
Robust uncertainty estimates with out-of-distribution pseudo-inputs
training

Pierre Segonne Yevgen Zainchkovskyy Søren Hauberg
pierre.segonne@electricitymap.org yeza@dtu.dk sohau@dtu.dk

Abstract

Probabilistic models often use neural net-
works to control their predictive uncertainty.
However, when making out-of-distribution
(OOD) predictions, the often-uncontrollable
extrapolation properties of neural networks
yield poor uncertainty predictions. Such
models then don’t know what they don’t know,
which directly limits their robustness w.r.t un-
expected inputs. To counter this, we propose
to explicitly train the uncertainty predictor
where we are not given data to make it reliable.
As one cannot train without data, we provide
mechanisms for generating pseudo-inputs in
informative low-density regions of the input
space, and show how to leverage these in a
practical Bayesian framework that casts a
prior distribution over the model uncertainty.
With a holistic evaluation, we demonstrate
that this yields robust and interpretable
predictions of uncertainty while retaining
state-of-the-art performance on diverse tasks
such as regression and generative modelling.

1 Introduction

Neural networks generally extrapolate arbitrarily (Xu
et al., 2020), and high quality predictions are limited to
regions of the input space where the networks have been
trained. This is to be expected and is only problematic
if the associated predictions are not accompanied with
a well-calibrated measure of uncertainty. If a neural
network is used for estimating such a measure of un-
certainty, we, however, quickly run into trouble, as the
reported uncertainty then exhibits arbitrary behaviour
in regions with no training data. Alarmingly, these are

Copyright 2022 by the author(s).

Figure 1: Pseudo-inputs are generated out of distribu-
tion, and there we train towards a prior (grey density).

exactly the regions where evaluating the uncertainty
is most important to the safe deployment of machine
learning models in real world applications (Amodei
et al., 2016). One potential solution is to avoid using
directly the output of neural networks for predicting
uncertainty, and let it emerge from another mechanism,
e.g. an ensemble (Hansen and Salamon, 1990; Lakshmi-
narayanan et al., 2017) or some notion of Monte Carlo
(MacKay, 1992; Gal and Ghahramani, 2016). Here we
explore the alternative view that the networks should
simply be trained where there is no data. But can we
train without data? The Bayesian formalism often does
so implicitly: most conjugate priors can be seen as ad-
ditional training data (Bishop, 2006), e.g. in Gaussian
models, a mean prior N (µ0, σ

2
0) can be realised by ad-

ditional training data of µ0 with σ2
0 setting the amount

of observations. Placing a prior over the output of a
neural network can, thus, be interpreted as additional
training data. Unfortunately, this view is not practical
as it implies additional data for all possible inputs to a
neural network, resulting in infinite data. Our approach
is simple: we locate regions of low data density in input
space and implicitly place observations here in out-
put space by minimising an appropriate KL divergence
towards a prior (see Fig. 1). The result is a simple algo-
rithm that significantly improves uncertainty estimates
in both regression and generative modeling.

1.1 Background and related work

The predictive performance of machine learning models
has drastically increased in the past decade, but the
quality of the accompanying uncertainties have not

ar
X

iv
:2

20
1.

05
89

0v
1 

 [
cs

.L
G

] 
 1

5 
Ja

n 
20

22



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

followed. Uncertainties are reported as being miscal-
ibrated (Guo et al., 2017) and overconfident (Lakshmi-
narayanan et al., 2017; Hendrycks and Gimpel, 2016).
Some models even see higher likelihoods of out-of-
distribution than in-distribution data (Nalisnick et al.,
2019; Nguyen et al., 2015; Louizos and Welling, 2017).

Neural networks commonly output distributions
which gives a notion of predictive uncertainty. Classi-
fiers trained with soft-max is an ever-present example
of such. These predictions are generally observed
to be overconfident (Lakshminarayanan et al., 2017;
Hendrycks and Gimpel, 2016) and to carry little
meaning outside the support of the training data
(Skafte et al., 2019; Lee et al., 2017). The latter is
an artifact of the hard-to-control extrapolation that
comes with neural networks (Xu et al., 2021). In
general, since extrapolation is difficult to control,
uncertainties predicted by neural networks will exhibit
seemingly arbitrary behavior outside the support of
the data, yielding untrustworthy results.

Mean-variance networks for regression (Nix and
Weigend, 1994) model the conditional target density as
a Gaussian p(y|x) = N

(
y|µ(x), σ2(x)

)
with mean and

variance predicted by neural networks. The predictive
uncertainty is generally accurate in regions near train-
ing data, but otherwise unreliable (Hauberg, 2019).
To counter this, Arvanitidis et al. (2017) and Skafte
et al. (2019) proposed variance network architectures
to enforce a specified extrapolation value, but these
heuristics tend to be difficult to tune, and lack princi-
ple. Mean-variance networks have seen a recent uptake
within generative modeling, where they are used as an
encoder distribution in variational autoencoders (VAEs)
(Kingma and Welling, 2013; Rezende et al., 2014).

Which uncertainty? A commonly called-upon di-
chotomy (Der Kiureghian and Ditlevsen, 2009) is that
the uncertainty of a model’s prediction can be decom-
posed into the uncertainty of the model (epistemic) and
of the data (aleatoric). The epistemic uncertainty can
be lowered by increasing the amount of data, simpli-
fying the model or otherwise reducing the complexity
of the learning problem. The aleatoric uncertainty, on
the other hand, is a property of the world, and cannot
be changed; no prediction should ever be more certain
than the uncertainty displayed by the associated data.

Bayesian methods are often used to quantify uncer-
tainty due to their explicit formulation of uncertainty.
Gaussian processes (GPs) (Rasmussen and Williams,
2005) provide an elegant framework that provide state-
of-the-art uncertainty estimates, but, alas, the corre-
sponding mean predictions are often not up to the
standards of neural networks. GPs are tightly linked to
Bayesian neural networks (BNNs) (MacKay, 1992) that

place a prior over the network weights and seek the cor-
responding posterior. Despite advances in variational
approximations (Graves, 2011; Kingma and Welling,
2013; Blundell et al., 2015), expectation propagation
(Hernández-Lobato and Adams, 2015; Hasenclever
et al., 2017), or Monte Carlo methods (Welling and
Teh, 2011; Springenberg et al., 2016), training BNNs
remains difficult. Furthermore, the predictive uncer-
tainty seems dependent on the degree of approximation
and is thus controlled by the available compute power.

Ensemble methods have long been used to pro-
duce aggregated predictions with uncertainty estimates
(Hansen and Salamon, 1990; Breiman, 1996). Deep en-
sembles (Lakshminarayanan et al., 2017), a collection
of differently initialized networks trained on the same
data, are generally reported as state-of-the-art for un-
certainty quantification in deep models (Thagaard et al.,
2020; Ovadia et al., 2019). As the models in the ensem-
ble are trained on overlapping data, they are correlated,
which influence the ensemble uncertainty in ways that
remains unclear (Breiman, 2001). Monte-Carlo dropout
(Gal and Ghahramani, 2016) casts dropout training
(Srivastava et al., 2014) as an ensemble model. It is
computationally cheap, but experiments (Ovadia et al.,
2019; Skafte et al., 2019) show that the increased cor-
relation of ensemble elements causes overconfidence.

Robustness to distribution shift is part of a
well-behaved uncertainty predictor (Ovadia et al.,
2019) and must be evaluated accordingly. For out-
of-distribution detection, Liang et al. (2017) proposes
a pre-processing perturbation step inspired by adver-
sarial attacks (Goodfellow et al., 2014a) that helps dis-
tinguish in-distribution and out-of-distribution inputs.
Hendrycks et al. (2018) used a Generative Adversarial
Network (GAN) (Goodfellow et al., 2014b) to generate
out-of-distribution pseudo-inputs that appear in a regu-
larizing term in the loss function, called outlier exposure,
to enhance the predictor’s ability to discriminate out-of-
distribution inputs (Lee et al., 2017; Dai et al., 2017).

Out-of-distribution pseudo-inputs can improve
uncertainty estimates. Deep ensembles trained to max-
imise diversity on such pseudo-inputs can display high
uncertainty outside of their training support (Jain et al.,
2020), under the strong assumption that uniformly dis-
tributed pseudo inputs can accurately capture the out-
of-distribution support. High entropy priors on predic-
tions, pprior(y|x), conditioned on OOD pseudo-inputs
sampled from pprior(x), have also successfully regu-
larised the uncertainty predictions of Bayesian models
(Hafner et al., 2018; Malinin and Gales, 2018). But
these negatively affect the mean predictions compared
to contemporary regularisation techniques (Srivastava
et al., 2014; Ioffe and Szegedy, 2015).



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

Figure 2: Noise contrastive priors improve uncertainty
estimates, but overregularize the main prediction.

1.2 Robust uncertainty estimates

Notation. Let the observed variable x ∈ X fol-
low the data generating distribution pdata(x), only
known through the training dataset of N i.i.d samples
Dtrain = {xn}Nn=1. In the case of supervised learning,
the observed variables x = (x, y), with x ∈ Rd being the
input and y ∈ Rd′ the target for the model, follow the
joint decomposition pdata(x, y) = pdata(y|x)pdata(x).
The proposed probabilistic model pθ(x), whose weights
are indicated by θ, aims to accurately emulate pdata(x).

Practical problems in variance estimation.
Gaussian likelihoods in the form of pθ(x) =
N
(
x|µθ(x), σ2

θ(x)
)

are widely adopted to model
continuous covariates. Real world data cannot be
expected to be homoscedastic, i.e constant throughout
input space, and thus the predictive uncertainty, σθ(x),
most often uses neural networks to map continuously
the observed x onto the parameter space. Beyond
the well-known unreliable extrapolation properties of
neural networks, this parametrisation of predictive
uncertainty is hamstrung by serious defects. Firstly,
the predictive variance scales the learning rates of
the mean and variance updates by 1/2σ2

θ(x), resulting
in a bias for data regions with low uncertainty (Nix
and Weigend, 1994). Secondly, the maximisation of
the modelled likelihood is particularly sensitive to
scarce data, as local gradient updates for the variance
point towards the then undefined maximum likelihood
estimate (MLE) (Skafte et al., 2019). Lastly, such
model’s likelihood is ill-defined (Mattei and Frellsen,
2018a), as it can without bound increase when the
variance estimates collapse towards a detrimental 0.
Overall, the naive maximisation of model likelihood is
insufficient to generate robust and well-behaved uncer-
tainty estimates, and practical implementations rely on
an arbitrary lower threshold of the predictive variance.

Ensembles. The arbitrariness of the extrapolation of
single mean-variance networks precludes any guarantees
of robust uncertainty estimates. Previous contributions
thus adopt a mixture of Gaussians as their predictive
density. Whether discrete (Lakshminarayanan et al.,

2017; Gal and Ghahramani, 2016; Jain et al., 2020)
or continuous (Hafner et al., 2018), they commonly
result in variance predictions expressed as a function
of the mean. As shown in Fig. 2, this dependency
creates a trade-off that limits the ability to improve
the robustness of the uncertainty predictions without
sacrificing some of the model’s mean predictive power.

Student-t likelihood. Skafte et al. (2019) notably
adopts a Gamma distributed precision, λ ∼ Γ(α, β), as
the conjugate of an unknown precision for a Gaussian,
to yield a non-standard Student-t distributed marginal
likelihood1. This infinite mixture of Gaussians is
known to offer a more robust likelihood, especially in
the scarce data regime (Gelman et al., 2013),

pθ(x) = T
(
x|ν = 2α, µ̂ = µ, σ̂ =

√
β/α

)
. (1)

Its variance Var[x] = (β/α)·(α/(α− 1)) is explicitly de-
composed into an aleatoric β/α and an epistemic term1

α/(α − 1) (Jørgensen, 2020, p16), and offers a direct
verification of whether a model knows what it knows.

Variational variance (VV). Stirn and Knowles
(2020) assumes a latent model precision λ. It is
generated by a prior p(λ) and its posterior is ap-
proximated variationally by the family of Gamma
distributions, conditioned on the inputs to reflect
heteroscedasticity. Through amortized variational
inference (AVI) (Kingma and Welling, 2013) neural
networks fφ map to the posterior parameters from
data, q(z|fφ(x)). As such, variational variance
preserves the modelling capacity and robustness of
the Student-t marginal likelihood, without modifying
its parameter architecture, while the definition of a
prior over the precision induces a more robust training
objective. Assuming the precision is the unique latent
code, the evidence lower bound (ELBO),

L(q; x) = Eq(λ) [log p(x|λ)]−DKL (q(λ|x) || p(λ)) (2)

=
1

2

(
ψ(α)− log β − log(2π)− α

β
(x− µ)2

)
−DKL (q(λ|x) || p(λ)) ,

(3)

takes the form of a regularised log-likelihood. It
penalises predicted variances that would unrealistically
get arbitrarily close to either the detrimental limits of 0
or ∞, reducing the concerns regarding the ill-definition
of the objective. Additionally, the scaling effect of the
learning rates of the likelihood parameters is reduced.
Naturally, the effect of the regularisation will be highly
dependent on the prior selected. Here, because we
are mostly interested in enforcing a constant desired
uncertainty extrapolation, we adopt an homoscedastic
Gamma distributed prior, p(λ) = Γ(λ|a, b), that
matches the level of uncertainty observed in data.

1See Sec. I. of the supplementary materials.



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

2 Out-of-distribution pseudo-inputs

2.1 Dissipative loss

In variational variance, due to AVI, the uncertainty is
controlled by α and β, the independent parameter maps
of the posterior distribution, Var[x] = β(x)/(α(x)− 1).
The unreliable extrapolation properties of NNs there-
fore directly challenge the robustness of the method’s
uncertainty estimates outside of its training support.

Inspired by outlier exposure (Hendrycks et al., 2018)
and noise contrastive priors (Hafner et al., 2018), we in-
clude deliberately generated out-of-distribution pseudo-
inputs, {x̂k}Kk=1 where x̂k ∼ pout(x), in the training of
our variational objective to constrain the extrapolation
of the posterior parametrisation. The optimal varia-
tional objective q∗ is chosen such that it minimises our
proposed dissipative loss over the combined dataset
D = Dtrain ∪ Dout, where Dout = {x̂k}Kk=1,

L(q;D) = −
[
Lin(q;Dtrain) + Lout(q;Dout)

]
. (4)

The in-distribution component of the loss function
Lin(q;D) naturally arises as the standard ELBO over
the training set. The out-of-distribution component
Lout(q;D) operates on a fundamentally different source
of data. As the only information available for the
pseudo-inputs is that they are OOD, we assert for
them a constant, non-informative likelihood p(x̂|λ) = c,
that has thus no influence on optimisation. This is
similar to censoring (Lee and Wang, 2003) where differ-
ent likelihoods are used for observations with different
properties. This simplifies the pseudo-inputs genera-
tion process, which no longer depends on modelling
a likelihood, as is done by e.g Hafner et al. (2018),
where the prior on targets is chosen as Gaussian data
augmentation. As a result, the dissipative loss becomes,

L(q;D) = −
∑

x∈Dtrain

Eq(λ|x) [pθ(x|λ)]−DKL(q(λ|x) || p(λ))

+
∑

x̂∈Dout

DKL(q(λ|x̂) || p(λ)). (5)

It shares the same motivating intuition as the confi-
dence loss of Lee et al. (2017), which pushes a soft-max
classifier towards the uniform distribution on OOD
pseudo-inputs, and completes variational variance with
a principled mechanism to learn robust variance esti-
mates with the desired extrapolation properties. The
predictor is indeed forced to match our high-entropy
uncertainty prior expectations on out-of-distribution
samples while learning the low-entropy covariate depen-
dent distribution, hence the name of dissipative. The
reliance of the model’s predictive uncertainty on its
mean predictions implies that it is primordial here to

safeguard its generative performance. Previous contri-
butions adopting a similar dual loss function (Lee et al.,
2017; Jain et al., 2020; Hafner et al., 2018) contaminate
the uncertainty regularisation with mean predictions,
forcing joint learning of both loss terms and jeopardis-
ing the model mean predictive power. Conversely, the
dissipative loss guarantees its conservation with the
implementation of a split training procedure (Skafte
et al., 2019); its modularity allows the application of
the out-of-distribution regularisation only after the
model’s mean has been trained, which we view as a key
conceptual advantage of our proposal.

2.2 Pseudo-input generators (PIGs)

Minimising the posterior KL divergence OOD requires
an efficient sampling procedure of pseudo-inputs. As
exposed in Fig. 3, their generation should leverage
a-priori knowledge about pdata(x) to resolve the
undefined nature of pout(x). In this simple regression
case, we show the predictive uncertainty of variational
variance models trained on artificial heteroscedastic
data. We use a prior uncertainty level that matches
the maximum of the data uncertainty. As anticipated,
without pseudo-inputs, the model extrapolates
uncertainty to a constant, arbitrary level, and only
the introduction of pseudo-inputs near the training
data results in the desired uncertainty extrapolation.
Reassuringly, this suggests that we do not need to
regularise our model’s extrapolation in the entire out-
of-distribution space, as suggested by Jain et al. (2020).
Instead, we can focus on the simpler task of generating
pseudo-inputs in low-density regions of the input space
that neighbours training data, as they can enforce cor-
rect extrapolation in the rest of the out-of-distribution
space. Lee et al. (2017) gives supporting arguments
for classification, and empirical results shows that this
intuition generalises to higher dimension experiments2.

Recent contributions have relied on GANs for gen-
erating a useful representation of pout(x) (Lee et al.,
2017; Dai et al., 2017). Although conceptually intuitive,
GANs incur a heavy computational burden and induce
serious practical challenges as a result of the instability
of their training (Shrivastava et al., 2017). Further-
more, as one need to understand what is in-distribution
to model what it is not, we instead propose to directly
leverage the information at hand about the data.

Algorithm 1 generates pseudo-inputs with simple steps
using the data density. Pseudo-inputs are initially
drawn from pdata(x), and their positions iteratively
updated with gradient descent to minimise their likeli-
hood under pdata(x), similarly to reversed adversarial
steps (Goodfellow et al., 2014a). In practice, we see

2Further experiments are in appendix II..1.



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

Figure 3: Predictive uncertainty of VV for different pseudo-inputs distributions.
Training data is generated uniformly with Var[x] ∝ exp

(
−0.5(||x||/s)2

)
.

Figure 4: Graphical model for
regression.

Algorithm 1: Pseudo-Input Generator (PIG)
∀k ∈ [1,K], x̂k ∼ pdata(x). iterations = 0. ε = ∞;
while (iterations < max_iterations) & (ε >
tolerance) do

compute ∀k ∈ [1,K],∇xp(x)(x̂k);
ε = maxk∈[1,K](||δ∇xp(x)(x̂k)||2);
∀k ∈ [1,K], x̂k = x̂k − δ∇xp(x)(x̂k);
iterations = iterations + 1;

end

little sensitivity of the model uncertainty on the chosen
hyperparameters and on the number of pseudo-inputs3.

Remarkably, this modular procedure can run prior to
training, in parallel for all x̂k with automatic differenti-
ation, and thus results in limited additional complexity
for the optimisation4. It relies on the availability of
a differentiable density estimate of the data, which is,
depending on the use case, either directly available (see
Sec. 3.2), or can be approximated through a variety
of methods such as Bayesian Gaussian mixture models
(Bishop, 2006) (see Sec. 3.1). A caveat here is that de-
pending on the PIG’s parameters, and on the quality of
the density estimate available, pseudo-inputs might be
generated in undesired regions of the input space, e.g
uninformative density minima. In practice, we adopted
conservative density estimates and did not observe any
significant degradation of the predictive uncertainty.

3 Experiments

Holistic evaluation of uncertainty estimates.
The ground truth for uncertainty is usually unknown,
making its evaluation non-trivial. As in Stirn and
Knowles (2020), we propose to assess it using multiple
metrics. Calibration, which evaluates probabilistic
predictions w.r.t the long-run frequencies that actually
occur (Dawid, 1982) can be measured by proper scoring
rules (Lakshminarayanan et al., 2017) such as the

3Sec. II..4 of the supplements.
4Running times are reported in Sec. V.

model log-likelihood log pθ(x|λ). Additionally, the root
mean squared error (RMSE) between the predictive
and empirical variance, Var[x]−(µθ(x)−x)2, quantifies
the model’s awareness of its own uncertainty. It
nevertheless requires an understanding of the model’s
mean predictive performance, as commonly measured
by the RMSE of the mean residuals, µθ(x) − x. We
further evaluate the cooperation of mean and uncer-
tainty estimates for generating credible samples, which
constitutes a consistency check for the learned precision
distribution (Gelman et al., 2013), by measuring the
RMSE of sample residuals x∗ − x, with x∗ ∼ pθ(x).
Finally, The ELBO, despite the absence of theoretical
grounding for it (Blei et al., 2017), is commonly re-
ported as an approximation of the marginal likelihood,
and thus of the model’s predictive performance.

A complete assessment of a model’s uncertainty further
requires its evaluation under distributional shift
(Ovadia et al., 2019), which we introduce voluntarily
through deliberate splitting of the training set (Sec. 3.1),
or by using test data from a different dataset (Sec. 3.2).

3.1 Regression

In a regression setting where the proposed model must
capture the conditioning y |x, the precision λ of a
Gaussian likelihood is the only assumed latent code.

Faithfully to variational variance (Stirn and Knowles,
2020) we adopt a Gamma heteroscedastic variational
posterior qφ(λ|x) = Γ (λ|αφ(x), βφ(x)) parametrised by
the independent αφ and βφ networks, with weights φ,
uniquely conditioned on the inputs (see Fig. 4). This
approximate posterior, independent of the targets, gives
up on the dependency of the true posterior on both
covariates to guarantee heteroscedasticity5.

For more than 2 degrees of freedom, or,
αφ(x) > 1, the marginal likelihood pθ,φ(y|x) =

T
(
y | 2αφ(x), µθ(x),

√
βφ(x)/αφ(x)

)
, has its first two

moments defined, E[y|x] = µθ(x) and Var[y|x] =
βφ(x)/(αφ(x)− 1), providing explicit mean and uncer-

5The true posterior is in Sec. III. of the supplements.



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

Figure 5: Toy regression results. On the left, are shown mean ± 2 std, with the
training data of the bottom row presenting a shift. On the right are displayed
the predictive uncertainty fit and the prior KL divergence.

Figure 6: Aleatoric (yellow)
and epistemic (dark) uncertain-
ties.

tainty estimates with a single forward pass in the αφ, βφ
and µθ networks. To ensure definition of both the poste-
rior and marginal distributions’ variance, the parameter
maps use a soft-plus on their last layer to ensure
positivity, and the αφ network is further shifted by 1.

For pseudo-inputs generation, we estimate the input
density prior to training with a Bayesian Gaussian mix-
ture model (Bishop, 2006). We refer to it henceforth as
dissipative variational variance (d-VV). The implemen-
tation details are listed in Sec. III. of the appendix.

3.1.1 Toy regression

The desiderata for our method are clear: capture of
the data heteroscedasticity, extrapolation to a higher
uncertainty level, no underestimation of the predictive
uncertainty, and posterior extrapolation to the prior
out-of-distribution. Skafte et al. (2019) first showed on
the toy regression task, y = x sin(x) + 0.3 ε1 + 0.3x ε2,
where ε1, ε2 ∼ N (0, 1), that amongst a collection of
methods, only their proposed variance network archi-
tecture could realise our first three expectations. Fig. 5
demonstrates that our more principled approach also
fulfills all of our requirements, without the need for
arbitrarily enforcing the desired extrapolation in our
architecture. The importance of out-of-distribution
training is also revealed as the standard variational
variance approach fails to produce uncertainty esti-
mates that extrapolate correctly and are robust to
distributional shift (bottom row of Fig. 5).

Decomposing model and data uncertainty.
Fig. 6 shows that the aleatoric component captures
the heteroscedastic increase of uncertainty in the
training data while the epistemic uncertainty, constant
in distribution, extrapolates to higher values.

3.1.2 UCI Benchmarks

Real world regression datasets from the UCI repository
are used to evaluate our model against curated base-
lines, as in Hernández-Lobato and Adams (2015) and

Skafte et al. (2019)6. We further copy each dataset
with a distributional shift to assess the robustness of
the methods. As in Foong et al. (2019), a shift is intro-
duced, for each input feature, as a hole in the training
data by assigning the middle third of observations to
the test set, when sorted w.r.t that feature.

Tab. 1 aggregates best performances over the 24
datasets for two classes of methods7. To the left are
methods that directly parametrise model uncertainty
with neural networks, and to the right are methods
that use ensembling for uncertainty estimation.

We note that Bayes by backprop offer a strong baseline,
outperforming other ensemble methods. The instability
of its performance on some datasets7, as well as Hafner
et al. (2018)’s demonstration of its overfitting in an
active learning setting, challenge the reliability of its
uncertainty estimates. As expected, the regularisation
by NCP degrades significantly the mean predictions.

Our method performs best in its class. The ELBO re-
veals that it clearly strengthens the prior regularisation
as introduced in VV, without significant degradation
of the predictive power, as shown by other metrics. A
caveat here is that the calibration of d-VV, as mea-
sured by the log-likelihood, suffers from the increased
uncertainty of the method, which we deem acceptable
if it leads to safer uncertainty estimates.

3.2 Generative models

We extend the evaluation of our proposal to the case of
generative models through the lens of VAEs (Kingma
and Welling, 2013; Rezende et al., 2014). VAEs infer a
low dimensional latent encoding of the data z ∈ RD, on
which is conditioned the generative process pθ(x|z). Its
predictive uncertainty, which evaluates the confidence
of the model in its ability to adequately reconstruct
inputs is known to be untrustworthy.

6See Sec. III. for benchmark specification.
7Full results are included in Sec. III. of the supplements.



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

Table 1: Each cell counts datasets for which each method demonstrated the best average, over 5 trials. Grey shows
statistical draws and "n/a" metrics impossible to evaluate for a method. Best per metric is highlighted in bold.

UCI benchmarks
(shifts included) d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

L 21 / 18 3 / 3 0 / 0 n / a n / a n / a n / a n / a n / a
log p(y|x) 2 / 7 5 / 9 0 / 0 0 / 0 4 / 9 0 / 0 0 / 0 2 / 8 11 / 8
RMSE[y, µ(x)] 2 / 2 1 / 4 2 / 5 1 / 5 2 / 3 5 / 12 3 / 16 0 / 0 8 / 0
RMSE[Var] 2 / 4 5 / 9 2 / 4 0 / 0 n / a 2 / 5 5 / 17 0 / 0 8 / 7
RMSE[y, ỹ] 3 / 4 5 / 7 4 / 2 n / a n / a n / a n / a 1 / 2 11 / 7
E[KL] 23 / 14 1 / 0 0 / 0 n / a n / a n / a n / a n / a n / a

In the case of continuous or seemingly continu-
ous inputs, the adoption of a Gaussian decoder
pθ(x|z) = N

(
x|µθ(z), σ2

θ(z)
)
results in an ill-defined

model likelihood (Mattei and Frellsen, 2018a) that
encourages decoder variance collapse, making the
training of the model notoriously harder (Skafte et al.,
2019). Most implementations therefore choose to fix
the variance to a set level e.g σθ(z) = 0.1, or elude the
challenge by adopting a Bernoulli likelihood.

Motivated by our previous results, we now aim to
demonstrate that VAEs, whose decoder is fitted with
our method, are able to provide robust uncertainty
estimates. Assuming a latent generative precision,
the latent variables of the model are decomposed into
z = {z, λ}, with z the latent input representations.
The marginalisation of the Gamma distributed latent
variance results in a Student-T decoder, as detailed
in Eq. 1. The variational variance variational auto
encoder (V3AE) yields, with the addition of our OOD
pseudo-inputs training, the dissipative loss function8,

L(qφ, θ;Dtrain) = −
∑

x∈Dtrain

L(qφ, θ; x)

+ Eqout(z) [DKL (qφ(λ|z) || p(λ))].

(6)

Because only the decoder is regularised, the pseudo-
inputs lie in the space of latent representations,
Dout = {ẑk}Kk=1 ∈ RD. The distribution of training
inputs is therefore readily accessible as the aggregate
posterior qφ(z|Dtrain) = qφ(z|x1) · · · qφ(z|xN ). Again,
we rely on a split training procedure to leverage this
perk; the encoder parameter maps µθ and σθ, as well as
the decoder mean µφ are first trained until convergence,
allowing the generation of the OOD pseudo-inputs and
subsequently, the training of the decoder variance.

Image data. We evaluate the performance of our
proposed dissipative V3AE (d-V3AE) against a fully
Gaussian VAE on image data, coming from Fashion-
MNIST, SVHN and CIFAR10. For both models, all
parameter maps share the same underlying architecture,

8The derivation is provided in Sec. IV.

Table 2: Evaluation of the generative modelling. For
each dataset, we report mean ± std over 5 trials.

FashionMNIST SVHN CIFAR

log p(x)
VAE 2215.54±68.81 4304.90±58.45 2930.64±14.82
d-V3AE 2349.71±11.80 4133.41±64.28 2668.85±13.23

RMSE(x, x̃)
VAE 0.171±0.003 0.097±7e-4 0.154±5e-4
d-V3AE 0.158±0.003 0.087±0.002 0.129±7e-4

with the addition of either a softplus and/or a shifting
last layer to ensure definition of both the variational
and the generative distribution’s moments9.

Tab. 2 compares model performance on two metrics,
the log-likelihood and the RMSE between the orig-
inal inputs x and reconstructed samples x̃, where
x̃ ∼ pθ(x|λ, z) , (λ, z) ∼ qφ(λ, z|x). Unlike most pre-
vious implementations, we focus on actual samples,
and not the mean, of the generative distributions. This
comparison emphasize the cooperation between the de-
coder’s mean and variance, allowing evaluation of the
models’ uncertainty estimates. Our method both quali-
tatively (Fig. 9), and quantitatively improves on a Gaus-
sian VAE’s sampling ability. The prior smoothens the
uncertainty estimates, resulting in more realistic and
less crisp samples. The log-likelihoods, evaluated at test
time using truncation, i.e. ptrunc(x) = pθ(x)/(Fx(1)−
Fx(0)), to account for the finite support of data, reveal
that our model can achieve a better fit, if the prior is se-
lected correctly. In SVHN and CIFAR10, the presence
of color channels complicates the selection process and
challenges our choice of a single homoscedastic prior for
all pixels and channels. We note that the dissipative
loss also applies to classic VAEs with Bernoulli-only
decoders; see Sec. IV. of the supplements for details.

Applications of robust generative uncertainty.
In Figs. 7 & 8, the colouring of the 2D latent space rep-
resent the aggregated decoder variance ∑d

i=1(σ2
θ(z))i.

It is clear that our method displays more regular un-
certainty estimates, and provides the extrapolation
guarantees we strove for. Beyond increased robustness

9Full details are included in Sec. IV. of the supplements.



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

Figure 7: Decoder’s aggregated
variance (left) and generated sam-
ples (right) from the latent space.
Coloured points correspond to latent
representations of test data, with per-
class colours.

Figure 8: Effect of encoder refitting on the
latent representations (left) and resulting
samples (right). OOD inputs (top rows, x)
initially result in in-distribution samples (sec-
ond rows, x̃). The refitted encoder displaces
the encodings (coloured trajectories), modify-
ing the generated samples (third rows, x̃refit).

Figure 9: Generated
samples.

and better generative power, this unlocks meaningful
out-of-distribution detection, beating previous state-
of-the-art (Havtorn et al., 2021)10. For Figs. 8 & 10,
as argued in Mattei and Frellsen (2018b), we refit at
test time the encoder of models trained on Fashion-
MNIST on MNIST. The regularity and structure of
the decoder variance rewards the encoder for learning
to place representations of OOD data outside of the
region of in-distribution latent encodings, resulting in a
model that is aware of its own inability to reconstruct
plausible data, as displayed by the row x̃refit of d-V3AE.

4 Conclusion

We have introduced a novel loss, the dissipative loss,
that leverages artificial out-of-distribution pseudo-
inputs for learning robust uncertainty estimates. We
demonstrate through a Bayesian approach that casts a
prior distribution over the model’s variance a principled

10Additional experiments are provided in Sec. IV..6

mechanism for controlling the extrapolation properties
of neural networks governing the predictive uncertainty.
Our results reflect the benefits of our principled and
scalable approach, displaying better calibrated and
more robust uncertainty estimates, while matching the
predictive power of known baselines. Finally, and most
interestingly, our approach can instill into probabilistic
models a notion of their own ignorance, increasing their
ability to know what they don’t know.

The main limitation of our approach is that it depends
on an input density estimate. In our experience, even
coarse-grained densities are sufficient to significantly
improve upon current approaches. However, as one
rarely have guaranteed good estimates of the input
density, our method cannot be approached as a black-
box. One exception seems to be the application to
VAEs, where the aggregated posterior, in our experi-
ence, always provide a suitable density estimate.

Figure 10: Empirical densities of likelihoods for FashionMNIST (ID) and MNIST (OOD). The clear separation of
distributions offered by our method is reflected in the high AUROC shown on the right.



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

References

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S
Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedfor-
ward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint
arXiv:1606.06565, 2016.

Lars Kai Hansen and Peter Salamon. Neural network
ensembles. IEEE transactions on pattern analysis
and machine intelligence, 12(10):993–1001, 1990.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In
Advances in neural information processing systems,
pages 6402–6413, 2017.

David JC MacKay. A practical bayesian framework for
backpropagation networks. Neural computation, 4
(3):448–472, 1992.

Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059, 2016.

Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, August 2006. ISBN
0387310738.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. On calibration of modern neural networks.
arXiv preprint arXiv:1706.04599, 2017.

Dan Hendrycks and Kevin Gimpel. A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136,
2016.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh,
and Balaji Lakshminarayanan. Detecting out-of-
distribution inputs to deep generative models using
typicality. arXiv preprint arXiv:1906.02994, 2019.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep
neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 427–436, 2015.

Christos Louizos and Max Welling. Multiplicative nor-
malizing flows for variational bayesian neural net-
works. arXiv preprint arXiv:1703.01961, 2017.

Nicki Skafte, Martin Jørgensen, and Søren Hauberg.
Reliable training and estimation of variance networks.
In Advances in Neural Information Processing Sys-
tems, pages 6326–6336, 2019.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo
Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. arXiv preprint
arXiv:1711.09325, 2017.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du,
Ken ichi Kawarabayashi, and Stefanie Jegelka. How
neural networks extrapolate: From feedforward to
graph neural networks, 2021.

David A Nix and Andreas S Weigend. Estimating the
mean and variance of the target probability distri-
bution. In Proceedings of 1994 ieee international
conference on neural networks (ICNN’94), volume 1,
pages 55–60. IEEE, 1994.

Søren Hauberg. Only bayes should learn a manifold
(on the estimation of differential geometric structure
from data), 2019.

Georgios Arvanitidis, Lars Kai Hansen, and Søren
Hauberg. Latent space oddity: on the curva-
ture of deep generative models. arXiv preprint
arXiv:1710.11379, 2017.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. arXiv
preprint arXiv:1401.4082, 2014.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory
or epistemic? does it matter? Structural safety, 31
(2):105–112, 2009.

Carl Edward Rasmussen and Christopher K. I.
Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The
MIT Press, 2005.

Alex Graves. Practical variational inference for neural
networks. Advances in neural information processing
systems, 24:2348–2356, 2011.

Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXiv preprint
arXiv:1505.05424, 2015.

José Miguel Hernández-Lobato and Ryan Adams. Prob-
abilistic backpropagation for scalable learning of
bayesian neural networks. In International Confer-
ence on Machine Learning, pages 1861–1869, 2015.

Leonard Hasenclever, Stefan Webb, Thibaut Lien-
art, Sebastian Vollmer, Balaji Lakshminarayanan,
Charles Blundell, and Yee Whye Teh. Distributed
bayesian learning with stochastic natural gradient
expectation propagation and the posterior server.
The Journal of Machine Learning Research, 18(1):
3744–3780, 2017.



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient langevin dynamics. In Proceed-
ings of the 28th international conference on machine
learning (ICML-11), pages 681–688, 2011.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner,
and Frank Hutter. Bayesian optimization with ro-
bust bayesian neural networks. Advances in neural
information processing systems, 29:4134–4142, 2016.

Leo Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

Jeppe Thagaard, Søren Hauberg, Bert van der Vegt,
Thomas Ebstrup, Johan D. Hansen, and Anders B.
Dahl. Can you trust predictive uncertainty under
real dataset shifts in digital pathology? In Medical
Image Computing and Computer-Assisted Interven-
tion (MICCAI), Lima, Peru, October 2020.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can
you trust your model’s uncertainty? evaluating pre-
dictive uncertainty under dataset shift. In Advances
in Neural Information Processing Systems, pages
13991–14002, 2019.

Leo Breiman. Random forests. Machine learning, 45
(1):5–32, 2001.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from over-
fitting. The journal of machine learning research, 15
(1):1929–1958, 2014.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant.
Enhancing the reliability of out-of-distribution im-
age detection in neural networks. arXiv preprint
arXiv:1706.02690, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. arXiv preprint arXiv:1412.6572, 2014a.

Dan Hendrycks, Mantas Mazeika, and Thomas Diet-
terich. Deep anomaly detection with outlier exposure.
arXiv preprint arXiv:1812.04606, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. Advances in neural information processing
systems, 27:2672–2680, 2014b.

Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen,
and Russ R Salakhutdinov. Good semi-supervised
learning that requires a bad gan. In Advances in
neural information processing systems, pages 6510–
6520, 2017.

Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gif-
ford. Maximizing overall diversity for improved un-

certainty estimates in deep ensembles. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 4264–4271, 2020.

Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex
Irpan, and James Davidson. Reliable uncertainty
estimates in deep neural networks using noise con-
trastive priors. 2018.

Andrey Malinin and Mark Gales. Predictive uncer-
tainty estimation via prior networks. arXiv preprint
arXiv:1802.10501, 2018.

Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In International conference
on machine learning, pages 448–456. PMLR, 2015.

Pierre-Alexandre Mattei and Jes Frellsen. Leveraging
the exact likelihood of deep latent variable models. In
Advances in Neural Information Processing Systems,
pages 3855–3866, 2018a.

Andrew Gelman, John B Carlin, Hal S Stern, David B
Dunson, Aki Vehtari, and Donald B Rubin. Bayesian
data analysis. CRC press, 2013.

Martin Jørgensen. Stochastic Representations with
Gaussian Processes and Geometry. PhD thesis, Tech-
nical University of Denmark, 2020.

Andrew Stirn and David A Knowles. Variational vari-
ance: Simple and reliable predictive variance param-
eterization. arXiv preprint arXiv:2006.04910, 2020.

Elisa T Lee and John Wang. Statistical methods for
survival data analysis, volume 476. John Wiley &
Sons, 2003.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learn-
ing from simulated and unsupervised images through
adversarial training. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2107–2116, 2017.

A Philip Dawid. The well-calibrated bayesian. Journal
of the American Statistical Association, 77(379):605–
610, 1982.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
Variational inference: A review for statisticians.
Journal of the American statistical Association, 112
(518):859–877, 2017.

Andrew YK Foong, Yingzhen Li, José Miguel
Hernández-Lobato, and Richard E Turner. ’in-
between’uncertainty in bayesian neural networks.
arXiv preprint arXiv:1906.11537, 2019.

Jakob D. Havtorn, Jes Frellsen, Søren Hauberg, and
Lars Maaløe. Hierarchical vaes know what they don’t
know, 2021.



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

P.-A Mattei and J Frellsen. Refit your encoder when
new data comes by. In 3rd NeurIPS workshop on
Bayesian Deep Learning, 2018b.

Norman L Johnson, Samuel Kotz, and Narayanaswamy
Balakrishnan. Continuous univariate distributions,
volume 1, 2nd Edition. John wiley & sons, 1994.

Christian Bauckhage. Computing the kullback-leibler
divergence between two generalized gamma distribu-
tions. arXiv preprint arXiv:1401.6853, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

I. Student-t likelihood

I..1 Marginal distribution of a Gaussian likelihood with a Gamma precision

In the case of a Gaussian likelihood with a latent Gamma distributed precision, the marginal distribution follows:

pθ(x) =

∫
N (x|µ, λ)Γ(λ|α, β)dλ

=

∫
λ1/2√

2π
e−

1
2λ(x−µ)

2 βα

Γ(α)
λα−1e−βλdλ

=
1

Γ(α)
√

2π

βα(
β + (x−µ)2

2

)α− 1
2

∫ [(
β +

1

2
(x− µ)2

)
λ

](α+ 1
2 )−1

e
−
(
β+

(x−µ)2

2

)
λ
dλ

=
Γ
(
α+ 1

2

)
Γ(α)

√
2π

βα(
β + (x−µ)2

2

)α− 1
2

=
Γ
(
2α+1

2

)
Γ(α)

√
π2α

(
β
α

)1/2
1 +

1

2α

 x− µ(
β
α

)1/2


2
− 2α+1

2

=
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπσ̂

(
1 +

1

ν

(
x− µ̂
σ̂

)2
)− ν+1

2

= T
(
x|ν = 2α, µ̂ = µ, σ̂ =

√
β/α

)
.

(7)

The moments of the marginal distribution are, assuming ν > 2,E[x] = µ̂ = µ

Var[x] = σ̂2 ν
ν−2 = β

α
α
α−1 .

(8)

I..2 Decomposition of a Student-t’s uncertainty

The variance of a non standard Student-t distribution with 2α degrees of freedom and scaled by
√
β/α can be

decomposed as Var[x] = β
α

α
α−1 . The number of degrees of freedom scales with the number of observations that

the distribution arises from. When the number of observations grows towards ∞, i.e towards perfect information,
the term α

α−1 converges towards 1, motivating its casting into an epistemic factor. The natural consequence
is that β

α , which accounts for the rest of the model’s uncertainty, scales as the aleatoric uncertainty. For more
details see Jørgensen (2020, p16).

II. Pseudo-inputs generator

II..1 On boundary samples

Table 3: Comparison of the OOD prior KL for different pseudo-input distributions. Lower is better, and best per
experiment are highlighted in bold.

method CCPP Wine-white

No OOD (VV) 0.655 1.719
Boundary OOD (d-VV) 0.019 0.072
Far OOD (d-VV) 0.023 0.941



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

Tab. 3 provides supporting evidence regarding the benefits of placing pseudo-inputs close to the training
distribution. It compares the mean measured OOD KL divergence over 5 trials for two different UCI regression
datasets. The boundary OOD pseudo-inputs were generated using the proposed density-based generation
procedure. The far OOD pseudo-inputs were generated by adding large Gaussian noise (σ = 15 for standardised
inputs) to training points. Boundary OOD pseudo-inputs result in a lower OOD prior KL divergence, meaning
that the regularisation is indeed enforced in most of the OOD support.

II..2 Sensitivity to hyperparameters

Table 4: Evaluation of the influence of the number of
steps in Alg. 1.

N steps ELBO log p(y|x)

0 1.253 1.360
1 1.232 1.361
5 1.192 1.423
10 1.183 1.437

Table 5: Evaluation of the influence of the threshold ε
in Alg. 1.

Threshold ε ELBO log p(y|x)

0.1 1.193 1.418
0.01 1.192 1.418
0.001 1.252 1.359

The pseudo-input generator hyperparameters were chosen through a coarse grid search on a sub selection of
experiments from the UCI benchmarks, and applied to the rest of the experiments. In practice we observed that
Alg. 1 is relatively insensitive to hyperparameters. For example the Tab. 4 below describes the evolution of
the ELBO and the log-likelihood as a function of the number of steps on the Carbon UCI dataset. The ELBO
and LLK here have opposite evolutions based on the number of steps - hence our practical choice of a “middle
ground” with n = 5. Tab. 5 evaluates similarly the influence of the threshold parameter. The results are naturally
varying depending on the dataset chosen, as different overall input densities will more or less allow the gradient
descent iterations to modify the original distribution of noisy pseudo-inputs. We regard this as a strength of our
proposed method, if the distribution of pseudo-inputs can be improved and better separated from the training
input distribution, it will leverage this possibility, but if it’s not the case, pseudo inputs will not vary from their
original position, generated as if they were inputs perturbed by Gaussian noise.

II..3 Influence of the pseudo-input generator

We originally envisioned to generate pseudo-inputs using the same Gaussian perturbation technique as inde-
pendently proposed in Hafner et al. (2018), x̂ = x + ε where ε ∼ N (0, σ2). We nevertheless quickly come to
realise that this does not actually produce pseudo-inputs that are guaranteed to be out-of-distribution, and
eventually result in over-regularisation. Tab. 6 compares the mean ELBO over 5 trials of our proposal with
selected parameters for the gradient descent (dVV), with our proposal without any gradient descent (dVV - 0
steps) and our method with pseudo-inputs generated as Gaussian noise (dVV - Gaussian noise, as is done in
Hafner et al. (2018)) on the UCI benchmark. We observe that, as expected, better pseudo-inputs placement
results in our method performing better on a larger selection of experiments (8/12).

Table 6: Comparison of the mean ELBO of dissipative VV on UCI datasets, over 5 trials, depending on the
chosen pseudo-input generator. Best is highlighted in bold.

method Boston Carbon CCPP Concrete Energy Kin8nm Naval Protein Superconduct Wine-red Wine-white Yacht

d-VV -0.614 1.191 -0.141 -0.443 0.665 -0.247 0.522 -1.319 -0.543 -1.997 -1.822 -17.599
d-VV -0.658 1.229 -0.131 -0.433 0.656 -0.255 0.496 -1.317 -0.558 -2.192 -2.03 -21.802
(0 steps)
d-VV -0.819 -0.473 -0.569 -0.645 -0.515 -0.591 -0.537 -1.236 -0.724 -1.747 -1.554 -0.507
(Gaussian noise)

II..4 Number of pseudo-inputs

In our implementation, to stabilise training, we use the expected value over each dataset (in or out-of-distribution)
by dividing each term by the number of data points used to compute them. This results in a very limited
sensibility of our practical implementation in the number of pseudo-inputs used.



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

III. Regression experiments

III..1 Variational Variance’s ELBO Closed Form

For a Gaussian likelihood and a Gamma posterior, both terms of the ELBO have a closed form solution. Firstly
the expected log-likelihood verifies:

Eq(λ|x) [log p(y|x, λ)] =

∫
logN (y|µ(x), λ)Γ (λ|α(x), β(x)) dλ

=

∫
−1

2

(
log 2π − log λ+ λ(y − µ(x))2

)
Γ (λ|α(x), β(x)) dλ

= −1

2

(
log 2π − Eq(λ|x)[log λ] + (y − µ(x))

2 Eq(λ|x)[λ]
)
.

(9)

The variational posterior being Gamma distributed, its expected value is defined as Eq(λ|x)[λ] = α(x)
β(x) . The

logarithmic expectation of a Gamma distribution can be derived to yield (Johnson et al., 1994, 337–349)
Eq(λ|x)[log λ] = ψ(α(x))− log β(x) where ψ is the digamma function. The closed-form expression of the expected
likelihood is therefore:

Eq(λ|x) [log p(y|x, λ)] = −1

2

(
log 2π − ψ(α(x)) + log β(x) +

α(x)

β(x)
(y − µ(x))

2

)
. (10)

Secondly, the KL-divergence between the posterior Γ (α(x), β(x)) and the prior Γ(a, b) can be derived from
Equation (28) in Bauckhage (2014, p6). With Bauckhage’s notation, setting p1 = p2 = 1, to correspond to
standard Gamma distributions, shape parameters d1 = α(x) and d2 = a, and scale parameters a1 = 1

β(x) and
a2 = 1

b the KL-divergence can be expressed as

DKL(q(λ|x) || p(λ)) = (α(x)− a)ψ(α(x))

− log Γ(α(x)) + log Γ(a)

+ a(log β(x)− log b)

+ α(x)
b− β(x)

β(x)
.

(11)

III..2 True posterior and heteroscedasticity

The true posterior for variational variance in a regression context can be written p(λ|y, x). As first demonstrated
in Sec. 8.2 of Stirn and Knowles (2020), it factorizes as:

p(λ|y, x) =
p(y|x, λ)p(λ)∫
p(y|x, λ)p(λ)dλ

(12)

=
ΠN
n=1p(yn|xn, λn)p(λn)∫

ΠN
n=1p(yn|xn, λn)p(λn)dλn

(13)

= ΠN
n=1

p(yn|xn, λn)p(λn)∫
p(yn|xn, λn)p(λn)dλn

(14)

= ΠN
n=1p(λn|yn, xn). (15)

As a result, the true posterior both depends on the inputs xn and targets yn. It means that a single input, could
theoretically imply different latent precisions for different targets yn 6= yk, thus violating the x-surjectivity of the
heteroscedastic definition.

III..3 Model architecture

We adopted a unified network architecture for the regression case. All neural-network parameter maps share the
same underlying architecture, a single hidden layer with 50 hidden units using exponential linear unit (ELU)
activation functions. A final softplus layer is applied on the last layer of the σ, α and β parameter maps. The α
parameter map is further shifted by +1 to ensure the definition of the marginal distribution’s variance. Regression
models are trained with the Adam (Kingma and Ba, 2014) optimiser, and both the inputs and targets are
standardised prior to training and testing.



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

III..4 Pseudo-input generator

Tab. 7 presents the parameters used by the PIG in a regression setting. We remind that these parameters
are parameters of a gradient descent, with learning rate δ. For our experiments, we approximated the input

Table 7: Parameters for the regression pseudo-input generator.

K max_iterations tolerance δ

N 5 0.005 4e-1

density with a Bayesian Gaussian mixture model11 with diagonal covariance matrices, and initialised with as
many components as there are inputs in a batch.

III..5 UCI experiments

Table 8: UCI benchmarks

Name Dimensions (N,Dx, Dy) Link (https://archive.ics.uci.edu/ml/*)

Boston (505,13,1) machine-learning-databases/housing/
Carbon (10721,5,3) datasets/Carbon+Nanotubes
Concrete (1030,8,1) datasets/Concrete+Compressive+Strength
Energy (768,8,2) datasets/Energy+efficiency
Kin8nm (8192,8,1) https://www.openml.org/d/189
Naval (11934,16,2) datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
Power plant (CCPP) (9568,4,1) datasets/Combined+Cycle+Power+Plant
Protein (45630, 9, 1) datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
Superconductivity (21263,81,1) datasets/Superconductivty+Data
Wine-red (1599,11,1) datasets/Wine+Quality
Wine-white (4898,11,1) datasets/Wine+Quality
Yacht (308,6,1) datasets/Yacht+Hydrodynamics

The UCI experiments (https://archive.ics.uci.edu/ml/datasets.php) consist of the datasets presented in
Tab. 8.

The results, for the different metrics, as presented in Tab. 11 to 16, were computed as the mean ± the standard
deviation over 5 trials with standardised inputs and targets. Due to a technical error, we were forced to re-run
the experiments for d-VV and VV (no PIG) right before the submission deadline, and reduced the number of
trials to 3 for these methods.

A method is deemed to perform best for a given metric when the mean of the evaluated metric is the best across
methods. For determining statistical draws we ran for each method a two-sided test for verifying whether the
mean of the evaluated metric µ is significantly different to the mean of the best method µbest. To do so, we test
for µbest − µ = 0, under a Gaussian distribution with standard deviation σ2

best
Nbest

+ σ2

N at a 0.05 level.

11https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/datasets/Carbon+Nanotubes
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
https://www.openml.org/d/189
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets.php
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html


Robust uncertainty estimates with out-of-distribution pseudo-inputs training

III..6 Aggregate benchmark data

Table 9: Results for experiments excluding distributional shifts. Each cell counts datasets for which each
method demonstrated the best average, over 5 trials. Grey shows statistical draws and "n/a" metrics impossible
to evaluate for a method. Best per metric is highlighted in bold.

UCI benchmarks
(shifts not included) d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

L 11 / 8 1 / 1 0 / 0 n / a n / a n / a n / a n / a n / a
log p(y|x) 1 / 1 3 / 6 0 / 0 0 / 0 1 / 2 0 / 0 0 / 0 0 / 0 7 / 6
RMSE[y, µ(x)] 2 / 2 1 / 4 1 / 3 0 / 0 0 / 0 4 / 10 0 / 0 0 / 0 4 / 0
RMSE[Var] 2 / 4 3 / 4 1 / 2 0 / 0 n / a 1 / 3 1 / 2 0 / 0 4 / 4
RMSE[y, ỹ] 2 / 2 3 / 3 2 / 1 n / a n / a n / a n / a 0 / 0 5 / 3
E[KL] 12 / 7 0 / 0 0 / 0 n / a n / a n / a n / a n / a n / a

Table 10: Results for experiments specifically for distributional shifts. Each cell counts datasets for which
each method demonstrated the best average, over 5 trials. Grey shows statistical draws and "n/a" metrics
impossible to evaluate for a method. Best per metric is highlighted in bold.

UCI benchmarks
(only shifts) d-VV VV VV

(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

L 10 / 10 2 / 2 0 / 0 n / a n / a n / a n / a n / a n / a
log p(y|x) 1 / 6 2 / 3 0 / 0 0 / 0 3 / 7 0 / 0 0 / 0 2 / 8 4 / 2
RMSE[y, µ(x)] 0 / 0 0 / 0 1 / 2 1 / 5 2 / 3 1 / 2 3 / 16 0 / 0 4 / 0
RMSE[Var] 0 / 0 2 / 5 1 / 2 0 / 0 n / a 1 / 2 4 / 15 0 / 0 4 / 3
RMSE[y, ỹ] 1 / 2 2 / 4 2 / 1 n / a n / a n / a n / a 1 / 2 6 / 4
E[KL] 11 / 7 1 / 0 0 / 0 n / a n / a n / a n / a n / a n / a



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

III..7 Benchmark raw data

Table 11: UCI benchmarks - L

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift
ed

uci_boston -0.61 ± 0.33 -0.72 ± 0.38 -64.28 ± 29.34 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 1.19 ± 0.11 1.17 ± 0.12 -3913.5 ± 580.03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp -0.14 ± 0.01 -0.16 ± 0.04 -10.9 ± 1.06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete -0.44 ± 0.13 -0.46 ± 0.08 -44.06 ± 14.23 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy 0.67 ± 0.03 0.65 ± 0.03 -118.78 ± 81.29 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm -0.25 ± 0.02 -0.28 ± 0.04 -16.76 ± 1.53 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval 0.52 ± 0.16 0.12 ± 0.4 -9.57 ± 4.57 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein -1.32 ± 0.01 -1.34 ± 0.01 -14.31 ± 2.59 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct -0.54 ± 0.03 -0.56 ± 0.01 -269.08 ± 58.88 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red -2.0 ± 0.08 -2.36 ± 0.19 -37.86 ± 31.48 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white -1.82 ± 0.06 -2.01 ± 0.1 -869.26 ± 1718.81 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht -17.6 ± 0.43 1.04 ± 0.1 -551.12 ± 1060.39 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

Sh
ift
ed

uci_boston -1.28 ± 0.32 -1.47 ± 0.28 -110.63 ± 110.55 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 1.16 ± 0.02 1.11 ± 0.03 -3991.86 ± 679.64 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp -0.25 ± 0.08 -0.33 ± 0.14 -8.36 ± 1.65 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete -1.29 ± 0.27 -1.51 ± 0.38 -75.74 ± 59.7 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy -0.69 ± 1.1 -0.56 ± 0.9 -891.92 ± 1570.09 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm -0.33 ± 0.03 -0.38 ± 0.04 -23.9 ± 1.92 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval -4.73 ± 4.61 -5.31 ± 6.58 -26.02 ± 48.06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein -1.56 ± 0.11 -1.64 ± 0.16 -9.34 ± 6.68 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct -1.43 ± 0.32 -1.52 ± 0.34 -224.0 ± 111.57 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red -2.84 ± 0.21 -3.45 ± 0.35 -47.78 ± 56.02 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white -2.04 ± 0.11 -2.53 ± 0.29 -346.83 ± 434.27 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht -7.59 ± 2.58 0.35 ± 0.19 -194.42 ± 149.45 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

Table 12: UCI benchmarks - log p(y|x)

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift
ed

uci_boston -0.43 ± 0.35 -0.42 ± 0.39 -3.34 ± 1.39 -0.76 ± 0.07 -0.18 ± 0.19 -0.68 ± 0.04 -0.81 ± 0.51 -1.39 ± 0.33 -248.43 ± 163.55
uci_carbon 1.45 ± 0.13 1.45 ± 0.11 0.98 ± 3.08 -3.78 ± 0.05 1.13 ± 0.51 -3.71 ± 0.04 0.29 ± 1.08 nan ± nan nan ± nan
uci_ccpp -0.07 ± 0.01 -0.03 ± 0.03 0.05 ± 0.06 -0.58 ± 0.14 -0.18 ± 0.12 -0.61 ± 0.05 -3.36 ± 0.56 0.21 ± 0.04 4.06 ± 0.69
uci_concrete -0.29 ± 0.15 -0.25 ± 0.1 -0.83 ± 0.5 -0.68 ± 0.09 -0.4 ± 0.15 -0.65 ± 0.04 -0.9 ± 0.33 0.38 ± 0.04 3.84 ± 0.66
uci_energy 0.87 ± 0.04 0.89 ± 0.03 0.47 ± 0.2 -1.22 ± 0.11 0.28 ± 0.37 -1.17 ± 0.04 0.36 ± 0.26 nan ± nan nan ± nan
uci_kin8nm -0.17 ± 0.02 -0.15 ± 0.04 -0.36 ± 0.07 -0.61 ± 0.06 -0.61 ± 0.12 -0.65 ± 0.03 -0.63 ± 0.05 -0.68 ± 0.08 -0.16 ± 0.03
uci_naval 0.71 ± 0.19 0.52 ± 0.2 -0.13 ± 0.32 -2.26 ± 0.08 -2.67 ± 0.22 -2.26 ± 0.06 -0.2 ± 0.74 nan ± nan nan ± nan
uci_protein -1.16 ± 0.01 -1.12 ± 0.01 -1.42 ± 0.38 -1.13 ± 0.05 -1.54 ± 0.74 -1.05 ± 0.01 -7.41 ± 0.27 -1.02 ± 0.01 -0.96 ± 0.02
uci_superconduct -0.38 ± 0.02 -0.35 ± 0.02 -1.73 ± 1.71 -0.66 ± 0.04 -0.96 ± 0.18 -0.68 ± 0.03 -1.72 ± 0.25 -0.2 ± 0.19 -0.04 ± 0.06
uci_wine_red -1.91 ± 0.07 -2.13 ± 0.21 -7.77 ± 6.39 -2560.95 ± 5395.69 -1.15 ± 0.04 -1.24 ± 0.08 -4.24 ± 0.91 0.16 ± 0.04 3.76 ± 0.39
uci_wine_white -1.72 ± 0.06 -1.75 ± 0.1 -305.7 ± 549.73 -27.69 ± 48.8 -1.4 ± 0.58 -1.16 ± 0.08 -5.86 ± 1.08 0.29 ± 0.06 3.76 ± 0.82
uci_yacht 0.9 ± 0.02 1.33 ± 0.11 0.63 ± 0.59 -0.59 ± 0.11 0.4 ± 0.14 -0.58 ± 0.04 0.33 ± 0.69 0.63 ± 0.1 1.57 ± 0.6

Sh
ift
ed

uci_boston -1.09 ± 0.32 -1.16 ± 0.27 -10.33 ± 10.87 -0.84 ± 0.09 -0.16 ± 0.09 -0.79 ± 0.07 -2.52 ± 1.34 -3.83 ± 1.82 -428.29 ± 194.72
uci_carbon 1.34 ± 0.06 1.4 ± 0.02 -0.6 ± 2.9 -3.87 ± 0.34 1.12 ± 0.25 -3.71 ± 0.12 0.55 ± 0.1 nan ± nan nan ± nan
uci_ccpp -0.18 ± 0.09 -0.2 ± 0.14 -0.1 ± 0.08 -0.54 ± 0.04 -0.16 ± 0.02 -0.65 ± 0.02 -4.31 ± 0.43 0.2 ± 0.07 3.76 ± 0.75
uci_concrete -1.11 ± 0.27 -1.23 ± 0.36 -10.81 ± 15.27 -0.77 ± 0.1 -0.38 ± 0.06 -0.78 ± 0.04 -2.38 ± 0.52 0.29 ± 0.05 4.17 ± 0.36
uci_energy -0.47 ± 1.15 -0.2 ± 0.76 -96.95 ± 259.19 -1.42 ± 0.26 0.2 ± 0.25 -1.36 ± 0.23 -1.13 ± 2.52 nan ± nan nan ± nan
uci_kin8nm -0.26 ± 0.04 -0.22 ± 0.04 -0.88 ± 0.14 -0.64 ± 0.09 -0.59 ± 0.04 -0.65 ± 0.05 -0.86 ± 0.21 -0.68 ± 0.09 -0.26 ± 0.1
uci_naval -4.55 ± 4.62 -5.01 ± 6.53 -14.78 ± 18.92 -3.59 ± 0.89 -2.76 ± 0.15 -3.62 ± 0.89 -22.29 ± 12.05 nan ± nan nan ± nan
uci_protein -1.44 ± 0.12 -1.42 ± 0.15 -2.26 ± 1.3 -1.33 ± 0.09 -1.51 ± 0.46 -1.21 ± 0.07 -9.94 ± 1.27 -1.16 ± 0.06 -1.21 ± 0.09
uci_superconduct -1.28 ± 0.32 -1.28 ± 0.33 -8.32 ± 11.59 -0.98 ± 0.11 -1.06 ± 0.16 -0.9 ± 0.06 -5.9 ± 1.74 -0.72 ± 0.28 -2.87 ± 5.54
uci_wine_red -2.7 ± 0.2 -3.1 ± 0.32 -12.13 ± 13.11 -229.56 ± 749.24 -1.14 ± 0.02 -1.57 ± 0.26 -4.42 ± 0.5 0.13 ± 0.1 3.84 ± 0.44
uci_wine_white -1.97 ± 0.12 -2.24 ± 0.27 -183.07 ± 323.25 -1.75 ± 0.23 -1.3 ± 0.13 -1.29 ± 0.04 -5.65 ± 0.49 0.3 ± 0.04 3.61 ± 0.88
uci_yacht 0.71 ± 0.76 0.65 ± 0.19 0.51 ± 0.55 -0.53 ± 0.05 0.43 ± 0.07 -0.58 ± 0.05 0.37 ± 0.35 0.41 ± 0.2 -11.62 ± 25.18



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

Table 13: UCI benchmarks - RMSE [y, µ(x)]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift
ed

uci_boston 0.33 ± 0.09 0.33 ± 0.08 0.38 ± 0.09 0.35 ± 0.06 0.3 ± 0.07 0.29 ± 0.05 0.33 ± 0.05 0.47 ± 0.06 0.5 ± 0.04
uci_carbon 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.75 ± 0.01 0.09 ± 0.08 0.75 ± 0.01 0.08 ± 0.0 nan ± nan nan ± nan
uci_ccpp 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.27 ± 0.03 0.23 ± 0.01 0.24 ± 0.01 0.07 ± 0.03 0.0 ± 0.0
uci_concrete 0.29 ± 0.04 0.29 ± 0.04 0.33 ± 0.04 0.29 ± 0.01 0.35 ± 0.07 0.27 ± 0.01 0.28 ± 0.02 0.08 ± 0.02 0.0 ± 0.0
uci_energy 0.08 ± 0.01 0.08 ± 0.01 0.3 ± 0.03 0.13 ± 0.01 0.22 ± 0.08 0.13 ± 0.01 0.13 ± 0.02 nan ± nan nan ± nan
uci_kin8nm 0.26 ± 0.01 0.26 ± 0.01 0.28 ± 0.01 0.27 ± 0.01 0.44 ± 0.07 0.26 ± 0.01 0.33 ± 0.01 0.4 ± 0.07 0.29 ± 0.0
uci_naval 0.09 ± 0.06 0.1 ± 0.03 0.33 ± 0.07 0.72 ± 0.01 0.86 ± 0.09 0.72 ± 0.01 0.2 ± 0.07 nan ± nan nan ± nan
uci_protein 0.71 ± 0.01 0.71 ± 0.0 0.75 ± 0.01 0.71 ± 0.01 1.12 ± 0.73 0.69 ± 0.01 0.7 ± 0.01 0.76 ± 0.02 0.73 ± 0.01
uci_superconduct 0.35 ± 0.01 0.35 ± 0.01 0.4 ± 0.02 0.35 ± 0.01 0.67 ± 0.22 0.32 ± 0.01 0.33 ± 0.01 0.44 ± 0.03 0.41 ± 0.01
uci_wine_red 0.89 ± 0.01 0.9 ± 0.04 0.77 ± 0.07 1.13 ± 0.15 0.76 ± 0.02 0.84 ± 0.06 0.77 ± 0.05 0.1 ± 0.04 0.01 ± 0.0
uci_wine_white 0.9 ± 0.03 0.88 ± 0.02 0.82 ± 0.06 0.85 ± 0.05 0.93 ± 0.39 0.77 ± 0.06 0.79 ± 0.05 0.08 ± 0.04 0.01 ± 0.0
uci_yacht 0.05 ± 0.02 0.04 ± 0.02 0.82 ± 0.12 0.05 ± 0.01 0.09 ± 0.06 0.05 ± 0.01 0.11 ± 0.04 0.09 ± 0.02 0.16 ± 0.03

Sh
ift
ed

uci_boston 0.52 ± 0.08 0.52 ± 0.08 0.43 ± 0.1 0.48 ± 0.07 0.3 ± 0.04 0.44 ± 0.08 0.41 ± 0.06 0.5 ± 0.07 0.46 ± 0.06
uci_carbon 0.03 ± 0.0 0.03 ± 0.0 0.03 ± 0.0 0.72 ± 0.05 0.1 ± 0.03 0.72 ± 0.05 0.08 ± 0.0 nan ± nan nan ± nan
uci_ccpp 0.26 ± 0.02 0.26 ± 0.03 0.25 ± 0.01 0.25 ± 0.01 0.26 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.07 ± 0.04 0.01 ± 0.0
uci_concrete 0.54 ± 0.07 0.54 ± 0.07 0.44 ± 0.05 0.48 ± 0.05 0.35 ± 0.03 0.43 ± 0.05 0.4 ± 0.04 0.09 ± 0.03 0.0 ± 0.0
uci_energy 0.26 ± 0.23 0.26 ± 0.22 0.39 ± 0.14 0.28 ± 0.19 0.23 ± 0.05 0.22 ± 0.11 0.22 ± 0.11 nan ± nan nan ± nan
uci_kin8nm 0.28 ± 0.01 0.28 ± 0.01 0.29 ± 0.01 0.29 ± 0.01 0.43 ± 0.02 0.27 ± 0.01 0.36 ± 0.02 0.37 ± 0.08 0.31 ± 0.02
uci_naval 1.37 ± 0.96 1.35 ± 0.95 1.61 ± 0.71 0.89 ± 0.11 0.9 ± 0.06 0.89 ± 0.1 1.32 ± 0.59 nan ± nan nan ± nan
uci_protein 0.83 ± 0.04 0.83 ± 0.05 0.84 ± 0.04 0.84 ± 0.05 1.02 ± 0.22 0.8 ± 0.05 0.8 ± 0.03 0.82 ± 0.03 0.81 ± 0.03
uci_superconduct 0.59 ± 0.07 0.59 ± 0.06 0.52 ± 0.06 0.6 ± 0.06 0.6 ± 0.08 0.52 ± 0.05 0.51 ± 0.05 0.54 ± 0.06 0.53 ± 0.05
uci_wine_red 1.13 ± 0.05 1.14 ± 0.05 0.79 ± 0.03 1.62 ± 0.21 0.76 ± 0.01 1.03 ± 0.11 0.84 ± 0.03 0.11 ± 0.05 0.01 ± 0.0
uci_wine_white 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.03 1.03 ± 0.07 0.84 ± 0.05 0.86 ± 0.03 0.86 ± 0.04 0.06 ± 0.02 0.01 ± 0.0
uci_yacht 0.16 ± 0.08 0.1 ± 0.04 0.74 ± 0.22 0.09 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.13 ± 0.04 0.11 ± 0.02 0.18 ± 0.06

Table 14: UCI benchmarks - RMSE
[
Var[y|x], (y − µ(x))

2
]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift
ed

uci_boston 0.25 ± 0.11 0.37 ± 0.26 1.000000e+11 ± 3.162278e+11 0.61 ± 0.14 nan ± nan 0.53 ± 0.06 0.29 ± 0.17 36.0 ± 4.18 0.77 ± 0.31
uci_carbon 0.05 ± 0.04 0.05 ± 0.04 0.03 ± 0.03 1.68 ± 0.06 nan ± nan 1.6 ± 0.03 0.09 ± 0.01 nan ± nan nan ± nan
uci_ccpp 0.15 ± 0.01 0.15 ± 0.01 0.24 ± 0.3 0.5 ± 0.18 nan ± nan 0.47 ± 0.04 0.14 ± 0.04 0.13 ± 0.01 0.0 ± 0.0
uci_concrete 0.24 ± 0.15 0.22 ± 0.13 1.32 ± 3.53 0.55 ± 0.15 nan ± nan 0.47 ± 0.05 0.18 ± 0.03 0.25 ± 0.06 0.0 ± 0.0
uci_energy 0.03 ± 0.0 0.02 ± 0.0 0.15 ± 0.04 0.55 ± 0.06 nan ± nan 0.49 ± 0.02 0.08 ± 0.01 nan ± nan nan ± nan
uci_kin8nm 0.14 ± 0.02 0.13 ± 0.02 63.3 ± 146.89 0.48 ± 0.09 nan ± nan 0.47 ± 0.04 0.2 ± 0.01 0.38 ± 0.03 0.14 ± 0.01
uci_naval 0.03 ± 0.0 3.828603e+03 ± 6.631150e+03 6.000000e+11 ± 5.163978e+11 2.0 ± 0.2 nan ± nan 1.93 ± 0.16 0.12 ± 0.05 nan ± nan nan ± nan
uci_protein 0.8 ± 0.04 0.8 ± 0.01 3.000002e+11 ± 4.830458e+11 0.88 ± 0.09 nan ± nan 0.77 ± 0.03 0.88 ± 0.03 9.76 ± 3.17 4.71 ± 10.99
uci_superconduct 0.39 ± 0.04 0.41 ± 0.07 5.371845e+04 ± 8.860245e+04 0.53 ± 0.08 nan ± nan 0.53 ± 0.05 0.33 ± 0.06 0.62 ± 0.08 0.62 ± 0.05
uci_wine_red 1.38 ± 0.08 1.62 ± 0.38 3.46 ± 4.12 2.69 ± 0.78 nan ± nan 2.97 ± 2.35 1.18 ± 0.21 0.57 ± 0.17 0.0 ± 0.0
uci_wine_white 1.52 ± 0.01 1.52 ± 0.14 3.795848e+03 ± 9.990566e+03 1.5 ± 0.33 nan ± nan 1.11 ± 0.2 1.24 ± 0.16 0.08 ± 0.01 0.0 ± 0.0
uci_yacht 0.03 ± 0.0 0.01 ± 0.0 2.272965e+03 ± 4.416696e+03 0.59 ± 0.13 nan ± nan 0.52 ± 0.05 0.09 ± 0.03 0.28 ± 0.05 0.03 ± 0.02

Sh
ift
ed

uci_boston 0.74 ± 0.37 0.74 ± 0.35 7.692309e+10 ± 2.773501e+11 0.72 ± 0.19 nan ± nan 0.71 ± 0.16 0.46 ± 0.21 37.59 ± 17.11 0.87 ± 0.35
uci_carbon 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 1.31 ± 0.51 nan ± nan 1.45 ± 0.22 0.09 ± 0.0 nan ± nan nan ± nan
uci_ccpp 0.15 ± 0.03 0.15 ± 0.03 0.13 ± 0.03 0.4 ± 0.06 nan ± nan 0.49 ± 0.02 0.14 ± 0.02 0.12 ± 0.01 0.0 ± 0.0
uci_concrete 0.61 ± 0.2 0.64 ± 0.21 26.51 ± 73.79 0.57 ± 0.16 nan ± nan 0.54 ± 0.09 0.31 ± 0.06 0.28 ± 0.12 0.0 ± 0.0
uci_energy 0.28 ± 0.29 0.25 ± 0.26 119.45 ± 271.5 0.55 ± 0.09 nan ± nan 0.59 ± 0.2 0.12 ± 0.08 nan ± nan nan ± nan
uci_kin8nm 0.16 ± 0.01 0.15 ± 0.02 33.73 ± 71.3 0.49 ± 0.1 nan ± nan 0.46 ± 0.06 0.23 ± 0.04 0.41 ± 0.07 0.17 ± 0.03
uci_naval 4.51 ± 4.91 4.17 ± 4.9 4.375000e+11 ± 5.123475e+11 29.35 ± 35.96 nan ± nan 30.74 ± 37.17 2.47 ± 1.51 nan ± nan nan ± nan
uci_protein 0.98 ± 0.1 1.03 ± 0.12 7.777778e+11 ± 4.409585e+11 1.02 ± 0.08 nan ± nan 0.88 ± 0.09 1.04 ± 0.07 7.09 ± 2.31 1.58 ± 0.89
uci_superconduct 0.67 ± 0.15 0.66 ± 0.14 5.061728e+11 ± 5.030769e+11 0.73 ± 0.11 nan ± nan 0.7 ± 0.1 0.53 ± 0.09 0.57 ± 0.1 0.65 ± 0.32
uci_wine_red 2.34 ± 0.43 2.37 ± 0.45 4.02 ± 5.18 4.88 ± 1.35 nan ± nan 7.66 ± 6.9 1.32 ± 0.12 0.45 ± 0.29 0.0 ± 0.0
uci_wine_white 1.57 ± 0.15 1.63 ± 0.16 2.788480e+03 ± 8.365328e+03 1.83 ± 0.32 nan ± nan 1.35 ± 0.15 1.4 ± 0.14 0.13 ± 0.09 0.0 ± 0.0
uci_yacht 0.14 ± 0.09 0.04 ± 0.01 7.139074e+04 ± 1.741110e+05 0.52 ± 0.07 nan ± nan 0.51 ± 0.05 0.09 ± 0.04 0.47 ± 0.5 0.05 ± 0.03



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

Table 15: UCI benchmarks - RMSE [y, ỹ]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift
ed

uci_boston 0.56 ± 0.08 0.57 ± 0.16 0.58 ± 0.28 nan ± nan nan ± nan nan ± nan nan ± nan 2.23 ± 0.68 0.51 ± 0.06
uci_carbon 0.11 ± 0.01 0.1 ± 0.0 0.04 ± 0.02 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.42 ± 0.01 0.4 ± 0.01 0.33 ± 0.01 nan ± nan nan ± nan nan ± nan nan ± nan 0.33 ± 0.01 0.01 ± 0.01
uci_concrete 0.44 ± 0.06 0.43 ± 0.05 0.43 ± 0.05 nan ± nan nan ± nan nan ± nan nan ± nan 0.32 ± 0.04 0.01 ± 0.0
uci_energy 0.21 ± 0.03 0.17 ± 0.01 0.4 ± 0.08 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.46 ± 0.01 0.43 ± 0.01 0.39 ± 0.04 nan ± nan nan ± nan nan ± nan nan ± nan 0.78 ± 0.06 0.4 ± 0.01
uci_naval 0.22 ± 0.03 0.29 ± 0.03 1.3 ± 1.0 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 1.05 ± 0.01 1.05 ± 0.02 1.15 ± 0.13 nan ± nan nan ± nan nan ± nan nan ± nan 1.24 ± 0.15 1.17 ± 0.38
uci_superconduct 0.54 ± 0.0 0.56 ± 0.02 0.59 ± 0.11 nan ± nan nan ± nan nan ± nan nan ± nan 0.62 ± 0.04 0.6 ± 0.04
uci_wine_red 1.15 ± 0.1 1.07 ± 0.06 1.07 ± 0.09 nan ± nan nan ± nan nan ± nan nan ± nan 0.4 ± 0.05 0.01 ± 0.0
uci_wine_white 1.19 ± 0.04 1.17 ± 0.06 1.18 ± 0.12 nan ± nan nan ± nan nan ± nan nan ± nan 0.31 ± 0.01 0.01 ± 0.0
uci_yacht 0.18 ± 0.03 0.1 ± 0.01 0.97 ± 0.22 nan ± nan nan ± nan nan ± nan nan ± nan 0.33 ± 0.13 0.23 ± 0.13

Sh
ift
ed

uci_boston 0.73 ± 0.07 0.67 ± 0.08 0.58 ± 0.2 nan ± nan nan ± nan nan ± nan nan ± nan 3.24 ± 1.19 0.5 ± 0.07
uci_carbon 0.12 ± 0.01 0.11 ± 0.0 0.04 ± 0.01 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.44 ± 0.01 0.43 ± 0.02 0.35 ± 0.02 nan ± nan nan ± nan nan ± nan nan ± nan 0.33 ± 0.03 0.01 ± 0.0
uci_concrete 0.73 ± 0.07 0.71 ± 0.04 0.52 ± 0.06 nan ± nan nan ± nan nan ± nan nan ± nan 0.37 ± 0.04 0.01 ± 0.0
uci_energy 0.44 ± 0.16 0.45 ± 0.19 0.69 ± 0.49 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.48 ± 0.03 0.45 ± 0.01 0.4 ± 0.02 nan ± nan nan ± nan nan ± nan nan ± nan 0.79 ± 0.07 0.41 ± 0.03
uci_naval 1.73 ± 0.8 1.71 ± 0.82 2.33 ± 1.32 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 1.15 ± 0.03 1.18 ± 0.06 1.25 ± 0.13 nan ± nan nan ± nan nan ± nan nan ± nan 1.2 ± 0.05 1.13 ± 0.04
uci_superconduct 0.79 ± 0.05 0.8 ± 0.06 0.93 ± 0.42 nan ± nan nan ± nan nan ± nan nan ± nan 0.71 ± 0.08 0.72 ± 0.1
uci_wine_red 1.32 ± 0.05 1.36 ± 0.08 1.03 ± 0.05 nan ± nan nan ± nan nan ± nan nan ± nan 0.44 ± 0.06 0.01 ± 0.0
uci_wine_white 1.24 ± 0.07 1.23 ± 0.03 1.21 ± 0.09 nan ± nan nan ± nan nan ± nan nan ± nan 0.31 ± 0.02 0.01 ± 0.0
uci_yacht 0.22 ± 0.09 0.21 ± 0.02 0.97 ± 0.28 nan ± nan nan ± nan nan ± nan nan ± nan 0.48 ± 0.23 0.22 ± 0.08

Table 16: UCI benchmarks - E[KL]

UCI benchmarks d-VV VV VV
(no prior)

Mean
variance
network

Skafte
et al

Deep
ensembles

Monte
Carlo
dropout

Noise
contrastive
priors

Bayes
by
backprop

N
ot

sh
ift
ed

uci_boston 0.24 ± 0.05 0.66 ± 0.29 109.96 ± 65.06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 0.03 ± 0.0 0.2 ± 0.01 3.590175e+03 ± 683.49 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.02 ± 0.01 0.65 ± 0.15 765.25 ± 1.304725e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete 0.06 ± 0.01 0.54 ± 0.09 151.72 ± 197.18 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy 0.03 ± 0.01 1.22 ± 0.06 719.58 ± 835.96 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.01 ± 0.0 0.21 ± 0.03 25.55 ± 5.99 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval 0.57 ± 0.13 1.09 ± 0.37 966.35 ± 1.672143e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 0.03 ± 0.0 0.88 ± 0.3 1.489842e+09 ± 9.803508e+08 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct 0.1 ± 0.02 0.81 ± 0.01 5.670007e+03 ± 5.534678e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red 0.07 ± 0.01 2.22 ± 1.01 3.798346e+03 ± 6.945584e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white 0.07 ± 0.01 1.72 ± 0.2 1.766196e+06 ± 2.118534e+06 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht 0.14 ± 0.04 0.5 ± 0.29 869.08 ± 1.882199e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan

Sh
ift
ed

uci_boston 0.13 ± 0.03 0.39 ± 0.29 390.83 ± 741.65 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_carbon 0.03 ± 0.01 0.2 ± 0.02 3.145017e+03 ± 808.29 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_ccpp 0.02 ± 0.0 0.25 ± 0.07 29.45 ± 18.62 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_concrete 0.05 ± 0.01 0.17 ± 0.05 549.89 ± 1.020544e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_energy 0.02 ± 0.01 0.67 ± 0.41 2.454811e+03 ± 1.613791e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_kin8nm 0.01 ± 0.0 0.19 ± 0.01 43.01 ± 8.46 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_naval 0.13 ± 0.02 0.3 ± 0.11 3.223887e+04 ± 1.257591e+05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_protein 0.04 ± 0.01 0.72 ± 0.24 1.800074e+08 ± 2.840555e+08 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_superconduct 0.03 ± 0.01 0.53 ± 0.11 2.629295e+03 ± 3.482120e+03 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_red 0.06 ± 0.01 1.04 ± 0.31 210.6 ± 258.73 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_wine_white 0.08 ± 0.01 2.05 ± 0.31 3.506659e+05 ± 6.077032e+05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
uci_yacht 0.33 ± 0.09 0.19 ± 0.04 196.98 ± 125.57 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

Figure 11: Effect of the informativity of the prior (as displayed on the left) on the KL divergence of the trained
posterior on an artificial example (right). The scale of the respective KL divergences reveals that the heavy-tailed
prior (green) allows the posterior to be significantly influenced by data, while its counterpart (red) is much more
restrictive.

III..8 Prior parameters

For the toy experiments (Fig. 3, 5 and 6), an homoscedastic prior that matches the standard deviation of the
targets σ̄ is chosen. As shown in Fig. 11, for a Gamma prior, the rate β controls its informativity, the closer β is
to 0, the more spread out the prior is, and the less penalising it is for the posterior to diverge from it. We thus
deliberately choose a prior with low informativity, β = 1e-3, and infer the shape as α = 1 + β/σ̄. For the UCI
benchmarks, we aimed to adopt a prior that would match the model’s empirical variance (y − µ(x))

2. As such,
we first ran a training run to determine the model’s empirical variance on each dataset, and subsequently adopted
α = 1.5 and β = (α− 1) (y − µ(x))

2, with the choice for α being motivated by stability concerns, and obtained
from an empirical study. All prior parameters can be found in the configuration files present in the source code.



Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

IV. Generative models experiments

Table 17: Datasets for generative models

Name Dimensions Link
(N,C,Dx, Dy)

MNIST (70000, 1, 28, 28) http://yann.lecun.com/exdb/mnist/
FashionMNIST (70000, 1, 28, 28) https://github.com/zalandoresearch/fashion-mnist
EMNIST (70000, 1, 28, 28) https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/emnist

KMNIST (70000, 1, 28, 28) https://github.com/rois-codh/kmnist
SVHN (600000, 3, 32, 32) http://ufldl.stanford.edu/housenumbers/
CIFAR (60000, 3, 32, 32) https://www.cs.toronto.edu/~kriz/cifar.html

IV..1 Datasets

Tab. 17 lists all the datasets used in the generative modelling experiments.

IV..2 Dissipative loss for generative models

Figure 12: PGM for V3AE

The full expression of the dissipative loss for the V3AE is given as:

Loss(qφ, θ;Dtrain) = −
[( ∑

x∈Dtrain

Eqφ(z|x)
[
Eqφ(λ|z)[log pθ(x|z)]−DKL (qφ(λ|z) || p(λ))

]
−DKL(qφ(z|x) || p(z))

)
+ Eqout(z) [DKL (qφ(λ|z) || p(λ))]

]
.

(16)

The expected likelihood w.r.t the posterior qφ(z|x) is intractable as it requires the integration of the parameter
maps αφ(z) and βφ(z) and must be approximated through MC-integration, using multiple sampled latent codes.
We observed in practice that a low number of sampled codes, typically, 2 or 3, is sufficient for ensuring convergence.

IV..3 Model architecture

In our VAEs, the encoder and decoder networks’ architectures are mirrored, and all parameter maps of each
stage share on the same architecture. For the MNIST and FashionMNIST datasets, we relied on fully connected
encoder-decoders, with 2 hidden layers with respectively 512 and 256 neurons. Each fully connected layer is
followed by batch normalisation (Ioffe and Szegedy, 2015). For the SVHN and CIFAR datasets, we relied on
a convolutional architecture, with hidden dimensions corresponding to depths of 32, 64, 128, 256, and 512, for
kernels of size 3, with a stride of 2 and a padding of 1. Again, batch normalisation is applied after each layer. In
both cases, we used leaky rectified linear units (Leaky ReLU) for activations and here again, softplus and shifting
might be applied on the last layer of the different parameter maps to ensure the proper definition of the quantities
they model, and models are optimised with Adam.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/emnist
https://github.com/rois-codh/kmnist
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html


Robust uncertainty estimates with out-of-distribution pseudo-inputs training

IV..4 Pseudo-input generator

Table 18: Parameters for the generative model pseudo-input generator

K max_iterations tolerance δ

N 10 0.007 4e-1

Tab. 18 presents the parameters used by the PIG in a generative modelling setting. We remind that these
parameters are parameters of a gradient descent, with learning rate δ. Because it is too computationally expensive
to use the complete aggregate posterior as the density estimate we base the PIG on, we iteratively generated
pseudo-inputs using the aggregate posterior established on one batch at a time.

IV..5 Prior parameters

As for the regression experiments, an homoscedastic Gamma prior, with the same parameters for all image
channels was chosen for model comparisons. The shape and rate parameters were tuned with the same base
intuition as for the UCI benchmarks; the prior uncertainty should be fairly close to the empirical mean of the
model. An empirical grid search was conducted to determine the best combination of prior parameters wrt to the
objective to optimise. In the case of out-of-distribution detection, we adopted an heteroscedastic prior. Such
prior adopts similar base parameters as the more standard homoscedastic prior, but its rate parameter, and
consequently its associated uncertainty, increases linearly as a function of the distance to the closest of the C
pre-determined K-means12 cluster center, where C is the number of classes in the dataset. Again, the prior
parameters used for running the experiments can be found in the configuration files provided with the source
code.

IV..6 Out-of-distribution detection

The same experimental setup used to assess the OOD detection capabilities of the d-V3AE is replicated for other
OOD datasets, namely EMNIST (Fig. 13) and KMNIST (Fig. 14). Here again, the benefits of the regularity of
the learned decoder variance for OOD detection are clear, with our method clearly overperforming the baseline.

Figure 13: Empirical densities of likelihoods for FashionMNIST (ID) and EMNIST (OOD).

Figure 14: Empirical densities of likelihoods for FashionMNIST (ID) and KMNIST (OOD).

12https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


Pierre Segonne, Yevgen Zainchkovskyy, Søren Hauberg

IV..7 Pseudo-inputs training for VAE’s with Bernoulli likelihood

Motivated by the idea of not necessarily having to adopt a non trivial Γ(λ|a, b) prior, we explore the use of
pseudo-input training in simpler VAE’s with Bernoulli likelihood. In this setting, the combined epistemic and
aleatoric uncertainty on the reconstructed x̃ is approximated with a measure of entropy. As uncertainty is high for
distributions with high entropy, we reinterpret the decoded Bernoulli distributed reconstruction x̃ as normalized
Categorical distribution and then proceed to maximize its entropy for the pseudo inputs ẑ. The resulting loss
function,

Loss(qφ, θ;Dtrain) = −
[ ∑
x∈Dtrain

L(qφ, θ; x)−
∑

ẑ∈Dout

H[x̃|ẑ]
]
, (17)

balances the overall entropy of the reconstruction by promoting entropy increase, H[x̃|ẑ]. Figure 15 shows the
effect of this method for a VAE trained on a subset of MNIST.

Figure 15: Pseudo inputs for Bernoulli VAE’s



Robust uncertainty estimates with out-of-distribution pseudo-inputs training

V. Implementation details

V..1 Source code

The source code is accessible in the GitHub repository https://github.com/****13

V..2 Hardware

Experiments were done on a 16-Core AMD Ryzen 5950X machine with a single Nvidia 3080 GPU.

V..3 Running times and carbon emissions

Table 19: Regression models

CO2 (kg) Time (s)
Dataset

uci_boston 0.000064 15.969
uci_carbon 0.000695 138.548
uci_ccpp 0.001464 275.824
uci_concrete 0.000102 22.480
uci_energy 0.000095 21.140
uci_kin8nm 0.000869 168.273
uci_naval 0.001427 274.547
uci_protein 0.009920 1762.071
uci_superconduct 0.002010 360.634
uci_wine_red 0.000185 36.186
uci_wine_white 0.000482 89.373
uci_yacht 0.000046 11.404

Table 20: Generative models

CO2 (kg) Time (s)
Dataset

fashion_mnist 0.003713 504.190
cifar 0.037554 2573.566
svhn 0.036692 2585.144

Table 21: Generative models w/o pseudo inputs

CO2 (kg) Time (s)
Dataset

fashion_mnist 0.002750 407.991
cifar 0.025522 2022.803
svhn 0.025130 2023.293

Tab. 20 and 21 demonstrate that the generation of artificial pseudo-inputs incurs a limited additional computational
burden (∼ +26%).

13Hidden for the review, please refer instead to the .zip folder attached.

https://github.com/****

	1 Introduction
	1.1 Background and related work
	1.2 Robust uncertainty estimates
	2 Out-of-distribution pseudo-inputs
	2.1 Dissipative loss
	2.2 Pseudo-input generators (PIGs)
	3 Experiments
	3.1 Regression
	3.1.1 Toy regression
	3.1.2 UCI Benchmarks

	3.2 Generative models
	4 Conclusion
	I. Student-t likelihood
	I..1 Marginal distribution of a Gaussian likelihood with a Gamma precision
	I..2 Decomposition of a Student-t's uncertainty
	II. Pseudo-inputs generator
	II..1 On boundary samples
	II..2 Sensitivity to hyperparameters
	II..3 Influence of the pseudo-input generator
	II..4 Number of pseudo-inputs
	III. Regression experiments
	III..1 Variational Variance's ELBO Closed Form
	III..2 True posterior and heteroscedasticity
	III..3 Model architecture

	III..4 Pseudo-input generator
	III..5 UCI experiments
	III..6 Aggregate benchmark data
	III..7 Benchmark raw data
	III..8 Prior parameters
	IV. Generative models experiments
	IV..1 Datasets
	IV..2 Dissipative loss for generative models
	IV..3 Model architecture
	IV..4 Pseudo-input generator
	IV..5 Prior parameters
	IV..6 Out-of-distribution detection
	IV..7 Pseudo-inputs training for VAE's with Bernoulli likelihood

	V. Implementation details
	V..1 Source code
	V..2 Hardware
	V..3 Running times and carbon emissions









