)), H; the i-th column of the Hessian
and V; the i-th element of the gradient V.

Using the Sherman—Morrison formula we have that

Vo L(c(t))VoL(c(t))

—1 o _
M(c(t)) =1k 1+ (VoL(c(t)), VoL(c(t))) 5
The first term in the brackets is
o |Pet) M) _ g or 4 UHL,. . HeVT 4 V], . (BS)

Acr(t) 77 Oeg(t)

and the second term in the brackets is
Avec[M(c(t))]T

8C(t) = [V1H+H1VT7...,VKH+HKVT] (B.6)
and their difference is equal to
[2VH! + H; VT — ViH,...,2VH} + Hxk VT — VH]. (B.7)

We compute the matrix-vector product between the matrix (B.7) and the Kronocker product ¢(t) ®
é(t) = [é16, . .., exc]T € RP*X1 which gives

K K K K
> 2VHIéé; + H;VTée; — ViHed; = 2V) ¢HIe+ Ve Hié —HEY | Vie; = 2V(¢, He)
i=1 i=1 i=1 i=1

(B.8)

where we used that Zfil H;¢; = Hé and Zfil V.i¢; = VTé. As a final step, we plug-in this result
and the inverse of the metric in the general system which gives

fm 1 (]IK - W) 2V (¢, He) = —

2 1+ (V. V) (¢, He). (B.9)

O

Taylor expansion. As regards the Taylor expansion we consider the space © and the Riemannian
metric therein M (#) and an arbitrary smooth function f : © — R. If we ignore the Riemannian
metric the second-order approximation of the function f around a point x € © is known to be

- 1

fEuCl(X+V) %f() <v9f |9 xav>+ §<VaH9[f](6)’9:xv>7 (Blo)
where Vi f(6)],_, is the vector with the partial derivatives evaluated at x and Hg[f](0)|,__ the
corresponding Hess1an matrix with the partial derivatives 50, 89) When we take into account the

Riemannian metric, then the approximation becomes

Frien(x) % F() + (Vo f(0)] o ¥) + 5 (v [HlF1(60) ~ T V07 (0)k] |,_v), ®B.11)

where I'¥. are the Christoffel symbols and the Einstein summation is used. Note that even if the
Hessian is different, the approximation again is a quadratic function.

Now we consider the Taylor expansion on the associated tangent space at the point x instead of
directly on the parameter space ©. We define the function h(v) = f(Exp,(v)) on the tangent space
centered at x and we get that

h(w) = h(0) + (Dy f (Exp, (v))|,_o» W) (B.12)
1
+ 5, [He[f1(Expy (V) = T3500 F (Bxp (v))i] [, _gw), (B.13)
where we apply the chain-rule and we use the fact that 0, Exp, (v) ‘v:O = I and O2Exp, (v ’v:O = 0.

2
So, we get that 0, f (Exp, (v))‘V o = Vof(0 |9 . and Hy[f](Expy (v))|v 0= gefd(z) .The

difference here is that the quadratlc function is defined on the tangent space, and the exponen—
tial map is a non-linear mapping. Therefore, the actual approximation on the parameter space
fTangem(Expx (v)) = h(v) is not a quadratic function as before, but it adapts to the structure of the
Riemannian metric. Intuitively, the closer a point is to the base point x with respect to the Riemannian
distance, the more similar is the associated value frugen (EXpy(V)) to f(x). In our problem of
interest, this behavior is desirable implying that if a parameter 6’ is connected through low-loss
regions with a continuous curve to ., then we will assign to 6 high approximate posterior density.

We can easily consider the approximation on the normal coordinates, where we know that the
Christoffel symbols vanish, by using the relationship u = Au with A = M(x)~ /2, and thus the
Taylor approximation of the function h(u) = f(Exp, (Au)) becomes

(@) ~ h(0) + (ATVo£(6)],_ Al) +%<ﬁ,ATH9[f](9)‘0:XAﬁ>. (B.14)

>

Further details can be found in related textbooks [Absil et al., 2008] and articles [Pennec, 2006].

Linearized manifold. Let us consider a regression problem with likelihood p(y|x,0) =
N (y|fo(x),0?), where fy is a deep neural network, and prior p(6) = N(|0, \[x). The loss
of the fii"(x) is then defined as

£11n = Z y— f9 Xn <V9f Xn ‘g 0. ’9_9*>)2+/\||6||2 (BIS)

The gradient and the Hessian of this loss function can be easily computed as

,Clm = P Z (y — fo,(%xn) — (Vo f(xn |9 0. 0 —0.))Vof(xn ‘9 0. +2X0 (B.16)
in 1
Hy[£1](0) = ET;vef(xn)!‘g:e*vef(xmﬁ:g* +2)k, (B.17)

which can be used to evaluate the ODESs system in (6). A similar result can be derived for the binary
cross entropy loss and the Bernoulli likelihood.

C Implementation details

In this section we present the implementation details of our work. The code will be released upon
acceptance.

Gradient, Hessian, and Jacobian computations. The initial velocities used for our methods are
samples from the Laplace approximation. We rely in the Laplace library [Daxberger et al., 2021a]
for fitting the Laplace approximation and for optimizing the hyperparameters by using the marginal
log-likelihood. We also used the same library to implement all the baselines consider in this work.
As we have seen from Sec. 3.3, to integrate the ODE we have to compute (6), which we report also
here for clarity:

é(t) = =V L(c(t)) (1+ Vo L(c(t)TVoL(e(t))) ™" (E(t), Ho[L] (c(t)e(t)).- (C.H

We use functorch [Horace He, 2021] to compute both the gradient and the Hessian-vector-product.
We then rely on scipy [Virtanen et al., 2020] implementation of the explicit Runge-Kutta method of
order 5(4) [Dormand and Prince, 1980] to solve the initial-value problem. We use default tolerances
in all our experiments.

Linearized manifold. We define our linearized manifold by considering the “linearized” function
n(x) = fo.(x) + (Vo fo(x |9 g.»0 — 0) to compute the loss, where Vg fp(x |9 o € REXK s

the Jacobian. To compute (Vy fo(x ’ g—p. 0 — 0.) we use functorch to compute a jacobian-vector

product. This way, we avoid having to compute and store the Jacobian, which for big networks and
large dataset is infeasible to store.

C.1 Cost of solving the ODE system

Our proposed approach builds on top of Laplace approximation, and therefore it comes with a
computational overhead. To be able to estimate this overhead, we have to assume that our solver does
S steps to solve an ODE, which is not entirely correct, since the explicit Runge-Kutta method of order
5(4) (RK-45) [Dormand and Prince, 1980] uses an adaptive step-size and therefore the value of .S
differs for every ODE. With this assumption, the cost of evaluating a single ODE results in O(SW N),
where S is the number of steps of the solver, W is the number of model parameters and NN is the

Prior optimized, velocities from posterior

Model size
100 params (full)
500 params (full)
1k params (full)

5k params (diag)

5000 4

4000 q

bitt

amp (i

10k params (diag)
Z 30004

= 2000
1000 4 :;
04
500 1000 5000 10000 50000 100000
Dataset size

Time per ex;

Figure C.1: Left: Average runtime per posterior sample in terms of model size and dataset size. Right:
Average runtime and standard error per posterior sample in terms of model size and dataset size
computed over 5 different samples. For the models with 5k and 10k parameters, we used the diagonal
Hessian over all the weights to sample the initial velocities.

dataset size. Indeed, at each step, we need to compute the gradient and the hessian-vector product,
which is O(NW), and perform a Runge-Kutta step, which scales linearly with the dimension of the
problem, i.e. O(W) [Heirer et al., 1987]. Since the solver would take .S steps to solve the system we
get O(SNW). If we want to use K posterior samples to estimate our predictive distribution, then we
have to solve K different ODEs, therefore the overall overhead is O(KX SNW). However, we want
to highlight that all these computations happen before deployment of the model. At test time, the
complexity is the same as LA when using MC sample to approximate the predictive distribution.

In the derivation of the complexity of our method, we assumed that the ODE solver did exactly S
steps. As mentioned before, RK-45 uses an adaptive step-size, therefore the number of steps the
solver needs to converge mainly depends on the complexity of the associated ODE problem, which is
defined by the geometry of the loss landscape and the initial velocity. To show this, in the next section,
we include a benchmark using a synthetic example to analyze how the runtime changes with respect
to the size of the model and dataset. While increasing the model parameters and dataset size affect
W and N, it may be the case that ODE systems do not necessarily get harder, therefore the value of S
would be small. In other words, evaluating the ODE becomes more expensive as dimensions increase,
but perhaps the actual system gets easier to solve.

Limitations of our implementation The cost of obtaining a posterior sample using our RIEM-LA
scales linearly in terms of the model and dataset size. In addition to that, our implementation is not
highly engineered. Although we can generate these samples in parallel, we use a general purpose
Python solver (scipy.integrate.solve_ivp [Virtanen et al., 2020]) to solve the ODE system,
which runs on the CPU. When the solver needs to evaluate the ODE, our automatic-differentiation
based approach runs on the GPU, and the result is moved to the CPU (.detach() .cpu() .numpy ())
causing a significant overhead, which is inefficient. Especially when dimensions increase, both the
transfer of the data and the computations on the CPU are sub-optimal. Implementing an ODE solver
on a suitable automatic-differentiation framework (e.g. JAX) solely running on GPU will dramatically
improve performance.

C.2 Analysis of exponential map

‘We mentioned scalability as one of the main limitation of our proposed method. We use a simple
toy-example (sklearn.datasets.make_blobs with three classes, see Fig. C.1 (left)) to analyze
the running time of computing a single sample from the posterior with our methods. A two layers
neural-network is considered, and we vary the number of parameters and datapoints in the dataset.
For the biggest models, i.e. the one with 5k and 10k parameters, we use a diagonal approximation
of the Hessian to sample the initial velocities, while for all the others we use the full Hessian. In
all cases, the ODE system always relies on the hvp which uses the full Hessian. In Fig. C.1 (right),
we present runtime for five different models and six dataset sizes. We report the mean and standard
deviation computed over five different exponential maps. The results show that the runtime increases

for all models as the dataset size increases. We also see that using a diagonal approximation of the
Hessian leads to faster exponential maps.

D Experiments details and additional results

D.1 Regression example

For the regression example we consider two fully connected networks, one with one hidden layer with
15 units and one with two layers with 10 units each, both with tanh activations. We train both model
using full-dataset GD, using a weight decay of 1le — 2 for the larger model and 1e — 3 for the smaller
model for 35000 and 700000 epochs respectively. In both cases, we use a learning rate of le — 3. In
Sec. 5, we show some samples from the posterior distribution obtained by using vanilla LA and our
RIEM-LA approach. In Fig. D.1 we report the predictive distribution for our classic approach while in
Fig. D.2 we show both the posterior and the predictive for our linearized manifold and linearized
LA. We can see that our linearized approach perform similarly to linearized LA in terms of posterior
samples and predictive distribution.

A more interesting experiment is to consider a gap in our dataset to measure the in-between uncertainty.
A good behaviour would be to give calibrated uncertainty estimates in between separated regions
of observations [Foong et al., 2019]. In our regression example, we consider the points between
1.5 and 3 as test set, and report posterior samples and predictive distribution for both our methods,
vanilla and linearized, and LA. From Fig. D.3, we can notice that our RIEM-LA is able to generate
uncertainty estimates that are reliable both in the small and the overparametrized model. It gets more
interesting when we consider our linearized manifold approach as it can be seen in Fig. D.4. While
for a small model the predictive distribution we get is comparable to linearized LA, when we consider
the overparametrized model, it tends to overfit to a solution that it is better from the perspective of the
linearized loss but very different from the MAP. Therefore, this results in uncertainty estimates that
are not able to capture the true data set in this case. This behaviour is related to our discussion in
Sec. 3.3. By using a subset of the training set to solve the ODEs system we alleviate this behavior by
giving more reliable uncertainty estimates.

For each all the regression setting described above, we also report the mean and the uncertainty
estimates by sampling from a closer approximation of the true posterior obtained using Hamiltonian
Monte Carlo (HMC) and a No-U-Turn sampler. We use one chain, samples 1000 weights, discard the
first 500 as warm-up and use the last 500 to compute the predictive distribution. Results can be seen
in Fig. D.5. We can see that in this simple example the uncertainty produced by our method is really
close to the one produced by HMC.

D.2 Illustrative 2D classification example

We consider the banana dataset as an illustrative example to study the confidence of our proposed
method against Laplace and linearized Laplace. We train a 2-layer fully connected neural net with 16
hidden units per layer and tanh activation using SGD for 2500 epochs. We use a learning rate of
le — 3 and weight-decaay of 1e — 2. Although it is a binary classification problem, we use a network
with two outputs and use the cross-entropy loss to train the model because the Laplace library does
not support binary cross-entropy at the moment. For all methods, we use 100 MC samples for the
predictive distribution.

As we have mentioned in Sec. 5, our linearized manifold when we solve the ODESs system by using
the entire training set tends to be overconfident compared to the our classic non-linearized approach.
This can be easily seen form Fig. D.6 where we can compare the last two rows and see that solving
the ODEs system using batches is beneficial in terms of uncertainty quantification. We also plot the
confidence of all different methods when we do not optimize the prior precision. We can see that our
proposed approaches are robust to it, while linearized LA highly depends on it.

D.3 An additional illustrative example

We consider the pinwheel dataset with five different classes as an additional illustrative classification
example. Given the way these classes clusters, it is interesting to see if some of the approaches
are able to be confident only in regions where there is data. We generate a dataset considering 200

Ours —— MAP
3 LA 37 — LA mean

—— Laplace mean

Our mean
—— Our mean x Test points

—— MAP < 1 2/V[ylOur

2V V[y]LA

) -4
0 1 2 3 4 5 6 0 1 2 3 4 5 6
POSTERIOR - SINGLE LAYER MODEL PREDICTIVE - SINGLE LAYER MODEL
4 4
Ours —— MAP
3 LA 31 — LA mean
ST Laplace mean 5] Our mean
s Our mean - x Test points
1 2,/V [ylOur

PPiasy 7
N A l

2\/V LA

POSTERIOR - TWO LAYERS MODEL PREDICTIVE - TWO LAYERS MODEL

Figure D.1: Regression results in terms of posterior and predictive distribution using vanilla LA and
our RIEM-LA approach. Our proposed approach is able to get better samples and to give a reliable
uncertainty estimate compared to vanilla LA. If we consider an overparametrized model.

examples per classes and we use 350 example as training set and the remaining as test set. We
consider a two layer fully-connected network with 20 hidden units per layer and tanh activation. As
before, we train it using SGD with a learning rate of 1e — 3 and a weight decay of le — 2 for 5000
epochs.

From Fig. D.7, we can see not only vanilla LA but also linearized LA is failing in being confident also
in-data region when we use 50 posterior samples. Our proposed approaches instead give meaningful
uncertainty estimates, but we can see that by optimizing the prior precision, our methods get slightly
more confident far from the data.

D.4 Additional results in the UCI classification tasks

In the main paper we present results on five different UCI classification tasks in terms of test negative
log-likelihood. Here, we report also results in terms of test accuracy, Brier score, and expected
calibration error. Results with prior precision optimized are shown in Table 5, while for prior
precision not optimized we refer to Table 6. In both cases, we consider a neural network with a single
fully connected layer consisting of 50 hidden units and tanh activation. We train it using Adam
optimizer [Kingma and Ba, 2015] for 10000 epochs using a learning rate of 1le — 3 and a weight
decay of le — 2.

From the two tables, we can see that our RIEM-LA is better than all the other methods both in terms
of NLL, brier, and ECE. It is also surprising that our method, both the classic and the linearized
approach, are able to improve the accuracy of the MAP estimate in most datasets.

Ours —— MAP
3 LA 37 —— LA mean

5] = Laplace mean o] Our mean
—— Our mean x Test points
14— mapr L. et 1- 2V ylOur

2/VJLA 8

) -4
0 1 2 3 4 5 6 0 1 2 3 4 5 6
POSTERIOR - SINGLE LAYER MODEL PREDICTIVE - SINGLE LAYER MODEL
4 4
Ours —— MAP
3 LA 31 — LA mean
PY Laplace mean 5] Our mean
m—— Our mean - x Test points

2y/V [y|Our
2/VIILA 8

1 MAP L. : 1

=3
7

POSTERIOR - TWO LAYERS MODEL PREDICTIVE - TWO LAYERS MODEL

Figure D.2: Regression results in terms of posterior and predictive distribution using linearized LA
and our linearized manifold approach. Our linearized manifold perform similarly to linearized LA no
matter what model architecture we are considering.

D.5 Complete results on MNIST and FMNIST

For these two image classification tasks we consider a small convolutional neural network. Our
network consists of the following layers: an initial convolutional layer with 4 channels and 5 x 5
filter followed by tanh activation and an average pooling layer. The we have another convolutional
layer still with 4 channels and 5 x 5 kernel also followed by tanh activation and an average pooling
layer. Then we have three fully connected layer with 16, 10, and 10 hidden units respectively and
tanh activation.

We train both models using SGD with a learning rate of 1le — 3 and weight decay of 5e — 4 for 100
epoch. The learning rate is annealed using the cosine decay method [Loshchilov and Hutter, 2017].

In Table 7 and Table 8, we can see that also when we do not optimize the prior precision our RIEM-LA
is mostly performing better than all the alternatives. In particular, for the CNN trained on MNIST
and no prior precision optimization, we have that the MAP is also performing well in terms of NLL
and Brier score. On FashionMNIST, instead, if we do not optimize the prior we have that both our
approaches are better than all the other methods.

D.6 Out-of-distribution results

The benefit of having meaningful and robust uncertainty estimation is that our model would then be
confident in-data region while being uncertain in region without data. Therefore, if this is happening,
then we would expect the model to be able to detect out-of-distribution (OOD) examples more
successfully.

We consider classic OOD images detection tasks, where we train a model on MNIST and tested on
FashionMNIST, EMNIST, and KMNIST and one trained on FMNIST and tested on the remaining
datasets. It’s well known that linearized LA is one of the strongest method for OOD detection

Ours —— MAP

3 LA 37 — LA mean
o] = Laplace mean N Our mean
= Our mean x Test points

MAP . 14

2y/V [y|Our e
2/VIILA 2%

) -4
0 1 2 3 4 5 6 0 1 2 3 4 5 6
POSTERIOR - SINGLE LAYER MODEL PREDICTIVE - SINGLE LAYER MODEL
4 4
—— MAP
3 31 — LA mean
Our mean
2 2

x Test points
14 2\/V [y]Our
2/Vy]LA
N

-2 i e Laplace mean -2
_3 = Our mean _3
= MAP
—4 T T T T T T T —4 T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
POSTERIOR - TWO LAYERS MODEL PREDICTIVE - TWO LAYERS MODEL

Figure D.3: In-between uncertainty example using vanilla LA and our riem-1a approach. Also in
this setting, our vanilla approach is able to overcome the difficulties of vanilla LA in this problem
setting and giving both meaningful samples from the posterior and a reliable predictive distribution.

[Daxberger et al., 2021a]. We consider the same MAP estimates we used in the previous section and
present OOD performance in Table 9 and Table 10.

We can see that our proposed method is consistently working better than linearized and classic LA in
all the considered setting apart for models trained on FMNIST where we do not optimize the prior
precision to compute our initial velocities. In that setting, however, our linearized approach using
batches is getting similar performance than linearized LA.

10

Ours
3 LA
=== Laplace mean

== Our mean

=
=N

== Laplace mean
= Our mean

= MAP

== Laplace mean

| —— Our mean

MAP

POSTERIOR - TWO LAYERS MODEL (BATCH)

Figure D.4: In-between uncertainty example using linearized LA and our linearized manifold. For
our linearized approach we both consider solving the ODEs system using the entire training set and
using subsets of it. We already highlight how our linearized approach tend to overfit on the linearized
loss, and we can clearly see it here from the plots in the center. Using batches to solve the ODEs

system gives more reliable uncertainty estimates.

11

MAP

LA mean
Our mean
Test points

2V lOur

o R 2 VLA
.
Ll
|
ol /
—4

=
=

PREDICTIVE - SINGLE LAYER MODEL

31 ——
x

L 2y/VyLA

MAP
LA mean
Our mean

Test points

2V glour

PREDICTIVE - TWO LAYERS MODEL

L 2y/VyLA

MAP
LA mean \
Our mean

Test points

2V jlOur

PREDICTIVE - TWO LAYERS MODEL (BATCH)

Predictive distribution - HMC

—— Mean

Test points

2Vl

PREDICTIVE - SINGLE LAYER MODEL

Predictive distribution - HMC

— Mean
34 X Test points

2V

PREDICTIVE - TWO LAYERS MODEL

Predictive distribution - HMC

—— Mean
3 x

Test points

2VV Iy,

PREDICTIVE - SINGLE LAYER MODEL

Predictive distribution - HMC

—— Mean

3 x

Test points
2VV1y]

PREDICTIVE - TWO LAYERS MODEL

Figure D.5: Predictive distribution obtained using HMC on all the different regression examples
considered using a one-layer and a two-layers model.

Table 4: Full in-distribution results in the banana dataset. We used 100 samples both for the Laplace

approximation and our method. ECE and MCE are computed using M = 10 bins.

BANANA DATASET

PRIOR PRECISION NOT OPTIMIZED

METHOD Accuracy T NLLJ Brier] ECEJ| MCEJ
MAP 86.69 £+ 0.34 0.333 £ 0.005 0.0930 + 0.0015 5.914+0.34 22.75 £ 2.42
VANILLA LA 48.85 £ 2.32 0.700 £ 0.003 0.2534 + 0.0017 7.10 £ 1.96 23.10 £ 6.69
LIN-LA 86.92 £+ 0.40 0.403 £ 0.012 0.1196 + 0.0044 13.04 + 0.60 17.11 £ 0.54
RIEM-LA 87.14 + 0.20 0.285 £ 0.001 0.0878 + 0.0006 2.75 + 0.22 6.30 + 0.89
RIEM-LA (BATCHES) 87.32 +0.17 0.294 £ 0.002 0.0895 + 0.0004 4.79 +0.31 8.28 +0.84
LIN-RIEM-LA 85.33 £0.31 0.884 £ 0.037 0.1252 + 0.0022 11.50 £ 0.31 36.27 £ 2.84
LIN-RIEM-LA (BATCHES) 86.16 £+ 0.21 0.352 £ 0.002 0.0994 + 0.0011 4.06 +0.11 13.67 4+ 0.69

PRIOR PRECISION OPTIMIZED

METHOD Accuracy T NLLJ} Brier] ECE| MCE]
MAP 86.69 £ 0.34 0.333 £ 0.005 0.0930 £+ 0.0015 5.91 £0.34 22.75 £ 2.42
VANILLA LA 59.50 + 5.07 0.678 £ 0.009 0.2426 + 0.0046 12.08 4+ 2.31 27.49 £ 5.05
LIN-LA 86.99 £+ 0.37 0.325 £ 0.008 0.0956 + 0.0023 6.59 4+ 0.41 11.44 +1.85
RIEM-LA 87.57 + 0.07 0.287 £+ 0.002 0.0886 + 0.0006 2.55 + 0.37 10.95 + 1.16
RIEM-LA (BATCHES) 87.30 £ 0.08 0.286 £ 0.001 0.0890 + 0.0000 2.57 + 0.04 6.08 + 0.67
LIN-RIEM-LA 87.02 +£0.38 0.415 £ 0.029 0.0967 + 0.0024 6.97 + 0.43 21.24 £2.28
LIN-RIEM-LA (BATCHES) 87.77 +0.24 0.298 + 0.006 0.0887 + 0.0011 2.38 + 0.28 8.04 + 1.61

12

MAP SOLUTION

00

PRIOR OPTIMIZED PRIOR NOT OPTIMIZED

RIEM-LA

LIN-LA

LIN-RIEM-LA

LIN-RIEM-LA (BATCH) LIN-RIEM-LA (BATCH)

Figure D.6: Confidence for all the considered approach on the banana dataset. All plots were
computed using 50 MC samples from the posterior. We can notice that our RIEM-LA and LIN-RIEM-
LA with batches are giving the best confidence of all methods followed by linearized LA. We can
also see that our approaches are robust to prior optimization, while linearized LA gets really better if

we optimize the prior precision.

13

MAP SOLUTION

PRIOR OPTIMIZED PRIOR NOT OPTIMIZED

Con., Com
Ay s

VANILLA LA VANILLA LA

RIEM-LA RIEM-LA

LIN-RIEM-LA LIN-RIEM-LA

Figure D.7: Confidence for all the considered approach on the pinwheel dataset. All plots were
computed using 50 MC samples from the posterior. We can notice that in this setting RIEM-LA gives
the better confidence followed by LIN-RIEM-LA. However, priorprecision optimization is making our
approaches more confident outside the data region. Linearized LA struggle in producing meaningful
uncertainty estimates.

14

Table 5: Results for all the different techniques on UCI datasets for classification. Predictive
distribution is estimated using 30 MC samples when prior precision is optimized. Mean and standard
error over 5 different seeds.

PRIOR PRECISION OPTIMIZED

ACCURACY T
DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 79.52 + 0.99 49.61 + 3.05 80.47 +1.12 73.86 +1.47 78.58 +1.31
GLASS 63.75 + 3.60 26.25 + 3.91 67.5 + 3.40 55.62 4+ 2.40 66.25 + 3.47
IONOSPHERE 86.04 + 2.30 58.11 +4.04 90.19 £ 1.95 80.38 4+ 1.57 88.30 +1.12
WAVEFORM 82.27 + 1.66 64.27 + 3.19 84.93 +1.42 77.07 £ 1.52 82.93 + 1.08
AUSTRALIAN 82.30 + 1.00 56.92 + 2.33 84.81+1.03 75.00 + 1.90 82.69 + 0.82
BREAST CANCER 96.08 + 0.73 71.96 + 8.58 96.86 + 0.85 94.90 4+ 0.89 96.08 + 1.30
NLL |
DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 0.975 + 0.081 1.209 £ 0.020 0.454 + 0.024 0.875 + 0.020 0.494 + 0.044
GLASS 2.084 + 0.323 1.737 £0.037 1.047 + 0.224 1.365 £+ 0.058 1.359 £+ 0.299
IONOSPHERE 1.032 £ 0.175 0.673 + 0.013 0.344 + 0.068 0.497 £+ 0.015 0.625 + 0.110
WAVEFORM 1.076 £ 0.110 0.888 + 0.030 0.459 + 0.057 0.640 £ 0.002 0.575 4+ 0.065
AUSTRALIAN 1.306 + 0.146 0.684 + 0.011 0.541 + 0.053 0.570 + 0.016 0.833 +0.108
BREAST CANCER 0.225 + 0.076 0.594 + 0.030 0.176 + 0.092 0.327 £ 0.022 0.202 + 0.073
BRIER J
DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 0.0877 £ 0.0052 0.1654 £ 0.0028 0.0671 + 0.0035 0.1210 £ 0.0028 0.0720 4 0.0048
GLASS 0.1058 4 0.0095 0.1353 4 0.0025 0.0740 £+ 0.0075 0.1102 £ 0.0031 0.0787 £+ 0.0083
IONOSPHERE 0.1308 £ 0.0182 0.2398 £ 0.0064 0.0840 + 0.0127 0.1596 + 0.0069 0.0868 + 0.0095
WAVEFORM 0.1043 £0.0091 0.1766 4+ 0.0065 0.0825 + 0.0076 0.1260 + 0.0011 0.0871 + 0.0053
AUSTRALIAN 0.1642 4+ 0.0105 0.2452 £+ 0.0052 0.1209 + 0.0113 0.1901 +£ 0.0069 0.1340 + 0.0082

BREAST CANCER

0.0351 £ 0.0077

0.2020 £ 0.0148

0.0269 £ 0.0075

0.0866 £ 0.0082

0.0310 + 0.0094

ECE |

DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 16.75 £+ 1.06 15.01 £ 2.41 8.43 +1.06 26.61 +1.40 10.49 +0.95
GLASS 31.77 + 2.67 11.77 +1.08 17.06 £ 2.96 23.17 +1.47 20.84 4+ 2.57
IONOSPHERE 13.92 + 2.02 11.22 £ 1.59 9.05 £ 0.99 15.22 +1.38 7.70 £1.17
WAVEFORM 15.73 £1.29 18.73 £+ 2.41 10.72 £ 1.31 19.12 £ 1.60 9.10 + 0.94
AUSTRALIAN 16.25 £+ 0.96 5.55 £ 1.41 8.49 + 1.62 12.42 4+ 1.43 10.20 £ 0.90
BREAST CANCER 3.85 + 0.89 20.39 + 3.28 3.20+0.72 20.24 + 0.99 3.16 + 0.92

15

Table 6: Results for all the different techniques on UCI datasets for classification. Predictive
distribution is estimated using 30 MC samples when prior precision is not optimized. Mean and
standard error over 5 different seeds.

PRIOR PRECISION NOT OPTIMIZED

ACCURACY 1
DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 79.52 4+ 0.99 23.94 + 1.62 82.05 +1.10 44.88 +1.74 80.16 + 1.45
GLASS 63.75 + 3.60 15.00 £+ 3.24 68.13 + 3.11 30.63 + 3.89 63.75 + 2.88
IONOSPHERE 86.04 + 2.30 47.55 £ 1.72 91.32 + 1.26 69.81 + 4.10 89.81 + 0.68
WAVEFORM 82.27 + 1.66 24.13 +4.30 83.60 + 1.34 54.40 + 2.11 83.47 +1.28
AUSTRALIAN 82.30 + 1.00 40.19 £ 1.77 86.73 +1.10 61.92 + 2.57 84.04 + 0.80
BREAST CANCER 96.08 + 0.73 51.37 +11.68 97.06 +0.73 84.51 + 3.72 95.29 + 1.22
NLL |
DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 0.975 + 0.081 1.424 £ 0.018 0.398 + 0.016 1.197 £ 0.018 0.415 + 0.016
GLASS 2.084 + 0.323 2.057 + 0.084 0.981 + 0.202 1.697 £+ 0.044 1.116 + 0.270
IONOSPHERE 1.032 £0.175 0.726 + 0.011 0.284 + 0.080 0.611 + 0.014 0.289 + 0.023
WAVEFORM 1.076 £ 0.110 1.185 £ 0.031 0.465 + 0.051 0.962 + 0.015 0.456 + 0.059
AUSTRALIAN 1.306 £+ 0.146 0.750 + 0.009 0.518 + 0.070 0.658 + 0.012 0.593 + 0.030
BREAST CANCER 0.225 + 0.076 0.690 + 0.051 0.197 + 0.093 0.503 + 0.0222 0.171 + 0.064
BRIER |
DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 0.0877 4+ 0.0052 0.1917 £0.0020 0.0604 + 0.0024 0.1645 £ 0.0023 0.0657 £ 0.0027
GLASS 0.1058 £+ 0.0095 0.1458 £+ 0.0024 0.0711 + 0.0063 0.1328 4+ 0.0028 0.0768 £+ 0.0067
IONOSPHERE 0.1308 4+ 0.0182 0.2654 £ 0.0053 0.0689 + 0.0076 0.1596 + 0.0069 0.0868 £ 0.0095
WAVEFORM 0.1043 £+ 0.0091 0.2403 £ 0.0068 0.0789 + 0.0056 0.1929 + 0.0033 0.0821 + 0.0060
AUSTRALIAN 0.1642 4+ 0.0105 0.2774 £0.0042 0.1081 + 0.0096 0.2328 £ 0.0059 0.1205 £ 0.0072

BREAST CANCER

0.0351 £+ 0.0077

0.2486 £ 0.0248

0.0263 + 0.0068

0.1597 £+ 0.0106

0.0316 £ 0.0080

ECE |

DATASET MAP VANILLA LA RIEM-LA LINEARIZED LA LINEARIZED RIEM-LA
VEHICLE 16.75 £ 1.06 10.78 £ 1.31 6.65 + 0.81 9.00 + 1.32 5.43 +0.74
GLASS 31.77 + 2.67 15.27 £ 1.11 14.84 + 2.23 8.18 £+ 2.30 19.63 £ 1.74
IONOSPHERE 13.92 £ 2.02 11.77 £ 2.07 6.32 + 0.85 13.25 £ 1.99 8.47 £ 1.27
WAVEFORM 15.73 £ 1.29 18.50 £ 4.41 6.34 +1.01 10.17 £ 1.74 5.32 +£0.94
AUSTRALIAN 16.25 £ 0.96 16.98 £1.70 5.92 +1.50 7.17+£0.79 6.36 = 0.97
BREAST CANCER 3.85 + 0.89 23.00 + 5.45 3.27 1+ 0.68 21.63 4+ 3.01 3.09 + 0.55

16

Table 7: Results on a simple CNN architecture on MNIST dataset. We train the network on 5000
examples and test the in-distribution performance on the test set, which contains 8000 examples. We
used 25 Monte Carlo samples to approximate the predictive distribution and in cases we used a subset
of the data to solve the ODEs system we rely on 1000 samples. Calibration metrics are computed

using 15 bins.

MNIST DATASET

PRIOR PRECISION NOT OPTIMIZED

METHOD Accuracy T NLL| Brier] ECEJ MCE]
MAP 95.02 £ 0.17 0.167 + 0.005 0.0075 + 0.0002 1.05+0.14 39.94 + 14.27
VANILLA LA 8.10 £0.74 2.521 4+ 0.006 0.0937 4 0.0000 11.79 £ 0.83 35.69 + 6.47
LIN-LA 94.00 + 0.29 0.350 £ 0.008 0.0143 £+ 0.0004 16.94 £+ 0.20 35.60 + 0.09
RIEM-LA 96.18 +0.23 0.177 +£0.007 0.0073 + 0.0003 7.10 £0.23 25.41 + 1.96
RIEM-LA (BATCHES) 94.98 + 0.20 0.284 + 0.008 0.0111 4 0.0004 13.64 £ 0.20 29.23 + 0.50
LIN-RIEM-LA 95.12 + 0.27 0.180 + 0.006 0.0080 £ 0.0003 4.19 4 0.07 22.02 + 3.97
LIN-RIEM-LA (BATCHES) 94.63 £ 0.19 0.229 + 0.007 0.0097 + 0.0004 7.84 +0.18 28.74 + 3.67

PRIOR PRECISION OPTIMIZED

METHOD Accuracy T NLLJ} Brier| ECEJ MCEJ
MAP 95.02 + 0.17 0.167 £ 0.005 0.0075 4 0.0002 1.05+0.14 39.94 + 14.27
VANILLA LA 88.69 + 1.84 0.871 £ 0.026 0.0393 + 0.0013 42.11 £ 1.22 50.52 + 1.45
LIN-LA 94.91 + 0.26 0.204 + 0.006 0.0087 £+ 0.0003 6.30 4+ 0.08 39.30 + 16.77
RIEM-LA 96.74 + 0.12 0.115 + 0.003 0.0052 + 0.0002 2.48 +0.06 38.03 £ 15.02
RIEM-LA (BATCHES) 95.67 £ 0.19 0.170 £ 0.005 0.0072 £+ 0.0002 5.40 £ 0.06 22.40 + 0.51
LIN-RIEM-LA 95.44 + 0.18 0.149 + 0.004 0.0068 4 0.0003 0.66 + 0.03 39.40 £ 14.75
LIN-RIEM-LA (BATCHES) 95.14 + 0.20 0.167 £ 0.004 0.0076 4 0.0002 3.23+£0.04 18.10 + 2.50

Table 8: Results on a simple CNN architecture on FMNIST dataset. We train the network on 5000
examples and test the in-distribution performance on the test set, which contains 8000 examples. We
used 25 Monte Carlo samples to approximate the predictive distribution and in cases we used a subset
of the data to solve the ODEs system we rely on 1000 samples. Calibration metrics are computed

using 15 bins.

FMNIST DATASET

PRIOR PRECISION NOT OPTIMIZED

METHOD Accuracy T NLLJ Brier| ECEJ MCE/]
MAP 79.88 + 0.09 0.541 £ 0.002 0.0276 £ 0.0000 1.66 + 0.07 24.07 £ 1.50
VANILLA LA 10.16 £ 0.59 2.548 + 0.050 0.0936 4+ 0.0007 10.79 £1.05 27.19 + 6.64
LIN-LA 79.18 £ 0.14 0.640 £ 0.004 0.0308 4 0.0001 10.99 £+ 0.54 18.69 + 0.57
RIEM-LA 82.70 £ 0.23 0.528 + 0.004 0.0262 + 0.0002 9.95 £+ 0.38 19.11 £ 0.43
RIEM-LA (BATCHES) 80.77 £ 0.10 0.582 + 0.004 0.0285 4+ 0.0001 10.34 £ 0.60 18.52 + 0.64
LIN-RIEM-LA 80.94+0.20 0.528 +0.004 0.0265+0.0002 1.59+0.18 17.58 + 3.60
LIN-RIEM-LA (BATCHES) 79.95 + 0.22 0.567 £ 0.005 0.0281 £ 0.0002 4.79 +£0.58 16.35 + 1.88

PRIOR PRECISION OPTIMIZED

METHOD Accuracy T NLL| Brier] ECEJ MCE]
MAP 79.88 4+ 0.09 0.541 £ 0.002 0.0276 4+ 0.0000 1.66 + 0.07 24.07 + 1.50
VANILLA LA 74.88 4+ 0.83 1.026 4 0.046 0.0482 4+ 0.0019 31.63 +1.28 43.61 £ 2.95
LIN-LA 79.85 + 0.13 0.549 + 0.001 0.0278 4+ 0.0000 3.23+£0.44 37.88 £17.98
RIEM-LA 83.33 £0.17 0.472 + 0.001 0.0237 4+ 0.0001 3.13 £ 0.48 10.94 £+ 2.11
RIEM-LA (BATCHES) 81.65 + 0.18 0.525 + 0.004 0.0263 4 0.0002 5.80 £ 0.73 35.30 £ 18.40
LIN-RIEM-LA 81.33 £ 0.10 0.521 £+ 0.004 0.0261 4+ 0.0002 1.59 + 0.40 25.53 £ 0.10
LIN-RIEM-LA (BATCHES) 80.49 +£0.13 0.529 + 0.003 0.0269 + 0.0002 2.10 +0.42 6.14 + 1.42

17

Table 9: AUROC 7 for OOD tasks for models trained on MNIST and tested against FashionMNIST,
EMNIST, KMNIST. (B) indicates exponential maps solved using a subset of the training set. We can
notice that our proposed RIEM-LA is consistently performing better than all the other approaches for
OOD detection.

PRIOR PRECISION NOT OPTIMIZED

OOD DATA MAP VANILLA LA RIEM-LA LIN. LA LIN. RIEM-LA RIEM-LA (B) LIN. RIEM-LA (B)

FMNIST 0.777 £0.057 0.523 £0.020 0.911 £0.011 0.876 £0.018 0.873 £0.023 0.891 +0.013 0.862 £ 0.026
EMNIST 0.851£0.008 0.490 £0.015 0.900 £ 0.004 0.897 +0.005 0.905+0.003 0.8724+0.005 0.901 & 0.004
KMNIST 0.877£0.005 0.511£0.013 0.949+£0.002 0.93040.002 0.941 £0.002 0.938 £ 0.003 0.941 £ 0.002

PRIOR PRECISION OPTIMIZED

OOD DATA MAP VANILLA LA RIEM-LA LIN. LA LIN. RIEM-LA RIEM-LA (B) LIN. RIEM-LA (B)

FMNIST 0.777 £ 0.057 0.681 +0.029 0.917 4+ 0.017 0.854+0.024 0.809 4+ 0.027 0.897 £ 0.012 0.841 £ 0.025
EMNIST ~ 0.85140.008 0.768+0.018 0.917+0.001 0.888+0.006 0.871£0.003 0.899 £ 0.003 0.888 £ 0.003
KMNIST 0.877£0.005 0.813+£0.012 0.953 +£0.001 0.921 +0.003 0.906 £ 0.002 0.948 £ 0.002 0.926 £ 0.002

Table 10: AUROC 1 for OOD tasks for models trained on FashionMNIST and tested against MNIST,
EMNIST, KMNIST. (B) indicates exponential maps solved using a subset of the training set. It is
interesting to notice that if we do not optimize the prior precision, then LIN-LA is performing the best
together with our linearized approaches. If we optimize the prior, RIEM-LA performs the best of all
approaches.

PRIOR PRECISION NOT OPTIMIZED

OOD DATA MAP VANILLA LA RIEM-LA LIN. LA LIN. RIEM-LA RIEM-LA (B) LIN. RIEM-LA (B)

MNIST 0.7154+0.022 0.494+0.014 0.895+0.010 0.937£0.012 0.929 +£0.015 0.917 + 0.006 0.940 £ 0.012
EMNIST 0.649 £0.009 0.495+0.013 0.7944+0.011 0.907 +0.007 0.881 4 0.009 0.814 4+ 0.016 0.891 4 0.008
KMNIST 0.718 £0.013 0.495£0.013 0.886 £0.006 0.924 +0.005 0.921 +0.007 0.898 & 0.007 0.925 £+ 0.006

PRIOR PRECISION OPTIMIZED

OOD DATA MAP VANILLA LA RIEM-LA LIN. LA LIN. RIEM-LA RIEM-LA (B) LIN. RIEM-LA (B)

MNIST 0.7154+0.022 0.861 £0.037 0.921 £0.011 0.864 £ 0.020 0.807+0.016 0.934 £ 0.005 0.869 £ 0.016
EMNIST 0.649 4 0.009 0.765 4 0.050 0.857 £0.009 0.806 + 0.004 0.7504+0.012 ~ 0.851 £+ 0.010 0.795 4 0.001
KMNIST 0.718 £0.013 0.827£0.030 0.910£0.006 0.846 + 0.010 0.800 +0.009 0.907 £ 0.006 0.849 £ 0.009

18

	Introduction
	Background
	The Laplace approximation

	Riemannian Laplace approximations
	A loss-aware Riemannian geometry
	The proposed approximate posterior
	Efficient implementation

	Related work
	Experiments
	Regression problem
	Classification problems

	Conclusion and future directions
	Laplace background
	Riemannian geometry
	Implementation details
	Cost of solving the ode system
	Analysis of exponential map

	Experiments details and additional results
	Regression example
	Illustrative 2D classification example
	An additional illustrative example
	Additional results in the UCI classification tasks
	Complete results on MNIST and FMNIST
	Out-of-distribution results

