
Bayes without Underfitting: Fully Correlated Deep Learning
Posteriors via Alternating Projections

Marco Miani† Hrittik Roy† Søren Hauberg
Technical University of Denmark

mmia@dtu.dk
Technical University of Denmark

hroy@dtu.dk
Technical University of Denmark

sohau@dtu.dk

Abstract

Bayesian deep learning all too often underfits
so that the Bayesian prediction is less
accurate than a simple point estimate. Uncer-
tainty quantification then comes at the cost
of accuracy. For linearized models, the null
space of the generalized Gauss-Newton matrix
corresponds to parameters that preserve the
training predictions of the point estimate. We
propose to build Bayesian approximations in
this null space, thereby guaranteeing that the
Bayesian predictive does not underfit. We
suggest a matrix-free algorithm for projecting
onto this null space, which scales linearly with
the number of parameters and quadratically
with the number of output dimensions.
We further propose an approximation that
only scales linearly with parameters to
make the method applicable to generative
models. An extensive empirical evaluation
shows that the approach scales to large
models, including vision transformers with
28 million parameters. Code is available at:
https://github.com/h-roy/projected-bayes

1 Underfitting in Bayesian deep
learning

Bayesian deep learning tends to underfit. Numerous
studies demonstrate that marginalizing approximate
weight posteriors yields less accurate predictions than
applying a maximum a posteriori (map) point estimate
[Wenzel et al., 2020, Daxberger et al., 2021a, Zhang
et al., 2024, Kristiadi et al., 2022]. This significantly
reduces the practical value of Bayesian deep learning,

† Equal contribution.

Figure 1: Key idea: In overparametrized linear mod-
els, the kernel (null space) contains all models that
have identical predictions on the training data. We pro-
pose restricting approximate posteriors of deep neural
networks to this kernel to avoid underfitting.

despite having attractive theoretical properties [Ger-
main et al., 2016]. To counteract this trend, we first
explicate why underfitting happens with Gaussian ap-
proximate posteriors, and thereafter propose a solution
for low-noise data (e.g. images).

What is underfitting? Deep learning performs
very well when the training data is subject to limited
observation noise. In contrast, Bayesian deep learning
often underfits in the sense that the Bayesian prediction
deviates significantly from a point estimate prediction
on the training data D, i.e.

Eθ∼q [f(θ, x)] ̸= f(θmap, x) for x ∈ D, (1)

where q is an approximate posterior and θmap is a point
estimate of the neural network f . This notion of under-
fitting only applies to low-noise data, where the poste-
rior should have little uncertainty on the training data,
but this is the most prominent scenario in deep learning.

Why do Bayesian neural networks underfit? Deep
neural networks are commonly overparametrized, i.e.
the model has more parameters than observations, as
this tends to improve both optimization and gener-
alization [Allen-Zhu et al., 2019]. Fig. 1 sketches the
situation which we later formalize: Consider fitting
a quadratic function with three parameters to only
two observations. This leaves one degree of freedom
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undetermined and a linear subspace of the model pa-
rameters exists wherein all parameters yield identical
predictions on the training data. For low-noise data,
the true posterior will concentrate around this sub-
space. Unfortunately, common Gaussian approxima-
tions to the posterior are axis-aligned (i.e. mean field
approximations [Bishop, 2006]) and not aligned with
the mentioned subspace. This mismatch leads to a poor
posterior approximation that tends to underfit. We sug-
gest, quite simply, to project the approximate posterior
to the subspace in which underfitting cannot happen.

Why is this beneficial? Our proposed posterior
reflects the degrees of freedom in the model that funda-
mentally cannot be determined by even noise-free data.
Predicting according to this distribution gives reliable
out-of-distribution detection and general uncertainty
quantification without underfitting. Our approach cap-
tures correlations between layers and retains high-
accuracy predictions while scaling linearly with model
size. Table 1 contrasts our method with existing ones.

Why is this difficult? We will soon see that the rele-
vant subspace on which to project is given by the kernel
(i.e. null space) of a matrix that is quadratic in the
number of model parameters. Even for models of mod-
est size, this matrix is too large to be stored in memory
and direct projection methods cannot be applied. We
propose a linear-time sampling algorithm that can be
implemented entirely using automatic differentiation.

Paper outline. Sec. 2 gives the background to derive
our approach. A wider discussion of related work is post-
poned to Sec. 5. We develop our approach in two steps.
First, Sec. 3 describes our proposed posterior approx-
imation, while Sec. 4 derives an efficient sampling algo-
rithm. Empirical investigations are conducted in Sec. 6.

2 Background and notation

Notation. Let f : RP × RI → RO denote a neural
network with parameter θ ∈ RP that maps inputs
x ∈ RI to outputs y ∈ RO. We define the per-datum
Jacobian as Jθ(x) = ∂θf(θ, x) ∈ RO×P and its stacked
counterpart Jθ = [Jθ(x1); . . . ; Jθ(xN )] ∈ RNO×P for a
fixed training dataset D = {x1, . . . , xN }.

Gaussian approximate posteriors, i.e. p(θ|D) ≈
q(θ|D) = N (θ|µ,Σ), are ever-present in Bayesian
deep learning [Blundell et al., 2015, Botev et al., 2017,
Sharma et al., 2021, Khan et al., 2018, Maddox et al.,
2019, Stephan et al., 2017, Osawa et al., 2019, Antorán
et al., 2022]. For modern neural networks, the param-
eter dimension P can easily be several billions, such
that even storing the covariance Σ in memory is in-
feasible. To allow for linear scaling, common Gaussian
approximate posteriors are realized by disregarding

most correlations in Σ, e.g. with diagonal or block-
diagonal approximations.

Unfortunately, there is significant theoretical evidence
against disregarding correlations. Foong et al. [2019]
shows that diagonal approximations underestimate
‘in-between’ uncertainty, while Roy et al. [2024]
shows that uncorrelated models cannot generally be
infinitesimally invariant to reparametrizations even if
this property is held by the true posterior.

The linearized Laplace approximation (lla; Im-
mer et al. [2021b], Khan et al. [2019]) use a first-
order Taylor expansion of f(θ, x) ≈ fθmap

lin (θ, x) =
f(θmap, x)+Jθmap(x)(θ−θmap), where θmap is the expan-
sion point (usually a map estimate of the parameter).
Secondly, lla perform a standard Laplace approxima-
tion [MacKay, 1992] of the linearized model, yielding

qlla(θ|D) = N
(
θ
∣∣ θmap, (αI + ggnθmap)

−1
)

(2)

ggnθmap = J⊤
θmap

HθmapJθmap ∈ RP ×P . (3)

Here ggnθmap is the so-called generalized Gauss-
Newton matrix, α is the prior precision, Hθ(x) =
−∂2

f(θ,x) log p(y|f(θ, x)) ∈ RO×O and Hθ ∈ RNO×NO

is its stacked counterpart. This Hessian takes a sim-
ple closed-form for common likelihoods, e.g. it is the
identity for Gaussian likelihoods [Immer et al., 2021b].
For notational simplicity, we treat this Hessian as an
identity for the remainder of this paper.

The lla has a strong empirical performance [Immer
et al., 2021b], but it is computationally taxing as the
ggn has size P × P . This is infeasible to instantiate
even for models of modest size, and the O(P 3) cost
associated with sampling presents a significant com-
putational challenge. Iterative matrix-free solvers can
potentially alleviate these concerns [Roy et al., 2024],
but the ggn is highly ill-conditioned [Papyan, 2020,
Miani et al., 2024] and this approach requires overcom-
ing issues of numerical stability. Practical lla imple-
mentations therefore resort to sparse, e.g. diagonal or
block-diagonal, approximations of the ggn.

3 The proposed approximate posterior

We next propose a fully correlated Gaussian posterior
that is guaranteed to not underfit. Unless otherwise
stated, the presented results are novel contributions and
proofs of all theorems can be found in the appendix.

As alluded to, we propose restricting the posterior
covariance to a particular subspace of the parameter
space. Letting U ∈ RP ×R denote an orthogonal basis of
this subspace, we consider an isotropic model therein,

qproj(θ|θmap, D) = N
(
θmap, α−1UU⊤) . (4)
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Table 1: Comparisons between Laplace approximations. N : number of data points, O: output dimensions, P :
number of parameters, Pl,in, Pl,out: input and output dimensions of layer l, Pll: last layer parameters.

Method Correlation Space per-sample Time preprocessing Time Error Model Tractable
structure complexity complexity complexity bound agnostic optimal lml

Diagonal P P PNO ✗ ✓ ✗

Kronecker-Factored
∑L

l=1 P 2
l,in + P 2

l,out

∑L
l=1 P 2

l,in+P 2
l,out

∑L
l=1NPl,in+NPl,out+P 3

l,in+P 3
l,out ✗ ✗ ✗

Last-Layer P 2
ll P 2

ll O2NP 2
ll + P 3

ll ✗ ✓ ✗

This paper P + NO2 or P + N tmaxPN + NO3 or tmaxPN 0 ✓ (Lemmas 3.5 & 4.3) ✓ ✓ (Sec. 3)

Specifically, we choose the above subspace as the kernel
(i.e. null space) of the ggn matrix and call the result
the projected posterior. Formally,

UU⊤ = IP − P(ggn) = IP − V [D>0] V⊤, (5)

where VDV⊤ is an eigen decomposition of the ggn
matrix and [D>0] ∈ RP ×P is diagonal with elements
1 where D holds positive values. We use the shorthand
notation P(ggn) to denote the projection onto the im-
age of the ggn. We next justify the projected posterior
through the lens of underfitting.

The projected posterior never underfits. When
using the linearized neural network, fθmap

lin (θ, x) =
f(θmap, x) + Jθmap(x)(θ − θmap), we avoid underfitting
when Jθmap(x)(θ − θmap) = 0 on the training data.
The linearized model then avoids underfitting when
θ−θmap is restricted to the kernel (null space) of Jθmap =
[Jθmap(x1); . . . ; Jθmap(xN )]. For the proposed projected
posterior (4), we, thus, choose U as an orthonormal
basis of the Jacobian kernel and note that this kernel
coincides with the zero eigenvectors of the ggn.

These considerations can be formalized as follows.
Lemma 3.1. The projected posterior (4) is supported
on equal functions on the training data, i.e. ∀x ∈ D

fθmap
lin (θ, x) = f(θmap, x) ∀θ ∼ qproj, (6)

which implies that Varθ∼qprojf
θmap
lin (θ, x) = 0.

We emphasize that the statement only holds on the
training data. Elsewhere, the approximate posterior
yields strictly positive variances with high probability
under strong but reasonable assumptions.
Lemma 3.2. Let Jθ =[Jθ(x1)⊤ . . . Jθ(xN )⊤]⊤ and
xtest ∈ RI , then

Varθ∼qprojf
θmap
lin (θ, xtest) > 0 (7)

if Rank
((

Jθmap
Jθmap (xtest)

)(
Jθmap

Jθmap (xtest)

)⊤
)

> Rank
(
JθmapJ⊤

θmap

)
.

Jointly the two lemmas show that out-of-distribution
data is guaranteed to have higher predictive variance
than the training data. The (technical) rank assumption
in Lemma 3.2 is known to be satisfied with high prob-
ability under reasonable assumptions [Bombari et al.,
2022, Nguyen et al., 2021, Karhadkar et al., 2024].

These results can be contrasted with lla, where we
can show the following result.
Theorem 3.3. For α > 0, the predictive variance of
lla on any training datapoint is positive and bounded,

Oγ2

γ2 + α
≤ Varθ∼qllafθmap

lin (θ, x) ≤ Oλ2

λ2 + α
for x ∈ D.

Here, λ and γ are the largest and smallest singular
values of the dataset Jacobian Jθmap , respectively.

Here, γ is strictly positive with high probability under
reasonable assumption [Bombari et al., 2022, Nguyen
et al., 2021, Karhadkar et al., 2024]. lla then under-
fits with high probability, which contrasts our approach
(c.f. Lemma 3.1). Note that this is only true for the
(intractable) ggn-based covariance. We expect that
sparse approximations to this covariance, e.g. diagonal
and kfac, has even higher training set variance.

Underfitting in existing models. The above anal-
ysis justifies the projected posterior and also sheds
light on why current Bayesian approximations often
underfit. For efficiency, mean field approximations of
the posterior covariance are quite common, e.g. diag-
onal or Kronecker factored covariances [Ritter et al.,
2018, Martens and Grosse, 2015]. These approximations
will generally sample outside the ggn kernel, implying
strictly positive predictive variances on the training
data even for noise-free data. This reasoning also mo-
tivates recent works that have attempted to improve
these approximations by making their spectrum more
aligned with the spectrum of the ggn [George et al.,
2018, Dhahri et al., 2024].

Computational benefits. Beyond the above theoret-
ical motivations, our projected covariance also brings
computational benefits. Since U is an orthonormal
basis, the covariance UU⊤ is a projection matrix, im-
plying that its eigenvalues are all 0 or 1. This, in turn,
implies that UU⊤ = (UU⊤)2 = (UU⊤)⊤ = (UU⊤)†,
where † denotes pseudo-inversion. Drawing samples
from q, thus, only requires matrix-vector products with
UU⊤ and the matrix need not be instantiated. The
only open question is then how to efficiently perform
such matrix-vector products. We answer this in Sec. 4.

Since all eigenvalues of UU⊤ are 0 or 1, we can a priori
expect the matrix to yield numerically stable compu-
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tations even at moderate numerical precision. This
is in contrast to the ggn, which easily has condition
numbers that exceed 106 [Miani et al., 2024].

Tractable model selection. A benefit of Bayesian
neural networks is that we can choose α by maximizing
the marginal likelihood, p(D|α), on the training data,
i.e. without relying on validation data [MacKay, 1995].
However, since the marginal likelihood of the true pos-
terior is intractable, it is common to consider that of
the Laplace approximation [Immer et al., 2021a]

log qlla(D|α) = log p(D|θmap) + log p(θmap|α)

− 1
2 log det

(
1

2π
(ggn + αI)

)
.

(8)

This can then be optimized numerically to estimate
α. In contrast, the projective posterior (4) does not
require optimization as α is available in closed form.
Lemma 3.4. The marginal likelihood for the projected
posterior (4) has a globally optimal α given by

α∗ = ∥θmap∥2

P − Tr(IP − P (ggnθmap))
. (9)

In practice, the trace can be approximated using
Hutchinson’s estimator [1989].

Links to LLA. The projected posterior can be viewed
as a fully correlated tractable approximation to the
lla. The following statement shows that the difference
between the two approximate posteriors is bounded.
Lemma 3.5. Let τ denote the smallest non-zero eigen-
value of the ggn[Nguyen et al., 2021], then∥∥∥ (αIP + ggn)−1︸ ︷︷ ︸

lla cov

− α−1(IP − P (ggnθmap)︸ ︷︷ ︸
Proj cov (scaled)

∥∥∥ ≤ 1
τ + α

Additionally, let k denote the ggn rank and d the W2
Wasserstein distance, then d2(qlla, qproj) ≤ (τ + α)−1k.

4 Sampling via alternating projections

We next develop a novel scalable algorithm to sample
the projected posterior. Recall that we can simulate
this posterior as UU⊤ϵ + θmap, where ϵ ∼ N (0, α−1I)
and UU⊤ projects to the ggn kernel. In general, the
orthogonal projection onto a subspace spanned by the
columns of any matrix M ∈ RR×P , where R < P , is

P
(
M⊤M

)
= M⊤ (MM⊤)−1 M ∈ RP ×P . (10)

The projection into the kernel of M⊤M is then given by
the matrix I − P

(
M⊤M

)
. In our case M = JθH1/2

θ ∈
RNO×P and Eq. 10 requires inverting a NO × NO
matrix, which is infeasible even for moderate datasets.

Figure 2: To project a point
onto the intersection of two
subspaces, we alternate be-
tween projecting onto the in-
dividual subspaces.

Intersections of kernels. To arrive at a feasible
algorithm, we note that the kernel of M⊤M is the
kernel of a sum of positive semi-definite matrices,

ker
(∑

b M⊤
b Mb

)
=
⋂

b ker(M⊤
b Mb), (11)

where we have decomposed M into batches,

M =

M1
...

MB

 M⊤M =
B∑

b=1
M⊤

b Mb. (12)

Hence, we can project onto the ggn kernel by projecting
onto the intersection of per batch-ggn kernels.

von Neumann’s [1949] alternating projections
algorithm projects onto intersections of subspaces.
Fig. 2 illustrates this idea, formalized in Lemma 4.1.
Lemma 4.1. For any row-partition of a matrix M =(
M⊤

1 · · · M⊤
B

)⊤ it holds that

I − P
(

M⊤M
)

= lim
t→∞

(∏
b

(
I − P(M⊤

b Mb)
) )t

. (13)

Moreover, the limit converges linearly with a rate
c=
∏B

b=1 cos2(θb) where θb = minb′ ̸=b ∠(Mb, Mb′) and
∠(Mb, Mb′) is the minimum angle between linear com-
binations of rows of Mb and linear combinations of
rows of Mb′ .

In practice, we stop the algorithm after a number of
iterations, so that the limit (13) stops at t = tmax. The
induced error is then upper bound by ctmax .

Projection for the approximate posterior. The
algorithm projects to the ggn kernel, by iteratively
projecting to the kernels of per-batch ggns. Using
Eq. 10, a single step of the algorithm requires inverting
an SO×SO matrix, which is computationally cheap
for small batch-sizes S. Fig. 3 illustrates this pipeline.

Implementation details. For sufficiently small
batches, we can precompute and store the inverses of
MbM⊤

b ∈ RSO×SO. Thereafter, matrix-vector products
with M and M⊤ can be efficiently computed using
Jacobian-vector products and vector-Jacobian prod-
ucts, respectively. We, thus, do not need to instantiate
the per-batch ggn matrices, which gives rise to an
efficient low-memory sampling algorithm.

Complexity. The space complexity of the algorithm
is O(P + NSO2) and time complexity is O(tmaxPN +
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Figure 3: Visualization of Jacobian projections Direct calculation of the projection(left) involves inverting a
large NO×NO matrix. This is replaced by an infinite (in practice, truncated) series of cheap projections (right)
which only require precomputing and storing inverses of several small SO×SO matrices.

NS2O3). For overparametrized models where P ≫ NO
these complexities boil down to O(P ) and O(tmaxPN),
respectively. This matches the cost of training for tmax
epochs. Consequently, the projection is feasible on hard-
ware that can train a model.

4.1 Scaling to high-dimensional outputs

The computational complexity of the projection algo-
rithm scales superlinearly with the model’s output size.
For many tasks this is unproblematic, but it renders the
method inapplicable to e.g. image-generative models.

To handle high-dimensional outputs, we propose re-
moving the requirement of preserving the predictions
of θmap at the training data. Instead, we propose to
(locally) preserve the loss at each training point. This
is achieved by considering the loss-Jacobian, i.e. the
stacking of the per-datum loss-gradients.

JL
θ =

 ∇θl(f(θ, x1), y1)
...

∇θl(f(θ, xN ), yN )

 ∈ RN×P (14)

Lemma 4.2. The kernel of the stacked loss gradients
JL
θ ∈ RN×P contains the kernel of the full Jacobian

Jθ ∈ RNO×P , i.e. ker(Jθ) ⊆ ker(JL
θ ). Further, note

that these subspaces are identical for O = 1.

Intuitively, for each datapoint, the gradient is a
linear combination of its Jacobian rows, namely
∇θl(f(θ, x), y) = ∇f(θ,x)l(f(θ, x), y)Jθ(x). This ap-
proach can, thus, be seen as aggregating each per-
datum Jacobian into a single meaningful row, lowering
the row count by a factor O.

We propose the loss-projected approximate posterior

qloss(θ|θmap, D) = N
(
θmap, α−1ULU⊤

L

)
, (15)

where UL ∈ RP ×R denotes an orthogonal basis of the
kernel of JL

θ . Samples from this approximate posterior
are guaranteed to have the same per-datum loss as the
mode parameter, up to first order,
Lemma 4.3. For any θ ∼ qloss and xn ∈ D it holds

|l(f(θ, xn), yn)−l(f(θmap, xn), yn)| = O(∥θ−θmap∥2)

which implies that

Varθ∼qloss l(f(θ, xn), yn) ≤ O(α2). (16)

In particular, these results hold regardless of whether
we use the linearized model fθmap

lin or the standard one f .

Complexity. The space complexity of the algorithm
is O(P + NS) and the time complexity is O(tmaxPN +
NS2).

5 Related work

Deep neural networks are known to suffer from poor
calibration, where predictive uncertainties are often
indistinguishable between in-distribution and out-of-
distribution data [Guo et al., 2017]. Deep ensembles
[Lakshminarayanan et al., 2017] remains one of the
most widely used solutions as it has strong empiri-
cal performance. Unfortunately, this approach requires
retraining multiple models from scratch, making it com-
putationally prohibitive for large models.

Gaussian approximate posteriors are commonly
used to avoid retraining from scratch and instead only
explore the mode of a single model. Established ap-
proaches in this area include Bayes by backprop [Blun-
dell et al., 2015]), stochastic weight averaging (swag)
[Maddox et al., 2019], and Laplace approximations
[Daxberger et al., 2021a]. Our work can be viewed
as a variant of the Laplace approximation that avoids
the underfitting commonly seen in Gaussian posteriors.

The computational costs of working with high-
dimensional Gaussians can be daunting. Common
workarounds include using low-rank or sparse covari-
ances [Maddox et al., 2019, Ritter et al., 2018, Deng
et al., 2022], subspace inference approaches [Izmailov
et al., 2020], and subnetwork inference [Daxberger et al.,
2021b]. These methods reduce computational costs
while preserving strong predictive performance. In con-
trast, our method additionally provides a rigorous the-
oretical justification for the choice of subspace. We can
infer properties of distributions within this subspace
and derive formal error bounds, a level of theoretical
grounding often lacking in other approaches.

Antoran et al. [2023] use a sample-then-optimize pro-
cedure to simulate the lla posterior, which has some
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Figure 4: The sparse approximations of the posterior
fail to capture in-between uncertainty whereas fully
correlated posteriors can capture them.

algorithmic similarities to our work. We both simulate
a simple distribution followed by a gradient-based iter-
ative refinement. While Antoran et al. [2023] focus on
lla, we aim to avoid underfitting, which are potentially
complementary objectives. Here we emphasize that our
approach is general and can be applied to any Bayesian
approximation in a post-hoc manner.

A frequentist perspective was given by Madras et al.
[2020]. Their local ensembles perturb a map estimate
in the kernel of the network’s Hessian. Algorithmically,
they approximate the largest Hessian eigenvectors using
Lanczos’s decomposition [Meurant, 2006] and assume
that the orthogonal complement is the Hessian kernel.
We improve this in several ways. First, we show that
the ggn kernel is more appropriate than the Hessian
kernel. Secondly, we propose a significantly more effi-
cient algorithm that projects onto the ggn kernel by
leveraging its partitioned structure. Our method guar-
antees exact convergence to the kernel, and it is not
memory-limited as it avoids storing Lanczos vectors.

Alternating projections first appeared in von Neu-
mann’s notes on operator theory [1949], while Kayalar
and Weinert [1988] proved the convergence rate. To our
knowledge, the only recent machine learning use-case is
inverting Gram matrices in Gaussian process regression
[Wu et al., 2024]. This is rather different from our work.

6 Experiments

We benchmark our projected and loss-projected pos-
teriors against popular post-hoc Bayesian methods,
including swag, and diagonal and last-layer Laplace.
We also include the prediction map. Baseline prior
precisions are tuned via grid search, while projection
posteriors use the optimal prior precision (9). Details
on models and hyperparameters are in Appendix C.

6.1 Toy regression

Hypothesis: The projected posterior captures
in-between uncertainties better than sparsely cor-
related Laplace.

We first assess different Laplace approximations in a toy
regression task. Foong et al. [2019] shows that Bayesian
neural networks with mean-field variational inference
fail to capture in-between uncertainties. We observe a
similar issue with sparsely correlated Laplace approxi-
mations (Fig. 4). In contrast, the projected posterior
correlates all parameters, improving predictive uncer-
tainty estimates for unseen regions. This illustrates that
maintaining full parameter correlations is essential for
accurate in-between uncertainties.

6.2 Predictive uncertainties on standard
image classification

Hypothesis: The projected posterior provide
competitive or superior predictive uncertainties
across tasks, including in-distribution calibra-
tion, robustness to distribution shifts, and out-
of-distribution detection.

In-distribution performance (Table 2). We next
consider standard image classification tasks. We train
a LeNet [LeCun et al., 1989] on MNIST and Fashion
MNIST, and a ResNet [He et al., 2016] on CIFAR-10
[Krizhevsky et al., 2009] and SVHN [Netzer et al., 2011].
Keeping the map fixed we assess the predictive poste-
rior of all methods using metrics such as confidence,
accuracy, negative log-likelihood (NLL), Brier score
[Brier, 1950], expected calibration error (ECE), and
maximum calibration error (MCE) [Naeini et al., 2015].

As shown in Table 2, the projected posterior matches
the map in-distribution, as expected from Lemma 3.1,
with zero variance in-distribution and higher variance
out-of-distribution. The loss-projected posterior im-
proves calibration, which is discussed in Appendix B.

Distribution shift (Fig. 6). To assess robustness un-
der distribution shifts, we evaluate the robustness of pre-
dictive uncertainties using rotated-mnist, rotated-
fmnist, and corrupted cifar (with fog and Gaussian
blur). The loss-projected posterior maintains low, stable
calibration error with increasing shift intensity, while
the projected posterior retains high accuracy (Fig. 6).

Out-of-distribution detection (Table 3). For out-
of-distribution (ood) detection, we use the maximum
variance of logits across output dimensions as an ood
score for all Bayesian posteriors, while the map baseline
employs maximum softmax, which is a strong baseline.
Lemma 3.1 dictates that the in-distribution variance of
the projected posterior is zero, providing a strong ood
detection signal. Table 3 supports the theory, showing
that the projected posterior achieves superior auroc
scores across various ood tasks over baselines.

6.3 ImageNet and CelebA vision transformer
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Table 2: In-distribution performance across methods trained on mnist, fmnist SVHN and CIFAR-10.

M
N

IS
T

Conf. (↑) NLL (↓) Acc. (↑) Brier (↓) ECE (↓) MCE (↓)
MAP 0.981±0.002 0.080±0.005 0.977±0.002 1.775±0.004 0.787±0.009 0.895±0.014
Projected posterior (ours) 0.981±0.002 0.080±0.005 0.977±0.002 1.774±0.004 0.787±0.009 0.895±0.014
Loss-projected posterior (ours) 0.813±0.018 1.225±0.099 0.949±0.000 1.532±0.028 0.666±0.007 0.894±0.011
SWAG 0.982±0.001 0.064±0.006 0.982±0.000 1.776±0.002 0.788±0.005 0.906±0.013
Last-Layer 0.977±0.002 0.090±0.005 0.975±0.002 1.768±0.003 0.784±0.007 0.887±0.008
Diagonal 0.951±0.008 0.129±0.016 0.975±0.001 1.727±0.012 0.784±0.008 0.894±0.015

FM
N

IS
T

MAP 0.938±0.005 0.325±0.011 0.897±0.002 1.713±0.008 0.732±0.006 0.901±0.006
Projected posterior (ours) 0.937±0.005 0.325±0.011 0.897±0.002 1.713±0.008 0.732±0.006 0.902±0.006
Loss-projected posterior (ours) 0.744±0.031 1.529±0.371 0.871±0.006 1.441±0.041 0.617±0.025 0.901±0.013
SWAG 0.931±0.006 0.327±0.001 0.898±0.001 1.703±0.008 0.725±0.003 0.907±0.003
Last Layer 0.931±0.005 0.339±0.011 0.896±0.002 1.703±0.008 0.727±0.004 0.902±0.004
Diagonal 0.735±0.024 0.922±0.051 0.855±0.000 1.431±0.033 0.621±0.021 0.895±0.021

SV
H

N

MAP 0.949±0.004 0.188±0.004 0.949±0.002 1.691±0.004 0.740±0.012 0.889±0.004
Projected posterior (ours) 0.949±0.004 0.188±0.004 0.949±0.002 1.691±0.004 0.740±0.012 0.889±0.007
Loss-projected posterior (ours) 0.948±0.005 0.191±0.007 0.949±0.003 1.685±0.013 0.734±0.017 0.880±0.012
SWAG 0.897±0.007 0.217±0.014 0.947±0.004 1.606±0.010 0.745±0.007 0.874±0.003
Last-Layer 0.943±0.005 0.197±0.009 0.946±0.001 1.681±0.006 0.740±0.007 0.899±0.009
Diagonal 0.948±0.003 0.187±0.005 0.949±0.002 1.689±0.003 0.742±0.011 0.899±0.000

C
IF

A
R

-1
0

MAP 0.952±0.002 0.422±0.011 0.894±0.002 1.698±0.038 0.703±0.013 0.878±0.009
Projected posterior (ours) 0.952±0.001 0.422±0.011 0.894±0.002 1.698±0.038 0.703±0.013 0.878±0.002
Loss-projected posterior (ours) 0.701±0.013 2.643±0.205 0.855±0.002 1.387±0.018 0.559±0.006 0.802±0.005
SWAG 0.914±0.035 0.445±0.063 0.865±0.029 1.670±0.049 0.694±0.018 0.881±0.005
Last-Layer 0.944±0.001 0.406±0.005 0.894±0.001 1.712±0.001 0.704±0.000 0.880±0.007
Diagonal 0.934±0.028 0.465±0.069 0.872±0.032 1.698±0.038 0.703±0.013 0.873±0.005

Table 3: Out-of-distribution auroc (↑) performance for mnist, fmnist, SVHN and CIFAR-10.
Trained on mnist fmnist CIFAR-10 SVHN
Tested on fmnist emnist kmnist mnist emnist kmnist svhn CIFAR-100 CIFAR-10 CIFAR-100
MAP 0.924±0.015 0.888±0.010 0.846±0.019 0.714±0.001 0.788±0.016 0.664±0.012 0.874±0.002 0.816±0.026 0.960±0.007 0.954±0.008
Proj. (ours) 0.926±0.013 0.904±0.004 0.862±0.011 0.861±0.029 0.844±0.032 0.867±0.012 0.881±0.002 0.836±0.004 0.960±0.002 0.957±0.001
Loss-proj. (ours) 0.899±0.011 0.893±0.006 0.856±0.002 0.914±0.035 0.928±0.007 0.907±0.026 0.863±0.008 0.800±0.013 0.966±0.009 0.960±0.006
SWAG 0.917±0.024 0.916±0.010 0.861±0.032 0.685±0.014 0.751±0.032 0.655±0.015 0.798±0.040 0.782±0.042 0.777±0.029 0.787±0.027
Last-Layer 0.793±0.215 0.782±0.182 0.759±0.166 0.768±0.001 0.824±0.016 0.699±0.020 0.811±0.024 0.801±0.026 0.914±0.005 0.908±0.005
Diagonal 0.772±0.218 0.768±0.191 0.745±0.174 0.726±0.028 0.725±0.034 0.683±0.013 0.836±0.022 0.806±0.027 0.917±0.005 0.916±0.004

Conf. (↑) NLL (↓) Acc. (↑) Brier (↓) ECE (↓) MCE (↓) AUROC (↑)
map 0.626 1.358 0.726 0.407 0.136 0.583 0.751
Loss-projected posterior 0.618 1.427 0.716 0.394 0.107 0.259 0.756

Table 4: In- and out-of-
distribution metrics for
SWIN transformer trained
on ImageNet and tested on
places365.

Figure 5: Variational autoencoder reconstructions and corresponding uncertainty estimates. Left:
mean reconstructions of MNIST and Fashion MNIST images sampled from the latent space. Right: pixel-wise
uncertainty estimates generated by sampling decoder parameters from the Loss Kernel Posterior, highlighting
key semantic features such as edges and contours. This demonstrates Projected Laplace’s ability to capture
uncertainty in high-dimensional generative models.
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Figure 6: Model calibration and fit on in-distribution
test data (left) and under distribution shift (middle,
right) where we plot shift intensities against accuracy
and expected calibration error (ece), respectively.

Hypothesis: The projected posterior scales effec-
tively to large models and datasets, such as SWIN
transformers trained on ImageNet and CelebA.

We assess the scalability of our approach by sampling
from the loss-projected posterior of a SWIN trans-
former [Liu et al., 2021] pre-trained on the ImageNet-
1K dataset [Deng et al., 2009, Russakovsky et al.,
2015], which includes about 1 million images of size
224 × 224 × 3 with 1000 output classes. Table 4 shows
marginal improvement in-distribution calibration over
map alongside improved out-of-distribution detection
on places365 [Zhou et al., 2017]. The main point is
that our method scales gracefully to large models and
datasets due to linear complexity.

We further consider a 4M parameter Visual Attention
network (VAN)[Guo et al., 2023]. We train on CelebA
[Liu et al., 2015] holding out three classes. Table 5 re-
ports auroc scores to measure the ability to detect
the three held-out classes and Food101 [Bossard et al.,
2014] as out-of-distribution. Both our method and base-
lines have a limited memory budget of 300P numbers.
lla and local ensemble are implemented using Lanc-
zos and we also include our projected score computed
with Lanczos as a reference. The projected posterior
outperforms the baselines on the three most challeng-

Table 5: auroc (3 seeds) for a VAN trained on
CelebA. Details are in the appendix.

Food101 Bald only Eyeglasses only Mustache only
Max logit 0.959±0.008 0.32±0.00 0.57±0.01 0.40±0.03
Deep ensemble 0.957 0.71 0.74 0.61
Proj. (ours) 0.958±0.004 0.81±0.03 0.75±0.01 0.66±0.01
Loss-proj. (ours) 0.947±0.007 0.76±0.03 0.72±0.01 0.62±0.01
Proj-Lanczos 0.954±0.004 0.80±0.03 0.74±0.01 0.64±0.01
Local ensemble 0.951±0.003 0.79±0.04 0.73±0.01 0.63±0.01
LLA 0.954±0.00 0.80±0.03 0.74±0.01 0.64±0.01
LLA-diag 0.797±0.021 0.54±0.03 0.57±0.02 0.45±0.03
SCOD 0.964±0.000 0.79±0.03 0.73±0.01 0.64±0.01
SWAG 0.740±0.021 0.70±0.08 0.52±0.04 0.49±0.04
SLU 0.953±0.003 0.80±0.03 0.74±0.01 0.64±0.01

ing settings and is only second to scod in the last.
The loss-projected posterior shows a minor drop in
performance.

6.4 Generative models
Hypothesis: The loss-projected posterior scales
to generative models with large output dimensions.

We evaluate the loss-projected posterior on variational
autoencoders [Kingma, 2013] trained on MNIST and
Fashion MNIST, showcasing its flexibility with high-
dimensional outputs and diverse tasks. After training,
we sample decoder parameters to generate images from
latent space samples. Fig. 5 shows that the sampled de-
coders produce diverse reconstructions with pixel-wise
uncertainty estimates that capture meaningful features.

This experiment highlights that our approach scales
to generative models while preserving essential predic-
tive uncertainties. Its adaptability beyond classification
makes it a robust tool for diverse tasks.

7 Summary and limitations

Theoretically we show that our proposed projected
posterior is optimal w.r.t. underfitting for noiseless data.
We further show that existing Laplace approximations
do not meet this fundamental requirement. However,
the applicability to high-noise data remains unresolved.

Algorithmically we introduce a memory-efficient al-
gorithm for computing projection-vector-products for
a Jacobian kernel. This approach is based on the novel
idea of representing the kernel as an intersection of ker-
nels, which enables the use of alternating projections.

Empirically our methods outperform existing base-
lines in out-of-distribution detection and in-distribution
calibration in diverse settings, ranging from toy regres-
sion problems to vision transformers on ImageNet.

Extending the method can be done in several ways.
We merely project an isotropic Gaussian to isolate
the strength of the projection itself, but we stress
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that the algorithm lets us project samples from any
distribution. For example, it is straightforward to
project samples from last-layer Laplace into the kernel.
We emphasize that our method is very general as it
works for any differentiable model, unlike e.g. kfac
[Dangel et al., 2020] which requires network-specific
implementations. Our open-source implementation is
applicable whenever we can access Jacobian-vector
and vector-Jacobian products.
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A Proofs

A.1 Proof of positive variance lemma

In this section, we prove Lemma 3.2. We restate it for convenience.

Let Jθ =[Jθ(x1)⊤ . . . Jθ(xN )⊤]⊤ and xtest ∈ RI , then

Varθ∼qprojf
θmap
lin (θ, xtest) > 0

Rank
((

Jθmap
Jθmap (xtest)

)(
Jθmap

Jθmap (xtest)

)⊤
)

> Rank
(
JθmapJ⊤

θmap

)
.

Proof. It is easier to show the contrapositive i.e. to show that if the variance is 0, then the square matrix has
rank at most NO.

Let’s first define a more compact notation JD = Jθmap and JT = Jθmap(xtest) for the two Jacobians. Let
D = Rank(JT ) and T = Rank(JT ). It holds that D ≤ NO and T ≤ O since the rank is always upper bound by
the number of rows. Consider their singular values decompositions

JD =
D∑

i=1
σiviV

⊤
i JT =

T∑
j=1

γjwjW ⊤
j , (17)

where σi, γj > 0, vi ∈ RD, Vi ∈ RP , wj ∈ RT , Wj ∈ RP , v⊤
i vi′ = V ⊤

i Vi′ = δii′ and w⊤
j Wj′ = W ⊤

j Wj′ = δjj′

for any i, i′ = 1, . . . , D and j, j′ = 1, . . . , T . Moreover let VD+1, . . . , VP ∈ RP be a orthonormal completion of
V1, . . . , VD as a basis.

Varθ∼qfθmap
lin (θ, xtest) = Tr


T∑

j,j′=1
γjwjW ⊤

j

I−P(ggn)︷ ︸︸ ︷(
P∑

i=D+1
ViV

⊤
i

)
γj′Wj′w⊤

j′

 (18)

=
P∑

i=D+1

T∑
j=1

γ2
j W ⊤

j ViV
⊤

i Wj (19)

=
P∑

i=D+1

T∑
j,=1

γ2
j (W ⊤

j Vi)2 (20)

and a sum of positive elements being 0 implies that every element is 0, thus

Varθ∼qfθmap
lin (θ, xtest) = 0 =⇒ Wj ⊥ Vi ∀j = 1, . . . T ∀i = D + 1, . . . , P (21)

and since V1, . . . , VP is a basis, this implies that there exists some coefficients β
(j)
k such that Wj =

∑D
k=1 β

(j)
k Vk.

Consequently

WjW ⊤
j =

D∑
k,k′=1

β
(j)
k Vkβ

(j)
k′ V ⊤

k′ =
D∑

k=1
(β(j)

k )2VkV ⊤
k ∀j = 1, . . . O (22)
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Now consider the matrix (
JD

JT

)⊤(JD

JT

)
= J⊤

DJD + J⊤
T JT (23)

=
D∑

i=1
σiViV

⊤
i +

T∑
j=1

γjWjW ⊤
j (Eq. 22) (24)

=
D∑

i=1
σiViV

⊤
i +

T∑
j=1

γj

D∑
k=1

(β(j)
k )2VkV ⊤

k (25)

=
D∑

i=1
σiViV

⊤
i +

D∑
k=1

 T∑
j=1

γj(β(j)
k )2

VkV ⊤
k (26)

=
D∑

i=1

σi +
T∑

j=1
γj(β(j)

i )2

ViV
⊤

i (27)

which has rank equal to D. Then finally

Rank
((

JD

JT

)(
JD

JT

)⊤
)

= Rank
((

JD

JT

)⊤(JD

JT

))
= D ≤ NO (28)

which concludes the proof.

A.2 Proof of the upper bound on Linearized Laplace predictive variance

In this section, we prove Theorem 3.3. We restate it below for convenience
Theorem 3.3. For α > 0, the predictive variance of lla on any training datapoint is positive and bounded,

Oγ2

γ2 + α
≤ Varθ∼qllafθmap

lin (θ, x) ≤ Oλ2

λ2 + α
for x ∈ D.

Here, λ and γ are the largest and smallest singular values of the dataset Jacobian Jθmap , respectively.

Proof. Let Jθmap =
∑NO

i=1 σiw
⊤
i vi be a SVD decomposition of the full dataset Jacobian. Namely, wi ∈ RNO,

vi ∈ RP for any i, and w⊤
i wi = δij , v⊤

i vi = δij for any i, j. Then it holds

(ggn + αI)−1 = α−1I +
NO∑
i=1

(
1

σ2
i + α

− 1
α

)
v⊤

i vi (29)

and consequently

Jθmap(ggn + αI)−1J⊤
θmap

=
NO∑

j,k=1
σjw⊤

j vj

(
α−1I +

NO∑
i=1

(
1

σ2
i + α

− 1
α

)
v⊤

i vi

)
σkv⊤

k wk (30)

=
NO∑
i=1

σ2
i

α
w⊤

i wi +
NO∑
i=1

σ2
i

(
1

σ2
i + α

− 1
α

)
w⊤

i wi (31)

=
NO∑
i=1

σ2
i

σ2
i + α

w⊤
i wi (32)

Now note that each datapoint Jacobian can be written in terms of the full dataset Jacobian as Jθmap(xn) =∑O
i=1 f⊤

i e(n−1)O+iJθmap where {fi}i=1...O and {ei}i=1...NO are the canonical bases of RO and RNO, respectively.
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We can finally express the Linearized Laplace predictive variance, for any train datapoint xn, as

Varθ∼N (θmap,(ggn+αI)−1)f
θmap
lin (θ, xn) = Tr

(
Jθmap(xn)(ggn + αI)−1Jθmap(xn)⊤) (33)

=Tr

 O∑
i,j=1

f⊤
i e(n−1)O+iJθmap(xn)(ggn + αI)−1J⊤

θmap
e⊤

(n−1)O+jfj


=

O∑
i=1

e(n−1)O+iJθmap(ggn + αI)−1J⊤
θmap

e⊤
(n−1)O+i

=
O∑

i=1

NO∑
j=1

σ2
j

σ2
j + α

e(n−1)O+iw
⊤
j wje⊤

(n−1)O+i

Now the upper bound follows by noting that for all j

σ2
j

σ2
j + α

≤ max
k

σ2
k

σ2
k + α

(34)

and thus from Eq. 33, noting that
∑NO

j=1 w⊤
j wj = INO we have for any train datapoint xn

Varθ∼N (θmap,(ggn+αI)−1)f
θmap
lin (θ, xn) =

O∑
i=1

NO∑
j=1

σ2
j

σ2
j + α

e(n−1)O+iw
⊤
j wje⊤

(n−1)O+i (35)

≤ max
k

σ2
k

σ2
k + α

O∑
i=1

NO∑
j=1

e(n−1)O+iw
⊤
j wje⊤

(n−1)O+i

= max
k

σ2
k

σ2
k + α

O∑
i=1

e(n−1)O+ie
⊤
(n−1)O+i = O max

k

σ2
k

σ2
k + α

While the lower bound, similarly, follows by noting that for all j

σ2
j

σ2
j + α

≥ min
k

σ2
k

σ2
k + α

(36)

and thus from Eq. 33 we have for any train datapoint xn

Varθ∼N (θmap,(ggn+αI)−1)f
θmap
lin (θ, xn) =

O∑
i=1

NO∑
j=1

σ2
j

σ2
j + α

e(n−1)O+iw
⊤
j wje⊤

(n−1)O+i (37)

≥ min
k

σ2
k

σ2
k + α

O∑
i=1

NO∑
j=1

e(n−1)O+iw
⊤
j wje⊤

(n−1)O+i = O min
k

σ2
k

σ2
k + α

which concludes the proof by noting that the function σ 7→ σ
σ+α is monotonic for any α > 0, and that the

eigenvalues of the ggn are a simple function of the singular values of the Jacobian: λmax(ggn) = maxk σ2
k and

λ ̸=0
min(ggn) = mink σ2

k. We emphasize that the singular values of the Jacobian affect the non-zero eigenvalues of
the ggn, thus the minimum singular value corresponds to the minimum-non-zero eigenvalue.

A.3 Proof of Lemma 3.4

Proof. It follows from equation 8 the approximate log marginal likelihood is given by:

log qlla(D|α) = log p(D|θmap) + log p(θmap|α) + 1
2 log det

(
1

2π
(ggn + αI)−1

)
(38)
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We can approximate (ggn + αI)−1 with α−1(IP − P (ggnθmap))(cf. lemma 3.5). Hence log-determinant of (ggn +
αI)−1 can also be approximated by sum of log-eigenvalues α−1(IP − P (ggnθmap)).

log qlla(D|α) = log p(D|θmap) + log p(θmap|α) + 1
2 log det

(
1

2π
(ggn + αI)−1

)
(39)

≈ −1
2α∥θmap∥2 + P − Tr(IP − P (ggnθmap))

2 log(α) + C (40)

where C denotes all the terms that don’t depend on α. Taking the derivative wrt α of the above equation and
setting it to zero gives us the stationary points.

d log qlla(D|α)
dα

≈ −1
2∥θmap∥2 + P − Tr(IP − P (ggnθmap))

2
1
α

= 0 (41)

=⇒ α∗ = ∥θmap∥2

P − Tr(IP − P (ggnθmap))
(42)

To conclude the proof one only needs to notice that the second derivative of log qlla(D|α) is given by
− P −T r(IP −P(ggnθmap ))

2
1

α2 which is always negative. Hence the stationary point is the maximum value of the
approximate log marginal likelihood.

A.4 Proof of Error Bounds in Lemma 3.5

Proof. To prove the bound on the matrix norm of the difference between the covariances of Laplace’s approximation
and projection posterior, notice that

(αIP + ggn)−1 = α−1(IP − P (ggnθmap) + V (Λ + α)−1V T

Where Λ and V correspond to non-zero eigenvalues and eigenvectors of ggn respectively. Therefore from the
properties of the spectral norm, we have that:

∥∥∥(αIP + ggn)−1 − α−1(IP − P (ggnθmap)
∥∥∥ =

∥∥∥V (Λ + α)−1V T
∥∥∥

≤ 1
τ + α

This proves the first bound. To prove the bound on Wasserstein distance note that the Wasserstein distance
between two Gaussian, N (µ1, Σ1) and N (µ2, Σ2), is given by:

d2 =
∥∥∥µ1 − µ2

∥∥∥2
+ Tr(Σ1 + Σ2 − 2(Σ

1
2
2 Σ1Σ

1
2
2 ) 1

2 )

We plug in µ1 = µ1 = θmap, Σ1 = (αIP + ggn)−1 and Σ2 = α−1(IP − P (ggnθmap)). Also notice that by the
properties of projection matrices, it follows that Σ

1
2
2 Σ1Σ

1
2
2 = 1

α2 (IP − P (ggnθmap)). Hence we have that

d2 = Tr
(
(αIP + ggn)−1 − α−1(IP − P (ggnθmap)

)
= Tr(V (Λ + α)−1V T )

≤ k

τ + α
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A.5 Proof of equation 11

Proof. To prove that ker
(∑

b M⊤
b Mb

)
=
⋂

b ker(M⊤
b Mb), assume that v ∈ ker

(∑
b M⊤

b Mb

)
then it follows that:(∑

b

M⊤
b Mb

)
v = 0

=⇒ vT

(∑
b

M⊤
b Mb

)
v = 0

=⇒
∑

b

vT M⊤
b Mbv︸ ︷︷ ︸

≥0

= 0

=⇒ vT M⊤
b Mbv = 0 ∀b

Hence, we can conclude that v ∈
⋂

b ker(M⊤
b Mb). On the other hand, it is obvious that if v ∈

⋂
b ker(M⊤

b Mb) we
have that

M⊤
b Mbv = 0 ∀b

=⇒
∑

b

M⊤
b Mbv = 0

=⇒ v ∈ ker
(∑

b

M⊤
b Mb

)

This proves that ker
(∑

b M⊤
b Mb

)
=
⋂

b ker(M⊤
b Mb).

A.6 Discussion of Lemma 4.1

The Convergence of Alternating Projections for two subspaces first appeared in John Von Neuman’s Lecture
Notes on Operator Theory[von Neumann, 1949]. It was extended to the case of infinite convex sets in Bregman
[1965]. Rate of convergence was analyzed in several works such as Kayalar and Weinert [1988], Smith et al. [1977].
This gives us some understanding of the approximation error incurred by truncating the interactive algorithm
after t steps.

A.7 Proof of Lemma 4.2

Proof. Suppose v ∈ ker(Jθ). Then we have that Jθv = 0. Note that JL
θ = ∇f(θ,x)l(f(θ, x), y)Jθ(x). Hence,

we have that JL
θ v = ∇f(θ,x)l(f(θ, x), y)(Jθ(x)v) = ∇f(θ,x)l(f(θ, x), y)0 = 0. Thus we have that v ∈ ker(JL

θ ).
Therefore, ker(Jθ) ⊆ ker(JL

θ ).

A.8 Proof of Lemma 4.3

In this section, we prove Lemma 4.3. We restate it for convenience.
Lemma 4.3. For any θ ∼ qloss and xn ∈ D it holds

|l(f(θ, xn), yn)−l(f(θmap, xn), yn)| = O(∥θ−θmap∥2)

which implies that
Varθ∼qloss l(f(θ, xn), yn) ≤ O(α2). (16)

Proof. Consider the first order Taylor expansion of f around θmap

f(θ, x) = f(θmap, x) + Jθmap(θ − θmap) + O(∥θ − θmap∥2) (43)

and the first order Taylor expansion of l around f(θmap, x), which we shorten as fmap

l(f(θ, x), y) = l(fmap, y) + ∇fmap l(fmap, y)(l(f(θ, x), y) − l(fmap, y)) + O(∥l(f(θ, x), y) − l(fmap, y)∥2) (44)
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And we can use these to write

l(f(θ, x), y) − l(fmap, y) = ∇fmap l(fmap, y)Jθmap(θ − θmap) + O(∥θ − θmap∥2) (45)
= ∇θmap l(f(θmap, x), y)(θ − θmap) + O(∥θ − θmap∥2) (46)

where we collected all the second order terms in θ in the O term.
Then, for any (xn, yn) ∈ D and for any θ ∼ qloss, by definition of the loss kernel in Eq. 15, it holds that

∇θmap l(f(θmap, xn), yn)(θ − θmap) = 0 (47)

which we plug back into Eq. 45 and we get

l(f(θ, xn), yn) − l(f(θmap, xn), yn) = O(∥θ − θmap∥2) for any θ ∼ qloss (48)

and the first part of the Lemma is proved. The variance bound directly follows since the norm ∥θ − θmap∥ is
controlled by the precision scale α of qloss.

B Calibration of loss kernel projection

To demonstrate how the poss-projected posterior improves calibration, consider a simple example of a classification
task with C output classes. Suppose the maximum a posteriori (map) estimate is overly confident in its predictions,
consistently assigning a probability of 1.0 to the predicted class and 0.0 to the remaining C − 1 classes. For
simplicity, assume this map estimate correctly classifies 80% of the examples while misclassifying the remaining
20%.

In this scenario, the map estimate’s confidence—represented by the maximum output probability is uniformly 1.0
for both correctly classified and misclassified examples. This results in overconfident predictions for the 20% of
cases where the model is wrong.
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Figure 7: The loss-projected posterior perturb the predicted probabilities of all the classes except the true label.
This leads to a lower confidence in misclassified examples, leading to better calibration.
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Now, consider using the loss-projected posterior for predictions. This posterior is designed to preserve the model’s
accuracy by maintaining the probability assigned to the true label, especially for correctly classified examples.
Thus, for the 80% of cases where the map is correct, both accuracy and confidence remain largely unchanged.

However, for the 20% of misclassified examples, the loss-projected posterior adjusts the predicted probabilities.
Specifically, it reduces overconfidence by perturbing the probabilities of all classes except the true label. By
redistributing some of the confidence away from the incorrect class, the model achieves better calibration.
Misclassified examples no longer exhibit extreme certainty, thus reducing the calibration error and yielding
predictions that are more aligned with the model’s actual performance.

This behavior is illustrated in Figure 7, which shows how confidence is moderated on misclassified examples,
leading to an overall improvement in the calibration of the model.

C Implementation details and experimental setup

In this section, we outline the specifics of the experimental setup and provide key hyperparameter details. Any
additional information about the experimental setup can be found in the submitted source code.

C.1 Motivation for the choice of baselines

We benchmark our method against several baselines, including map, Diagonal Laplace, Last-Layer Laplace, and
SWAG. The motivation behind these choices is to compare our approach with other post-hoc methods that
approximate a Gaussian posterior centered at the same mode.

We chose map as a baseline because the maximum softmax probability is a strong baseline for out-of-distribution
(OOD) detection.

The last-layer Laplace approximation was selected as a baseline following recommendations from [Daxberger
et al., 2021a]. This method is considered a strong representative of Laplace approximations and is expected to
provide near-optimal performance across various configurations of Laplace approximations.

We include SWAG as another baseline, which provides a simple yet effective method for uncertainty quantification.
SWAG builds a Gaussian approximation close to the map but with a low-rank covariance matrix which is different
from Laplace approximations.

Finally, diagonal Laplace is included to assess the impact of posterior correlations. This method simplifies the full
Laplace by using only diagonal covariance, providing insight into the difference between sparsely correlated and
fully correlated posteriors.

We exclude KFAC-Laplace from the benchmarks because it requires specialized layer-specific implementations,
which are not readily available for modern architectures like SWIN transformers.

C.2 Toy regression

We train a two-layer MLP with 10 hidden units per layer on a simple regression task. For uncertainty estimation,
we sample from approximate posteriors of various methods, including projected posterior, loss-projected posterior,
linearized Laplace, sampled Laplace, and diagonal Laplace.

While linearized Laplace and sampled Laplace refer to the same Gaussian distribution in parameter space, they
differ in how predictions are generated. Linearized Laplace uses the linearized neural network for predictions
and sampled Laplace uses neural network for predictions. The diagonal Laplace method, on the other hand,
approximates the covariance of this Gaussian by only considering its diagonal, which leads to sparsely correlated
posteriors. For a consistent and fair comparison, all methods utilize a prior precision of 1.0.

C.3 Image classification on MNIST and FMNIST

We train a standard LeNet for the MNIST and FashionMNIST experiments. We train LeNet with Adam
optimizer and a 10−3 learning rate. We choose the prior precision for each baseline by doing a grid search
over {0.1, 1.0, 5.0, 10.0, 50.0, 100.0}. For Projected Posterior and Loss Projected Posteriors, we use the analytical
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expression for the optimal prior precision and we do 1000 iterations of alternating projections for both and a
projection batch size, S = 16. For all Bayesian methods, we use 30 Monte Carlo samples for predictions. Whereas
for SWAG we use a learning rate of 10−2 with momentum of 0.9 and weight decay of 3 × 10−4 and the low-rank
covariance structure in all experiments. We collect 20 models to sample from the posterior. For Projected Posterior
and Loss Projected Posterior, we use the linearized predictive and for Last-Layer and Diagonal baselines we use
the neural network predictive.

C.4 Image classification on CIFAR-10 and SVHN

We train a ResNet architecture consisting of three groups of three ResNet blocks. The model is trained using
Stochastic Gradient Descent (SGD) with a learning rate of 0.1, momentum, and weight decay. The prior precision
is chosen in the same way as the experiment above, and the same predictive functions are applied.

For the projected posteriors, we perform 1000 iterations of alternating projections with a projection batch size of
S = 16. All Bayesian methods utilize 30 Monte Carlo samples to compute predictions.

For SWAG on CIFAR-10, we use a learning rate of 10−2 with momentum of 0.9 and weight decay of 3 × 10−4

and the low-rank covariance structure in all experiments. We collect 20 models to sample from the posterior.

C.5 Image binary multi-classification on CelebA

We first remove from the training dataset all the images belonging to the classes ’Bald’, ’Eyeglasses’, and
’Mustache’. Then we train a VisualAttentionNetwork [Guo et al., 2023] with blocks of depths (3, 3, 5, 2) and
embedded dimensions of (32, 64, 160, 256) with relu activation functions, we trained with Adam for 50 epochs with
batch size 128 and a learning rate decreasing from 10−3 to 10−5; parameter size is P = 3858309. All experiments
are run on a single H100 GPU.

We compare the scores of a series of baselines including Max Logit [Hendrycks and Gimpel, 2016] and a Deep
Ensemble (DE) [Lakshminarayanan et al., 2017] of 10 independently trained models, the high training cost is
the reason why DE is missing standard deviations, since that would require training 30 models. We included
several low-rank-approximation methods: Linearized Laplace Approximation (LLA) [Immer et al., 2021b], Local
Ensemble (LE) [Madras et al., 2020], Stochastic Weight Averaging Gaussian (SWAG) [Maddox et al., 2019],
Sketching Curvature for OoD Detection (SCOD) [Sharma et al., 2021] and Sketched Lanczos Uncertainty (SLU)
[Miani et al., 2024]. All of these but SLU use a rank 300 approximation for memory limit, while SLU uses a rank
1000 and a sketch size of 1M. All of these but SCOD and SWAG are based on Lanczos algorithm, thus we also
computed our Projected score using Lanczos algorithm to compute the top eigenvectors, this is referred to as
’Proj-Lanczos’ in Table 5. Lastly, we also include the diagonal version of Laplace (LLA-d) which is a common
method used for large models thanks to its low memory requirement.

C.6 Image classification on ImageNet

We obtain a pre-trained SWIN transformer[Liu et al., 2021], with 28 million parameters, from [DarshanDeshpande,
2021]. We sample from the Loss Projected Posterior. We use 5 Monte Carlo samples for predictions and do 15
iterations of alternating projections. We use a projection batch size of S = 16.

C.7 Generative model

We train a VAE with approximately 100, 000 parameters on MNIST and FMNIST. While keeping the encoder
fixed we sample various decoders from the loss-projected posterior. We do 5 iterations of alternating projections
and use 20 Monte Carlo Samples for predictions. Prior precision is chosen in the usual way.
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