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Abstract

How we choose to represent our data has a funda-
mental impact on our ability to subsequently extract
information from them. Machine learning promises
to automatically determine efficient representations
from large unstructured datasets, such as those aris-
ing in biology. However, empirical evidence suggests
that seemingly minor changes to these machine learn-
ing models yield drastically different data representa-
tions that result in different biological interpretations
of data. This begs the question of what even consti-
tutes the most meaningful representation. Here, we
approach this question for representations of protein
sequences, which have received considerable atten-
tion in the recent literature. We explore two key
contexts in which representations naturally arise:
transfer learning and interpretable learning. In the
first context, we demonstrate that several contem-
porary practices yield suboptimal performance, and
in the latter we demonstrate that taking represen-
tation geometry into account significantly improves
interpretability and lets the models reveal biological
information that is otherwise obscured.

Introduction

Data representations play a crucial role in the statisti-
cal analysis of biological data. At its core, a represen-
tation1 is a distillation of raw data into an abstract,
high-level and often lower dimensional space that
captures the essential features of the original data.
This can subsequently be used for data exploration,
e.g. through visualization, or task-specific predictions
where limited data is available. Given the impor-
tance of representations it is no surprise that we see
a rise in biology of representation learning [1], a sub-
field of machine learning where the representation
is estimated alongside the statistical model. In the
analysis of protein sequences in particular, the last
years have produced a number of studies that demon-

1We note that ‘representation’, ‘feature’ and ‘embedding’
all seem to be used interchangeably in the literature.

strate how representations can help extract impor-
tant biological information automatically from the
millions of observations acquired through modern se-
quencing technologies [2–14]. While these promising
results indicate that learned representations can have
substantial impact on scientific data analysis, they
also beg the question: what is a good representation?
This elementary question is the focus of this paper.

A classic example of representation learning is prin-
cipal component analysis (PCA) [15], which learns
features that are linearly related to the original data.
Contemporary techniques dispel with the assump-
tion of linearity and instead seek highly non-linear
relations [1], often by employing neural networks.
This has been particularly successful in natural lan-
guage processing (NLP), where representations of
word sequences are learned from vast online textual
resources, extracting general properties of language
that support subsequent specific language tasks [16–
18]. The success of such word sequence models has
inspired its use for modelling biological sequences,
leading to impressive results in application areas
such as remote homologue detection [19], function
classification [20] and prediction of mutational effects
[6].

Since representations are becoming an important
part of biological sequence analysis, we should think
critically about whether the constructed representa-
tions efficiently capture the information we desire.
This paper discusses this topic, with focus on protein
sequences, although many of the insights apply to
other biological sequences as well [13]. Our work
consists of two parts. First, we consider representa-
tions in the transfer-learning setting. We investigate
the impact of network design and training protocol
on the resulting representation, and find that sev-
eral current practices are suboptimal. Second, we
investigate the use of representations for the pur-
pose of data interpretation. We show that explicit
modeling of the representation geometry allows us
to extract robust and identifiable biological conclu-
sions. Our results demonstrate a clear potential for
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Figure 1: Representations of protein sequences. During the pre-training phase, a model is trained to
embed or encode input protein sequences (s1, s2, ..., sL), to a local representation (r1, r2, ..., rL), after which
it is decoded to be as similar as possible to the original sequence. After the pre-training stage, the learned
representation can be used as a proxy for the raw input sequence, either for direct visual interpretation,
or as input to a supervised model trained for a specific task (transfer-learning). When working in the
transfer-learning setting, it is possible to also update the parameters of the encoder while training on the
specific task, thereby fine-tuning the representation to the task of interest. For interpretation or for prediction
of global properties of proteins, the local representations ri, are aggregated into a global representation, often
using a simple procedure such as averaging over the sequence length. For visualization purposes these global
representations are then often dimensionality reduced using standard procedures such as PCA or t-SNE.

designing representations actively, and for analyzing
them appropriately.

Results

Representation learning has at least two uses: In
transfer learning we seek a representation that im-
proves a downstream task, and in data interpretation
the representation should reveal the data’s underly-
ing patterns, e.g. through visualization. Since the
first has been at the center of recent literature [4, 5,
8–10, 20, 21], we place our initial focus there, and
turn later to data interpretation.

Representations for transfer learning

Transfer learning addresses the problems caused by
limited access to labeled data. For instance, when
predicting the stability of a given protein, we only
have limited training data available as it is experi-
mentally costly to measure stability. The key idea
is to leverage the many available unlabeled protein
sequences to learn (pre-train) a general protein rep-
resentation through an embedding model, and then
train a problem-specific task model on top using the
limited labeled training data (Figure 1).

In the protein setting, learning representations for
transfer-learning can be implemented at different
scopes. It can be addressed at a universal scope,

where representations are learned to reflect general
properties of all proteins, or it can be implemented
at the scope of an individual protein family, where
an embedding model is pre-trained only on closely
related sequences. Initially, we will focus on universal
setting, but will return to family specific models in
the second half of the paper.

When considering representations in the transfer-
learning setting, the quality, or meaningfulness, of
a representation is judged merely by the level of
predictive performance obtained by one or more
downstream tasks. Our initial task will therefore be
to study how this performance depends on common
modeling assumptions. A recent study established
a benchmark set of predictive tasks for protein se-
quence representations [5]. For our experiments
below, we will consider three of these tasks, each
reflecting a particular global protein property: 1)
classification of protein sequences into a set of 1,195
known folds [22], 2) fluorescence prediction for vari-
ants of the green fluorescent protein in Aequorea
victoria [23], and 3) prediction of the stability of
protein variants obtained in high throughput experi-
mental design experiments [24].

Fine-tuning can be detrimental to perfor-
mance. In the transfer-learning setting, the pre-
training phase and the task learning phase are con-
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Remote Homology Fluorescence Stability
Resnet LSTM Trans Resnet LSTM Trans Resnet LSTM Trans

Pre+Fix 0.27 0.37 0.27 0.23 0.74 0.48 0.65 0.70 0.62
Pre+Fin 0.17 0.26 0.21 0.21 0.67 0.68 0.73 0.69 0.73
Rng+Fix 0.03 0.10 0.04 0.25 0.63 0.14 0.21 0.61 -
Rng+Fin 0.10 0.12 0.09 -0.28 0.21 0.22 0.61 0.28 -0.06

Baseline 0.09 (Accuracy) 0.14 (Correlation) 0.19 (Correlation)

Table 1: The impact of fine-tuning and initialization on downstream model performance. The embedding
models were either randomly initialized (Rng) or pre-trained (Pre), and subsequently either fixed (Fix) or
fine-tuned to the task (Fin). The baseline is a simple one-hot encoding of the sequence. Although fine-tuning
is beneficial on some task/model combinations, we see clear signs of overfitting in the majority of cases (best
results in bold).

ceptually separate (Figure 1, left), but it is common
practice to fine-tune the embedding model for a given
task, which implies that the parameters of both mod-
els are in fact optimized jointly [5]. Given the large
number of parameters typically employed in embed-
ding models, we hypothesize that this can lead to
overfitted representations, at least in the common
scenario where only limited data is available for the
task learning phase.

To test this hypothesis we train three models, an
LSTM [25], a Transformer [26], and a dilated resid-
ual network (Resnet) [27] on a diverse set of protein
sequences extracted from Pfam[28], where we either
keep the embedding model fixed (Fix) or fine-tune
it to the task (Fin). To evaluate the impact of
the representation model itself, we consider both a
pre-trained version (Pre) and randomly initialized
representation models that are not trained on data
(Rng). Such models will map similar inputs to simi-
lar representations, but should otherwise not perform
well. Finally, as a naive baseline representation, we
consider the direct one-hot encoding of each amino
acid in the sequence. In all cases, we extract global
representations using an attention-based averaging
over local representations (Figure 1, right).

Table 1 shows that fine-tuning the embedding
clearly reduces test performance in two out of three
tasks, confirming that fine-tuning can have signifi-
cant detrimental effects in practice. Incidentally, we
also note that the randomly initialized representa-
tion performs remarkably well in several cases, which
echoes results known from random projections [29].

Implication: fine-tuning a representation to a spe-
cific task carries the risk of overfitting, since it often
increases the number of free parameters substantially,
and should therefore take place only under rigorous
cross validation. Fixing the embedding model during
task-training should be the default choice.

Constructing a global representation as an av-
erage of local representations is suboptimal.
One of the key modeling choices for biological se-
quences is how to handle their sequential nature.
Inspired by developments in natural language pro-
cessing, most of the recent representation learning
advances for proteins use language models, which
aim to reproduce their own input, either by predict-
ing the next character given the sequence observed
so far, or by predicting the entire sequence from a
partially obscured input sequence. The representa-
tion learned by such models is a sequence of local
representations (r1, r2, ..., rL) each corresponding to
one amino acid in the input sequence (s1, s2, ..., sL).
To successfully predict the next amino acid, ri should
contain information about the local neighborhood
around si, together with some global signal reflect-
ing properties of the complete sequence. In order to
obtain a global representation of the entire protein,
the variable number of local representations must
be aggregated into a fixed-size global representation.
A priori, we would expect this choice to be quite
critical to the nature of the resulting representation.
Standard approaches for this operation include av-
eraging with uniform [4, 10] or learned attention
[5, 30, 31] weights or simply using the maximum
value. However, the complex non-local interactions
known to occur in a protein suggest that it could
be beneficial to allow for more complex aggregation
functions. To investigate this issue, we consider two
alternative strategies (Figure 1, right):

The first strategy (Concat) avoids aggregation al-
together by concatenating the local representations
r = [r1, r2, ..., rL, p, p, p] (with additional padding
p to adjust for variable sequence-length). This ap-
proach preserves all information stored in the local
ris. To make a fair comparison to the averaging
strategy, we maintain the same overall representa-
tion size by scaling down the size of of the local
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representations ri. In our case, with a global rep-
resentation size of 2048, and a maximal sequence
length of 512, this means that we restrict the local
representation to only four dimensions.

As a second strategy (Bottleneck), we investigate
the possibility of learning the optimal aggregation
operation, using an autoencoder, a simple neural
network that as output predicts its own input, but
forces it through a low-dimensional bottleneck [32].
The model thus learns a generic global representa-
tion during pre-training, in contrast to the strategies
above in which the global representation arises as a
deterministic operation on the learned local repre-
sentations. We implement the Bottleneck strategy
within the Resnet (convolutional) setting, where we
have well-defined procedures for down- and upsam-
pling the sequence length.

When comparing the two proposed aggregation
strategies on the three protein prediction tasks (Sta-
bility, Fluorescence, Remote Homology), we observe
a quite dramatic impact on performance (Table 2).
The Bottleneck strategy, where the global repre-
sentation is learned, clearly outperforms the other
strategies. This was expected, since already dur-
ing pre-training this model is encouraged to find a
more global structure in the representations. More
surprising are the results for the Concat strategy,
as these demonstrate that even if we restrict the
local representation to be much smaller than in stan-
dard sequential models, the fact that there is no loss
of information during aggregation has a significant
positive influence on the downstream performance.

Implication: if a global representation of proteins
is required, it should be learned rather than calculated
as an average of local representations.

Reconstruction error is not a good measure
of representation quality. Any choice of embed-
ding model will have a number of hyper parameters,
such as the number of nodes in the neural network or
the dimensionality of the representation itself. How
do we choose such parameters? A common strategy
is to make these choices based on the reconstruction
capabilities of the embedding model, but is it rea-
sonable to expect that this is also the optimal choice
from the perspective of the downstream task?

As an example, we will consider the task of finding
the optimal representation size. We trained and eval-
uated several Bottleneck Resnet models with varying
representation dimensions and applied them to the
three downstream tasks. The results show a clear
pattern where the reconstruction accuracy increases
monotonically with latent size, with the sharpest in-

Stability
(Corr.)

Fluorescence
(Corr.)

Homology
(Acc.)

Mean 0.42 0.19 0.27
Attention 0.65 0.23 0.27
Light Att. 0.66 0.23 0.27
Maximum 0.02 0.02 0.28
MeanMax 0.37 0.15 0.26
KMax 0.10 0.11 0.27
Concat 0.74 0.69 0.34
Bottleneck 0.79 0.78 0.41

Table 2: Comparison of strategies for obtaining
global, sequence-length independent representations
on three downstream tasks [5]. The first six are
variants of averaging used in the literature, using
uniform weights (Mean), some variant of learned
attention weights (Attention [5], Light Attention
[30]), or averages of the local representation with
the highest attention weight (Maximum, MeanMax,
KMax(K=5)). They all use the same pretrained and
backbone Resnet model, while the last two entries
use modified Resnet architectures using either a very
low-dimensional feature representation (Concat), or
an autoencoder-like structure downsample the rep-
resentation length. In all cases, training proceeded
without fine-tuning. The results demonstrate that
simple alternatives such as concatenating smaller lo-
cal representations (Concat) or changing the model
to directly learn a global representation (Bottleneck)
can have a substantial impact on performance (best
results in bold).

crease in the region of 10 to 500, but with marginal
improvements all the way up to the maximum size of
10000 (Figure S1). However, if we consider the three
downstream tasks, we see that the performance in all
three cases starts decreasing at around size 500-1000,
thus showing a discrepancy between the optimal
choice with respect to the reconstruction objective
and the downstream task objectives. It is important
to stress that the reconstruction accuracy is mea-
sured on a validation set, so our observation is not
a matter of overfitting to the training data. We em-
ployed a carefully constructed train/validation/test
partition of UniProt [33] provided by Armenteros
et al [21], to avoid overlap between the sets. The
results thus show that there is enough data for the
embedding model to support a large representation
size, while the downstream tasks prefer a smaller in-
put size. The exact behavior will depend on the task
and the available data for the two training phases,
but we can conclude that there is generally no rea-
son to believe that reconstruction accuracy and the
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Figure 2: Latent embedding of the protein family of β-lactamase, color-coded by taxonomy at the phyla
level. In the upper row, we embed the family using sequential models (LSTM, Resnet, Transformer) trained
on the full corpus of protein families. In the lower row we train the same sequential models again only on
the β-lactamase family (PFAM PF00144 [28]). For the models in the first three columns, a simple mean
strategy is employed to extract a global representation from local representations, while the fourth column
uses the Bottleneck aggregation method. Finally, in the last column, we show the result of preprocessing the
sequences in a multiple sequence alignment and applying a dense variational autoencoder (VAE) model. We
see clear differences in how well the different phyla are separated, which demonstrates the impact that model
choice and data preprocessing can have on the learned representation.

downstream task accuracy will agree on the optimal
choice of hyperparameters. Similar findings were
reported in the TAPE study [5].

Implication: in transfer-learning, optimal values
for hyperparameters (e.g. representation size) can in
general not be estimated during pre-training. They
must be tuned for the specific task.

Representations for data interpretation

We now return to the use of representations for
data interpretation. If a representation accurately
describes structure in the underlying dataset, we
might expect it to be useful not only as input to a
downstream model, but also as the basis for direct
interpretation, for instance through visualization.
In this context, it is important to realize that dif-
ferent modeling choices can lead to dramatically
different interpretations of the same data. More
troubling, even when using the same model assump-
tions, repeated training instances can also deviate
substantially, and we must therefore analyze our in-
terpretations with care. In the following, we explore
these effects in detail.

Representation manifolds are shaped by
scope, model architecture and data prepro-
cessing. Recent models for proteins tend to learn
universal, cross-family representations of protein
space. In bioinformatics, there is, however, a long
history of analyzing proteins per family. Since the

proteins in the same family share a common three-
dimensional structure, an underlying correspondence
exists between positions in different sequences, which
we can approximate using multiple sequence align-
ment techniques. After establishing such an align-
ment, all input sequences will have the same length,
making it possible to use simple fixed-size input
models, rather than the sequential models discussed
previously. One advantage is that models can now
readily detect patterns at and correlations between
absolute positions of the input, and directly observe
both conservation and coevolution. In terms of inter-
pretability, this has clear advantages. An example of
this approach is the DeepSequence model [2, 12], in
which the latent space of a Variational Autoencoder
(VAE) was shown to clearly separate the input se-
quences into different phyla, and capture covariance
among sites on par with earlier coevolution meth-
ods. We reproduce this result using a VAE on the
β-lactamase family PF00144 from PFAM [28], using
a 2 dimensional latent space (Figure 2I).

If we use the universal, full-corpus, sequence mod-
els (LSTM, Resnet, Transformer) and the Bottleneck
Resnet from the previous sections to embed the same
set of proteins from the β-lactamase family and use
t-SNE [34] to reduce the dimensionality of the pro-
tein representations into a two dimensional space,
we see no clear phylogenetic separation in the case
of LSTM and Resnet, and very little for the Trans-
former and the Bottleneck Resnet (Figure 2, top
row). The fact that the phyla are much less clearly
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resolved in these sequential models is perhaps un-
surprising, since these models have been trained to
represent the space of all proteins, and therefore do
not have the same capacity to separate details of
a single protein family. Indeed, to compensate for
this, recent work has introduced the concept of evo-
tuning, where a universal representation is fine-tuned
on a single protein family [4, 35].

When training exclusively on β-lactamase se-
quences (Figure 2, bottom row) we observe more
structure for all models, but only the Transformer
and Bottleneck Resnet are able to fully separate the
different phyla. Comparing this to an alignment-
based VAE model, we still see large differences in
protein representations, despite the fact that all mod-
els now are trained on the same corpus of proteins.

The observed differences between representations
is a combined effect arising from the following factors:
1) the inductive biases underlying the different model
architectures, 2) the domain-specific knowledge in-
serted through preprocessing sequences when con-
structing an alignment, and 3) the post-processing
of representation space to make it amenable to visu-
alization in 2D (Figure 2A-H were processed using
t-SNE, see Figure S3-S4 for equivalent plots using
PCA). Often, these contributions are interdependent,
and therefore difficult to disentangle. For instance,
the VAE can use a simple model architecture only
because the sequences have been preprocessed into
an alignment. Likewise, the simplicity of the VAE
makes it possible to limit the size of the bottleneck
to only 2 dimensions, and thereby avoid the need for
post-hoc dimensionality reduction, which itself can
itself have a substantial impact on the obtained rep-
resentation (Figure S3-S4). Ideally, we would wish to
directly obtain 2D representations for the sequential
models as well, but all attempts to train variants of
the LSTM, ResNet, and Transformer models with
2D latent representations were unfruitful. This sug-
gests that the additional complexity inherent in the
sequential modeling of unaligned sequences places re-
strictions on how simple we can make the underlying
latent representation (see discussion in Supplemen-
tary Material).

Continuous progress is being made in the area of
sequential modeling and its use for protein repre-
sentation learning [6–8, 10, 36, 37]. In particular,
transformers, when scaled up to hundreds of millions
of parameters, have been shown capable of recover-
ing the covariances among sites in a protein [37, 38].
When embedding the beta-lactamase sequences using
these large pretrained transformer models, we indeed
also see an improved separation of phyla (Figure S5).

It remains an open question whether representations
extracted from such large transformer models will
eventually be able to capture more information than
what can be extracted using a simple model and a
high quality sequence alignment.

Implication: the scope of data (all proteins vs. sin-
gle protein families), whether data is preprocessed
into alignments, the model architecture, and potential
post-hoc dimensionality reduction all have fundamen-
tal impact on the resulting representations, and the
conclusions we can hope to draw from them. How-
ever, these contributions are often interdependent
and difficult to disentangle in practice.

Representation space topology carries rele-
vant information. The star-like structure of the
VAE representation in Figure 2I, and the associated
phyla color-coding strongly suggest that the topology
of this particular representation space is related to
the tree topology of the evolutionary history under-
lying the protein family [39]. As an example of the
potential and limits to representation interpretabil-
ity, we will proceed with a more detailed analysis of
this space.

To explore the topological origin of the represen-
tation space, we estimate a phylogenetic tree of a
subset of our input data (n = 200), and encode the
inner nodes of the tree to our latent space using a
standard ancestral reconstruction method (see Meth-
ods). Although the fit is not perfect – a few phyla
are split and placed on opposite sides of the origin –

Figure 3: A phylogenetic tree encoded into the
latent representation space. The representation and
colors correspond to Fig. 2I. The internal nodes
were determined using ancestral reconstruction after
inferring a phylogenetic tree (branches encoded in
black, leaf-nodes in gray).
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there is generally a good correspondence (Figure 3).
We see that the reconstructed ancestors to a large
extent span a meaningful tree, and it is thus clear
that the representation topology in this case reflects
relevant topological properties from the input space.

Implication: Although neural networks are high
capacity function estimators, we see empirically that
topological constraints in input space are maintained
in representation space. The latent manifold is thus
meaningful and should be respected when relying on
the representation for data interpretation.

Geometry gives robust representations. Per-
haps the most exciting prospect of representation
learning is the possibility of gaining new insights
through interpretation and manipulation of the
learned representation space. In NLP, the celebrated
word2vec model [40] demonstrated that simple arith-
metic operations on representations yielded mean-
ingful results, e.g. “Paris - France + Italy = Rome”,
and similar results are known from image analysis.
The ability to perform such operations on proteins
would have substantial impact on protein engineer-
ing and design, for instance making it possible to
interpolate between biochemical properties or func-
tional traits of a protein. What is required of our
representations to support such interpolations?

To qualify the discussion, we note that standard
arithmetic operations such as addition and subtrac-
tion rely on the assumption that the learned repre-
sentation space is Euclidean. The star-like structure
observed for the alignment-based VAE representa-
tion in Figure 3 suggests that a Euclidean interpreta-
tion may be misleading: If we define similarities be-
tween pairs of points through the Euclidean distance
between them, we implicitly assume straight-line
interpolants that pass through uncharted territory
in the representation space when moving between
‘branches’ of the star-like structure. This does not
seem fruitful.

Mathematically, the Euclidean interpretation is
also problematic. In general, the latent variables
of a generative model are not statistically identifi-
able, such that it is possible to deform the latent
representation space without changing the estimated
data density [41, 42]. The Euclidean topology is also
known to cause difficulties when learning data mani-
folds with different topologies [43, 44]. With this in
mind, the Euclidean assumption is difficult to justify
beyond arguments of simplicity, as Euclidean arith-
metic is not invariant to general deformations of the
representation space. It has recently been pointed
out that shortest paths (geodesics) and distances

between representation pairs can be made identi-
fiable even if the latent coordinates of the points
themselves are not [42, 45]. The trick is to equip
the learned representation with a Riemannian met-
ric which ensures that distances are measured in
data space along the estimated manifold. This result
suggests that perhaps a Riemannian set of opera-
tions is more suitable for interacting with learned
representations than the usual Euclidean arithmetic
operators.

To investigate this hypothesis, we develop a suit-
able Riemannian metric, such that geodesic distances
correspond to expected distances between one-hot
encoded proteins, which are integrated along the
manifold. The VAE defines a generative distribution
p(X|Z) that is governed by a neural network. Here
Z is a latent variable, and X a one-hot encoded pro-
tein sequence. To define a notion of distance and
shortest path we start from a curve c in latent space,
and ask what is its natural length? We parametrize
the curve as c : [0, 1] → Z, where Z is the latent
space, and write ct to denote the latent coordinates
of the curve at time t. As the latent space can be
arbitrarily deformed it is not sensible to measure
the curve length directly in the latent space, and
the classic geometric approach is to instead measure
the curve length after a mapping to input space [42].
For proteins, this amounts to measuring latent curve
lengths in the one-hot encoded protein space. Short-
est paths can then be found by minimizing curve
length, and a natural distance between latent points
is the length of this path.

An issue with this approach is that the VAE de-
coder is stochastic, such that the decoded curve is
stochastic as well. To arrive at a practical solu-
tion, we recall that shortest paths are also curves of
minimal energy [42] defined as

E(c) =
T−1∑

t=1

‖Xt+1 −Xt‖2 , (1)

where Xt ∼ p(X|Z = ct) denote the protein sequence
corresponding to latent coordinate ct. Due to the
stochastic decoder, the energy of a curve is a random
variable. For continuous X, recent work [45] has
shown promising results when defining shortest paths
as curves with minimal expected energy. In the
Methods section we derive a similar approach for
discrete one-hot encoded X and provide the details of
the resulting optimization problem and its numerical
solution.

To study the potential advantages of using
geodesic over Euclidean distances, we analyze the
robustness of our proposed distance. Since VAEs
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Figure 4: Geodesics provide more robust and meaningful distances in latent space. a) robustness of
distances in latent space when calculated between the same data points embedded using models trained
with different seeds. The plots show the distribution of standard deviations of normalized distances over
five different models. b) Correlation between distances in latent space and phylogenetic distances, where
standard deviations are calculated over 5 subsets of distances sampled with different seeds. Latent points
were selected with probability proportional to their norm, to ensure a selection of distances covering the full
range of latent space. The values for Transformer and VAE were calculated as Euclidean distances in their
representation space (512 and 2 dimensional, respectively).

are not invariant to reparametrization we do not
expect pairwise distances to be perfectly preserved
between different initialization of the same model,
but we hypothesize that the geodesics should provide
greater robustness. We train the model 5 times with
different seeds (see Figure S9) and calculate the same
subset of pairwise distances. We normalize each set
of pairwise distances by their mean and compute the
distance standard deviation across trained models.
When using normalized Euclidean distance we ob-
serve a mean standard deviation of 0.23, while for
normalized geodesics distances we obtain a value of
0.11 (Fig. 4(a)). This significant difference indicates
that geodesic distances are more robust to model
retraining than their Euclidean counterparts.

Implication: distances and interpolation between
points in representation space can be made robust by
respecting the underlying geometry of the manifold.

Geodesics give meaning to representations.
To further investigate the usefulness of geodesics,
we revisit the phylogenetic analysis of Figure 3, and
consider how well distances in representation space
correlate with the corresponding phylogenetic dis-
tances. The first two panels of Fig. 4(b) show the
correlation between 500 subsampled Euclidean dis-
tances and phylogenetic distances in a Transformer
and a VAE representation, respectively. We observe
very little correlation in the Transformer represen-
tation, while the VAE fares somewhat better. The
third panel of Fig. 4(b) shows the correlation be-
tween geodesic distances and phylogenetic distances
for the VAE. We observe that the geodesic distances
significantly increases the linear correlation for par-

ticular short-to-medium distances. Finally, in the
last panel, we include as a baseline the expected
Hamming distance, i.e. latent points decoded into
their categorical distribution from which we draw 10
samples/sequences and calculate the average Ham-
ming distance. We observe that the geodesics in
latent space are a reasonable proxy for this expected
distance in output space.

Visually, the correspondence is also striking
(Fig. 5). Well optimized geodesics follow the mani-
fold very closely, and to a large extent preserve the
underlying tree structure. We see that the irregular-
ities described before (e.g. the incorrect placement
of the yellow subtree in the top right corner) are
recognized by both the phylogenetic reconstruction
and our geodesics, which is visually clear by the thick
bundle of geodesics running diagonally to connect
these regions.

Implication: Analyzing geodesics distances instead
of euclidean distances in representation space better
reflects the underlying manifold allowing us to extract
biological distances that are more meaningful.

Data preprocessing affects the geometry We
have established that the preprocessing of protein se-
quences into an alignment has a strong effect on the
learned representation. But how do alignment qual-
ity and sequence selection biases affect the learned
representations? To build alignments, it is common
to start with a single query sequence, and iterative
search for sequences similar to this query. If the in-
tent is to make statements only about this particular
query sequence (e.g. predicting effects of variants
relative to this protein) then a common practice is to
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Figure 5: Shortest paths (geodesics) between representations of β-lactamase in a VAE. The Riemannian
metric corresponds to measuring the expected distance between one-hot encoded proteins measured along
the estimated manifold. The geodesics generally move along the star-shaped structure of the data similarly
to the estimated phylogenetic tree, suggesting that the geodesics are well-suited for interpolating proteins.

remove columns in the alignment for which the query
sequence has a gap. This query-centric bias is further
enhanced by the fact that the search for relevant
sequences occurs iteratively based on similarity, and
is thus bound to have greater sequence coverage for
sequences close to the query. These effects would sug-
gest that representations learned from query-centric
alignments might be better descriptions of sequences
close to the query.

To test this hypothesis, we look at a more narrow
subset of the β-lactamase family, covering only the
class A β-lactamases. This subset was included as
part of the DeepSequence paper [2] and will serve
as our representative example of a query-centric
alignment. The class A β-lactamases consist of two
subclasses, A1 and A2, which are known to display
consistent differences in multiple regions of the pro-
tein. The query sequence in this case is the TEM
from Escherichia coli, which belongs to subclass A1.
Following earlier characterization of the differences
between the subclasses, we consider a set of rep-
resentative sequences from each of the subclasses,
and probe how they are mapped to representation
space (Class A1: TEM-1, SHV-1, PSE-1, RTG-2,
CumA, OXY-1, KLUA-1, CTX-M-1, NMCA, SME-
1, KPC-2, GES-1, BEL-1, BPS-1. Class A2: PER-
1, CEF-1, VEB-1, TLA-2, CIA-1, CGA-1, CME-1,
CSP-1, SPU-1, TLA-1, CblA, CfxA, CepA). When
training a representation model on the original align-
ment (Figure 6a), we indeed see that the ability to
reconstruct (decode) meaningful sequences from rep-
resentation values differs dramatically between the
A1 and A2 classes.

0.0 0.2 0.4 0.6 0.8 1.0
reconstruction acc.

a  query-centric

b  query-centric
reweighted

c  full alignment

d  full alignment
reweighted

A1
A2

Figure 6: The effect of alignment preprocessing
on the ability of representations to reliably decode
back to protein sequences. Box plots (median, up-
per/lower quartiles, 1.5 inter-quartile range) show
the distribution of reconstruction accuracies across
the 14 class A1 and 13 class A2 sequences. Query-
centric denotes an alignment where columns in the
alignment have been removed if they contain a gap
in the query sequence of interest. Reweighted refers
to the standard practice of reweighting protein se-
quences based on similarity to other sequences. All
four cases contain the same protein sequences. A1
and A2 are subclasses of beta-lactamase. A2 se-
quences have substantially worse representations
when alignments are focused on a query from the A1
class.

It is common practice to weigh input sequences in
alignments by their density in sequence space, which
compensates for the sampling bias mentioned above
[46]. While this is known to improve the quality
of the model for the variant effect prediction [2], it
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Figure 7: Interpolation between two protein sequences. a) The latent space corresponding to the bottom-
right representation in Fig. 6, where we have selected a sequence from β-lactamase subclass A1 and subclass
A2, and consider two interpolation paths between the proteins: a direct, linear interpolation and one following
the geodesic. The curves are color coded by the entropy of the amino acid output distribution along the path.
b) The Kullback-Leibler (relative entropy) of the target sequence relative to the source for each position
in the alignment. Regions with large difference (i.e. high relative entropy) are highlighted in red. c) The
output distributions corresponding to several of the high-entropy regions, for the different points along the
interpolant. Distributions are encoded using the weblogo standard, where the height of the letter-column at
each position encodes how peaked the distribution is.

only partially compensates for the underlying bias
between the classes in our case (Figure 6b). If we
instead retrieve full length sequences for all proteins,
redo the alignment using standard software (Clustal
Omega [47]), and maintain the full alignment length,
we see that the differences between the classes be-
comes much smaller (Figure 6c-d). The reason is
straightforward: as the distance from the query se-
quence increases, larger parts of a protein will occur
within the regions corresponding to gaps in the query
sequence. If such columns are removed, we discard
more information about the distant sequences, and
therefore see larger uncertainty (i.e. entropy) for the
decoder of such latent values. Note that these differ-
ences in representation quality are not immediately
clear through visual inspection alone (Figure S7).

Implication: Alignment-based representations de-
pend critically on the nature of the multiple sequence
alignment. In particular, training on query-centric
alignments results in representations that primarily
describe sequence variation around a single query
sequence. In general, density based reweighting of
sequences should be used to counter selection bias.

Geodesics provide more meaningful interpo-
lation. The output distributions obtained by de-
coding from representation space provide inter-
pretable insights into the nature of the represen-
tation. We illustrate this by constructing an inter-
polant along the geodesic from a subclass A1 member

to a subclass A2 member (Figure 7a). We calcu-
late the entropy of the output distribution (summed
over all sequence positions) along the interpolant
and observe that there is a clear transition with el-
evated entropy around point 5 (highlighted in red).
To investigate which regions of the protein are af-
fected, we calculate the Kullback-Leibler divergence
between the output distributions of the end points
(Figure 7b). Zooming in on these particular regions
(Figure 7c, left), and following them along the in-
terpolant, we see that the representation naturally
captures transitions between amino acid preferences
at different sites. Most of these correspond to sites
already identified in prior literature, for instance
disappearance of the cysteine at position 77, the
switch between N → D at position 136, and D → N
at position 179 [48]. We also see an example where
a region in one class aligns to a gap in the other
(position 50-52). The linear interpolation (Figure 7c,
right), has similar statistics at the endpoints, but
displays an almost trivial interpolation trajectory,
which effectively interpolates linearly between the
probability levels of the output classes at the end
points (note for instance the minor preference for
cysteine in the A2 region at position 77).

Implication: Geodesics provide natural inter-
polants between points in representation space, avoid-
ing high entropy regions, and thereby providing in-
terpolated values that are better supported by data.
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Discussion

Learned representations of protein sequences can
substantially improve systems for making biological
predictions, and may also help to reveal previously
uncovered biological information. In this paper, we
have illuminated parts of the answer to the titular
question of what constitutes a meaningful represen-
tation of proteins. One of the conclusions is that the
question itself does not have a single general answer,
and must always be qualified with a specification of
the purpose of the representation. A representation
that is suitable for making predictions may not be
optimal for a human investigator to better under-
stand the underlying biology, and vice versa. The
enticing idea of a single protein representation for
all tasks thus seems unworkable in practice.

Designing purposeful representations

Designing a representation for a given task requires
reflection over which biological properties we wish
the representation to encapsulate. Different biologi-
cal aspects of a protein will place different demands
on the representations, but it is not straightforward
to enforce specific properties in a representation. We
can, however, steer the representation learning by
1) picking appropriate model architectures, 2) pre-
processing the data, 3) choosing suitable objective
functions, and 4) placing prior distributions on parts
of the model. We discuss each of these in turn.

Informed network architectures can be diffi-
cult to construct as the usual neural network ‘build-
ing blocks’ are fairly elementary mathematical func-
tions that are not immediately linked to high-level
biological information. Nonetheless, our discussion
of length-invariant sequence representations is a sim-
ple example of how one might inform the model
architecture of the biology of the task. It is generally
acknowledged that global protein properties are not
linearly related to local properties. It is therefore
not surprising when we show that the model per-
formance significantly improves when we allow the
model to learn such a nonlinear relationship instead
of relying on the common linear average of local
representations. It would be interesting to push
this idea beyond the Resnet architecture that we
explored here, in particular in combination with the
recent large scale transformer-based language mod-
els. We speculate that while similar ‘low-hanging
fruit’ may remain in currently applied network archi-
tectures, they are limited, and more advanced tools
are needed to encode biological information into net-
work architectures. The internal representations in
attention-based architectures have been shown to

recover known physical interactions between proteins
[37, 38], opening the door to the incorporation of
prior information about known physical interactions
in a protein. Recent work on permutation and ro-
tation invariance/equivariance in neural networks
[49, 50] hold promise, though they have yet to be
explored exhaustively in representation learning.

Data preprocessing and feature engineering is
frowned upon in contemporary ‘end-to-end’ repre-
sentation learning, but it remains an important part
of model design. In particular, preprocessing using
the vast selection of existing tools from computa-
tional biology is a valuable way to encode existing
biological knowledge into the representation. We
saw a significant improvement in the representation
capabilities of unsupervised models when trained
on aligned protein sequences, as this injects prior
knowledge about comparable sequence positions in
a set of sequences. While recent work is increasingly
working towards techniques for learning such signals
directly from data [7, 37, 38], it remains unclear
if the advantages provided by multiple alignments
can be fully encapsulated by these methods. Other
preprocessing techniques, such as the reweighing of
sequences, are currently also dependent on having
aligned sequences. These examples suggests that if
we move too fast towards ‘end-to-end’ learning, we
risk throwing the baby out with the bathwater, by
discarding years of experience endowed in existing
tools.

Relevant objective functions are paramount
to any learning task. Although representation learn-
ing is typically conducted using a reconstruction
loss, we demonstrate that optimal representations
according to this objective are generally sub-optimal
for any specific transfer-learned task. This suggests
that hyper-parameters of representations should be
chosen based on downstream task-specific perfor-
mance, rather than reconstruction performance on
a hold-out set. This is, however, a delicate process,
as optimizing the parameters of the representation
model on the downstream task is associated with a
high risk of overfitting. We anticipate that principled
techniques for combining reconstruction objectives
on the large unsupervised data sets with task specific
objectives in a semi-supervised learning setting will
provide substantial benefits in this area [51].

Informative priors can impose softer prefer-
ences than those encoded by hard architecture con-
straints. The Gaussian prior in VAEs is such an
example, though its preference is not guided by bi-
ological information, which appears to be a missed
opportunity. In the studies of β-lactamase, we, and
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others [2, 39], observe a representation structure
that resembles the phylogenetic tree spanned by the
evolution of the protein family. Recent hyperbolic
priors [52] that are designed to emphasize hierarchies
in data may help to more clearly bring forward such
evolutionary structure. Since we observe that the
latent representation better reflects biology when en-
dowed with a suitable Riemannian metric, it may be
valuable to use corresponding geometric priors [53].

Analyzing representations appropriately

Even with the most valiant efforts to incorporate
prior knowledge into our representations, they must
still be interpreted with great care. We highlight
the particular example of distances in representation
space, and emphasize that the seemingly natural Eu-
clidean distances are misleading. The non-linearity
of encoders and decoders in modern machine learning
methods means that representation spaces are gener-
ally non-Euclidean. We have demonstrated that by
bringing the expected distance from the observation
space into the representation space in the form of
a Riemannian metric, we obtain geodesic distances
that correlate significantly better with phylogenetic
distances than what can be attained through the
usual Euclidean view. This is an exciting result as
the Riemannian view comes with a set of natural
operators akin to addition and subtraction, such that
the representation can be engaged with operationally.
We expect this to be valuable for e.g. protein engi-
neering, since it gives an operational way to combine
representations from different proteins.

In this study, we employed our geometric anal-
ysis only on the latent space of a variational au-
toencoder, which is well-suited due to its smooth
mapping from a fixed dimensional latent space to a
fixed dimensional output space. Expanding beyond
single protein families is hindered by the fact that
we cannot decode from an aggregated global repre-
sentation in a sequential language model. A natural
question is whether Bottleneck strategies like the
one we propose could make such analysis possible.
If so, it would present new possibilities for defining
meaningful distances between remote homologues in
latent space [19], and potentially allow for improved
transfer of GO/EC annotations between proteins.

Finally, the geometric analysis comes with several
implications that are relevant beyond proteins. It
suggests that the commonly applied visualizations
where latent representations are plotted as points on
a Euclidean screen may be highly misleading. We
therefore see a need for visualization techniques that
faithfully reflect the geometry of the representations.

The analysis also indicates that downstream predic-
tion tasks may gain from leveraging the geometry,
although standard neural network architectures do
not yet have such capabilities.

Methods

Variational autoencoders. A variational autoen-
coder assumes that data X is generated from some (un-
known) latent factors Z though the process pθ(X|Z). The
latent variables Z can be viewed as the compressed rep-
resentation of X. Latent space models try to model the
joint distribution of X and Z as pθ(X,Z) = pθ(Z)pθ(X|Z).
The generating process can then be viewed as a two step
procedure: first a latent variable Z is sampled from the
prior and then data X is sampled from the conditional
pθ(X|Z) (often called the decoder). Since X is discrete by
nature, pθ(X|Z) is modeled as a Categorical distribution
pθ(X|Z) ∼ Cat(C, lθ(Z)) with C classes and lθ(Z) being
the log-probabilities for each class. To make the model
flexible enough to capture higher order amino acid interac-
tions, we model lθ(Z) as a neural network. Even though
data X is discrete, we use continuous latent variables
Z ∼ N(0, 1).

Construction of entropy network. To ensure that
our VAE decodes to high uncertainty in regions of low
data density, we construct an explicit network architec-
ture with this property. That is, the network pθ(X|Z)
should be certain about its output in regions where we
have observed data, and uncertain in regions where we
have not. This has been shown to be important to get
well-behaved Riemannian metrics [42, 54]. In a standard
VAE with posterior modeled as a normal distribution
N (µθ(Z), σ2

θ(Z)), this amounts to constructing a vari-
ance network σ2

θ(Z) that increases away from data [45,
55]. However, no prior work has been done on discrete dis-
tributions, such as the Categorical distribution C(µθ(Z))
that we are working with. In this model we do not have
a clear division of the average output (mean) and uncer-
tainty (variance), so we control the uncertainty through
the entropy of the distribution. We remind that for a
categorical distribution, the entropy is

H(X|Z) =

C∑

i=1

pθ(X|Z)i · log pθ(X|Z)i.

The most uncertain case corresponds to when H(X|Z) is
largest i.e. when p(X|Z)i = 1/C for i = 1, ..., C. Thus, we
want to construct a network pθ(X|Z) that assigns equal
probability to all classes when we are away from data, but
is still flexible when we are close to data. Taking inspi-
ration from [55] we construct a function α = T (z), that
maps distance in latent space to the zero-one domain (T :
[0, inf) 7→ [0, 1]). T is a trainable network of the model,

with the functional form T (z) = sigmoid
(−6.9077β·V (z)

β

)

with V (z) = minj={1,..,K} ‖z − cj‖22, where cj are train-
able cluster centers (initialized using k-means). This
function essentially estimates how close a latent point z
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Figure 8: Construction of the entropy network
for our geodesic calculations. Left: latent represen-
tations of β-lactamase with the background color
denoting the entropy of the output posterior for
a standard VAE. Right: as left but using a VAE
equipped with our developed entropy network.

is to the data manifold, returning 1 if we are close and
0 when far away. Here K indicates the number of clus-
ter centers (hyperparameter) and β is a overall scaling
(trainable, constrained to the positive domain). With
this network we can ensure a well-calibrated entropy by
picking

pθ(X|Z)i = α · pθ(X|Z)i + (1− α) · L,
where L = 1

C . For points far away from data, we have
α = 0 and return L regardless of category (class), giving
maximal entropy. When near the data, we have α = 1
and the entropy is determined by the trained decoder
pθ(X|Z)i.

Figure 8 shows the difference in entropy of the likeli-
hood between a standard VAE (left) and a VAE equipped
with our developed entropy network (right). The stan-
dard VAEs produce arbitrary entropy, and is often more
confident in its predictions far away from the data. Our
network increases entropy as we move away from data.

Distance in sequence space. To calculate geodesic
distances we first need to define geodesics over the random
manifold defined by p(X|Z). These geodesics are curves
c that minimize expected energy [42] defined as

Ē(c) = E[E(c)] =

∫ 1

0

E
[
‖∂tXt‖2

]
dt, (2)

where Xt ∼ p(X|Z = ct) is the decoding of a latent point
ct along the curve c. This energy requires a meaningful
(squared) norm in data space. We remind here that
protein sequence data x, y is embedded into a one-hot
space i.e.

x, y ∈








1
0
...
0


 ,




0
1
...
0


 ,




0
0
...
1







,

where we assume that p(xd = 1) = ad, p(yd = 1) = bd
for d = 1, ..., C. It can easily be shown that the squared

norm between two such one-hot vectors can either be 0
or 2:

∆2 = ‖x− y‖2 = {0, 2}.
The probability of these two events are given as

P (∆2 = 0) = P (x = y)

= P (x1 = y1) + P (x2 = y2) + ...+ P (xD = yD)

=
C∑

d=1

adbd,

P (∆2 = 2) = 1− P (∆2 = 0) = 1−
C∑

d=1

adbd.

The expected squared distance is then given by

E(∆2) =

∫

{0,2}
∆2 · P (∆2)d∆2

= 0 · P (∆2 = 0) + 2 · P (∆2 = 2)

= 2

(
1−

C∑

d=1

adbd

)
,

Extending this measure to two sequences of length L is
then

E(∆2) =
L∑

l=1

2

(
1−

C∑

d=1

al,dbl,d

)
. (3)

The energy of a curve, can then be evaluated by inte-
grating this sequence measure (3) along the given curve,

Ē(c) ≈ 2

N−1∑

i=1

L∑

l=1

(
1−

C∑

d=1

p(ci)l,d p(ci+1)l,d

)
∆t, (4)

where ∆t = ‖ci+1 − ci‖2. Geodesics can then be found by
minimizing this energy (4) with respect to the unknown
curve c. For an optimal curve c, its length is given by√
Ē(c).

Optimizing geodesics. In principal, the geodesics
could be found by direct minimization of the expected en-
ergy. However, empirically we observed that this strategy
was prone to diverge, since the optimization landscape
is very flat near the initial starting point. We therefore
instead discretize the entropy landscape into a 2D grid,
and form a graph based on this. In this graph each node
will be a point in the grid, which is connected to its eight
nearest neighbors, with the edge weight being the dis-
tance weighted with the entropy. Then, using Dijkstra’s
algorithm [56] we can rapidly find a robust initialization
of each geodesic. To obtain the final geodesic curve we fit
a cubic spline [57] to the discretized curve found by Dijk-
stra’s algorithm, and afterwards do 10 gradient steps over
the spline coefficients with respect to the curve energy
(4) to refine the solution.

Phylogeny and ancestral reconstruction. The n =
200 points used for the ancestral reconstruction were cho-
sen as latent embeddings from the training set that were
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closest to the trainable cluster centers {ci}ni=1 found dur-
ing the estimation of the entropy network. We used
FastTree2 [58] with standard settings for estimation of
phylogenetic trees and subsequently applied the codeml
program [59] from the PAML package for ancestral recon-
struction of the internal nodes of the tree.

Data availability. All data used in this manuscript
originates from publicly available databases. The specific
sequence data for pre-training and data for the different
protein task can be found online: https://github.com/
songlab-cal/tape. Data for the β-lactamase familie
can be found here: https://pfam.xfam.org/family/

PF00144. Preprocessed data is available through the
scripts provided in our code repository.

Code availability. The source code for the paper
is freely available online under an open source licence:
https://github.com/MachineLearningLifeScience/

meaningful-protein-representations.
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Experimental details

Datasets. In the transfer-learning experiments
we use 31 million protein sequences extracted from
the Pfam database [1], following the procedure
described for the TAPE benchmark set [2]. We
use data for remote homology detection from [3],
fluorescence landscape prediction from [4] and for
stability landscape prediction from [5], all spanning
multiple protein families. See Table S1 for the
specific dataset sizes.

For the experiments regarding the analysis of re-
construction error as a measure of downstream per-
formance (S1), we use the UniLanguage dataset [6].
UniLanguage consists of samples from the UniProt
[7] database, where splits were constructed to mini-
mize the overlap between families.

For the study of latent space structure on sin-
gle protein families we consider the β-lactamase se-
quences extracted from Pfam [1], family PF00144,
where we also obtain a sequence alignment. For the
study of subclasses of beta-lactamase, we use the
beta-lactamase alignment provided in the DeepSe-
quence study [8], which is processed in different
ways as described in the main paper. The process-
ing scripts are provided as part of the source code
repository associated with our manuscript.

Task Train Valid Test

Language Mod. 32,207,059 N/A 44,314
Unilanguage [6] 607,737 98,907 295,161
Remote Homol. 12,312 736 718
Fluorescence 21,446 5,362 27,217
Stability 53,679 2,447 12,839

Table S1: Data set sizes used for the prediction tasks
(i.e. the transfer-learning setting).

Predictive tasks. In the transfer-learning exper-
iments, the Transformer and Resnet based models
were pre-trained using a masked token prediction
task [9] where 15% of the amino acids in a sequence
are masked out and the task is to predict the iden-
tity of the masked amino acids from the non-masked.
The LSTM model were trained using next-token pre-
diction, where the task is to predict the next amino
acid in a sequence given the amino acids processed
until now. Lastly, the autoencoder (bottleneck) mod-
els were trained with standard reconstruction tasks.
Details for the three downstream tasks are listed
below:

1. Fluorescence: An input protein sequence s is
mapped to a label y ∈ R corresponding to the
log-fluorescence intensity of s, that expresses
a models ability to distinguish between similar
sequences. The models are optimized using the
mean squared loss and performance is measured
using Spearman correlation.

2. Stability: An input protein sequence s is
mapped to a label y ∈ R corresponding to the
most extreme value for which the protein keeps
its fold. The models are optimized using the
mean squared loss and performance is measured
using Spearman correlation.

3. Remote homology: An input protein sequence
s is mapped to a label y ∈ {1, ..., 1195}, where
each class correspond to a specific protein fold.
The models are optimized using categorical cross
entropy and performance is measured using ac-
curacy.

Network Architectures

Resnet, LSTM, Transformer

The Resnet, LSTM and Transformer architectures
used in the first experiments are all directly taken
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from TAPE [2]. The Transformer consist of 12-
layers with a hidden size of 512 and 8 attention
heads, which leads to a 38M-parameter model. The
architectures of the two other models were chosen
such that the total number of parameters match that
of the Transformer. In this case, the Resnet consist
of 35 layers each with 256 filters, a dilation rate of 2
and a kernel size of 9. The LSTM has 3 bidirectional
layers each with 1024 hidden units. If not stated
otherwise, we use an attention based aggregation
function for combining the local representations into
a single global representation.

Bottleneck AutoEncoder

For the Bottleneck Resnet autoencoder we used an
encoder-decoder architecture where both the encoder
and decoder were modeled using resnet blocks. In
contrast to the three models above, the bottleneck
autoencoder is not a sequential model and requires
a fixed size input. All sequences were therefore
padded with zeros to the same length (3000). For
the encoder we use 30 residual blocks with pooling
along the sequence dimension every 5 layer. For
the decoder we inverse the process and again use
30 residual blocks, this time with upsampling along
the sequence dimension every 5 layer. Between the
encoder and decoder we had two fully connected
layers that respectively downsampled and upsampled
from the global latent space. The AutoEncoder has
approximately twice the number of parameters as
the sequential models during pre-training, but was
designed to have the same number of parameters
when used for transfer-learning as the decoder is
disabled in this setting.

VAE

The architecture of the VAE is a simplified version
of that used in the DeepSequence paper [8], using
an encoder with two fully connected hidden layers
(both with 1500 nodes) with ReLU activations, and
a decoder with two fully connected hidden layers
(100 and 500 nodes) also with ReLU activations.

Training details. We followed the training pro-
tocol from [2] for pretraining on Pfam and training
of the task specific models. Pre-training was per-
formed on four NVIDIA TITAN V GPUs for 1 week.
Hyperparameters were set as follows:

• Adam optimizer was used with default settings
for momentum.

• Learning rate: initialized to 10−3, adjusted us-
ing a linear warm-up scheduler.

• 10% dropout rate.

• Batch size was dynamically set during training
to the largest possible based on model architec-
ture and sequence length.

Task-specific training was performed using the same
set of GPUs and hyperparameters, but training was
stopped early when no increase in validation per-
formance was observed. If not stated otherwise,
we always complete pre-training before task-specific
training to get the best possible performing model.

For the training on β-lactamase model we deploy
nearly the same training strategy as with the Pfam
family, however with extra steps to prevent overfit-
ting, which is more likely on a single family than the
full corpus of proteins. In particular we use early
stopping monitored on the validation loss with a
patience of 10 epochs to ensure that we do not use
highly overfitted models.

The VAEs were trained using the same optimizer
settings, but with a fixed learning rate, no dropout
and using a fixed batch size of 16.

Additional results

Reconstruction accuracy is not a good proxy
for downstream performance

As stated in the main paper, we observe that recon-
struction accuracy may be a poor proxy for the qual-
ity of the representation itself, as it does not directly
correlate with the downstream performance metrics
(Fig. S1). To further investigate the phenomenon, we
re-trained a number of embedding models, where we
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Figure S1: Reconstruction and downstream perfor-
mance as a function of representation size. Although
reconstruction accuracy consistently improves for increas-
ing representation size, the performances on the individual
tasks deteriorate for large representations. Performance
refers to Spearman correlation (stability, fluorescence) or
accuracy (homology, reconstruction).
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Figure S2: Reconstruction and downstream perfor-
mance as a function of amount of data used during
pre-training (in %). Performance refers to Spearman
correlation (stability, fluorescence) or accuracy (homol-
ogy, reconstruction).

gradually lowered the amount of pre-training data
available to the model (Fig. S2). We again observe a
discrepancy between the reconstruction performance
and the downstream performance metrics, with the
reconstruction accuracy flattening out after seeing
only 30% of the data, whereas the downstream tasks
all increase with more pre-training data. This con-
firms the discussion from the main paper that the
reconstruction accuracy of a model is a poor proxy
for the how well the representation will perform on
downstream tasks.

Impact of modeling choices on representation

In the main paper, we discuss how learned repre-
sentations are affected by data preprocessing, choice
of modeling architecture and post-hoc dimensional-
ity reduction. It would be convenient to avoid the
post-hoc dimensionality reduction step altogether.
This is possible for the VAE, by simply setting the
latent dimension to 2, but turned out to be infeasible
for the sequential models. Even in the case of the
bottleneck ResNet, which in many ways is similar to
the VAE, it was not possible to train models with
a two dimensional representation, which suggests
that the low dimensional bottleneck is incompatible
with the requirements for the expressivity of the
encoder/decoder in these more complex sequential
models.

To test the impact of the dimensionality reduction
step on the representation, we conducted dimension-
ality reduction for all sequential models with both
PCA and t-SNE (Fig. S3). Although the t-SNE rep-
resentations seem to have slightly better separation
of phyla locally, the overall patterns produced by
the two dimensionality reduction schemes are quite
robust, in particular in the most specific represen-
tations in the bottom right. We also investigated
the impact of dimensionality reduction for the VAE,

Figure S3: Impact of the choice of dimensionality re-
duction on the representation manifolds. This figure
corresponds to the Fig. 2 in the main paper, but includes
dimensionality reduction with both PCA and t-SNE.

Figure S4: Dimensionality reduction on the latent space
of a VAE. In contrast to the two dimensional latent space
employed in the main paper, we here train a model with
30 latent dimensions. The two plots show the same latent
space reduced by either PCA or t-SNE, the latter with
different choices of the perplexity parameter.

when trained with a higher dimensional latent space
of 30, and applying t-SNE or PCA to reduce it to two
dimensions (Fig. S4). In this case, the PCA seems to
preserve the star-like structure to some extent, while
t-SNE organizes the clusters in a completely differ-
ent topology, presumably due to the distributional
assumptions underlying the t-SNE method.

One aspect of model architecture that was not
explored in the main paper was the size of the model,
in terms of the number of parameters. The universal,
”full-corpus”, models explored in Fig. 2 in the main
paper were all trained on the same dataset, with a
similar number of parameters. In Fig. S5 we show
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Figure S5: Representations extracted from a state-of-the-art large transformer model, ESM-1b [10]. The embeddings
were calculated in two different ways: a) extracting sequences from the beta-lactamase multiple sequence alignment
used in main paper by removing gaps, b) retrieving the full-length sequences corresponding to the proteins in the
alignment. The two approaches lead to comparable representations. Compared to the shallow transformer presented
in the main paper, we see that large scale language models capture similar information as obtained from a multiple
sequence alignment - at least in terms of correlation to phylogenetic distances (c).

Figure S6: Illustration of the difference in obtained
representation between a variational autoencoder (left)
and a standard autoencoder (right). One of the main
differences is that the N (0, 1) prior in the variational
autoencoder sets the scale of the latent space.

the behavior of a state-of-the-art language model,
ESM-1b, which has substantially more parameters,
and is trained on a much larger dataset [10]. We
see that this larger-scale transformer model displays
improved separation capabilities compared to the
other models in the top row in Fig. 2, and that
the correlation to phylogenetic distances becomes
comparable to that of models trained on the specific
family.

While some architecture choices clearly have an
impact on the resulting representation, other choices
seem to be of little consequence. For instance, we
observe that a standard (non-variational) autoen-
coder produces very similar representations as a
variational autoencoder, when trained on the same
data set. The inductive bias difference between these
two models thus seems to be negligible, apart from
the regularizing N (0, 1) prior which sets an overall
scale in representation space (Fig. S6).
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Figure S7: The effect of alignment preprocessing on the
learned representation. Top row: query-centric alignment
where columns are removed if they contain a gap in the
query sequence. Bottom row: standard alignment of
the same sequences. Left/Right column: whether the
sequences are reweighted during training of the model.
The green dots correspond to proteins belonging to the
same subclass as the query (A1). The yellow dots belong
to subclass A2, which is more distant to the query protein.

Effect of alignment preprocessing

In the main text, we discuss how reweighting of input
data and column removal in the alignment can lead
to representations with different degrees of selection
bias towards a particular query sequence (Fig. 6).
Visualizations of the four settings discussed in the
main paper are displayed in Fig. S7.
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Figure S8: The effect of sequence reweighting on the obtained representation. The rows display representations
obtained with VAEs trained with different degrees of density reweighting of the input sequences. The s parameter
denotes the maximum hamming distance used as a cutoff to define a neighborhood of similar sequences [11]. The
s = 0.8 setting corresponds to what is referred to as density reweighting in the main text and Fig. S7.

Degree of sequence reweighting

The VAE in Fig. 3 in the main paper was trained
without conducting sequence reweighting. For com-
pleteness, we here include results from training on
a dataset where the input sequences are reweighted
based on input density, for different choices of the
hamming cutoff distance s, which defines how large
a neighborhood is considered when estimating the
density [11]. As expected, we see a better balanced

representation of the different phyla when reweight-
ing, most pronounced in the added weight on the
green Firmicutes subtree (Fig. S8) and the even
lower populated phyla that are difficult to discern in
the original VAE. The trends in the correlations to
phylogenetic distances are similar to those reported
in the main paper, again demonstrating a benefit of
employing geodesics rather than euclidean distances.
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Impact of initialization on the representation

Although it is commonly accepted that initialization
of a neural network has some impact on the resulting
models, the ultimate behavior and performance of
a model is often fairly robust to different initializa-
tions. It is important to stress that this is not the
case for learned representations, which can change
dramatically depending on the initialization, partly
due to the many symmetries in parameter space. As
an example, in Fig. S9 we show the representations
of the β-lactamase protein family for 4 different ini-
tial seeds. While they all follow the overall tree
structure, we see clear variations in the organization
of the individual branches of the tree, and we espe-
cially observe that the orientation in latent space
is arbitrary. This further supports the idea that a
Euclidean interpretation of the latent space can be
misleading. Fig. 4a in the main paper quantifies
this effect in terms of the robustness of distances
calculations across different training instances.
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