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Abstract
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating
lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen
receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How compu-
tational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently
debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results.
We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying
the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four
main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation
issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by
performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption
of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues
that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and
routine clinical management of patients with triple-negative breast cancer.
© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.

Keywords: deep learning; machine learning; digital pathology; guidelines; image analysis; pitfalls; prognostic biomarker; triple-negative
breast cancer; tumor-infiltrating lymphocytes
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Introduction

The prognostic and predictive significance of the
tumor-immune interaction in breast cancer (BC) has
been investigated intensively in recent years [1,2],
and tumor-infiltrating lymphocytes (TILs) have
emerged as a robust biomarker with reasonable repro-
ducibility [3–5]. Within BC, triple-negative BC
(TNBC) (estrogen receptor, progesterone receptor,
and HER2-negative) and HER2-positive BC exhibit a
more pronounced tumor-associated immune cell infil-
trate. There is good evidence to suggest both a prog-
nostic and predictive potential for TILs in TNBC, even
in the absence of systemic chemotherapy [6]. In
TNBC, each 10% increment in TIL is associates with
a 17% relative increase in overall survival (OS) [7],
and TILs can predict chemotherapy response [8,9].
Therefore, routine evaluation of TILs during diagnos-
tic workup of TNBC patients was recommended in
the 2019 St Gallen International Breast Cancer
Consensus [10], and TIL assessment is now incorpo-
rated into several national guidelines as a biomarker
for TNBC and HER2-positive BC and is used
prognostically until predictiveness is validated in new
trials [11,12].
To move TIL evaluation from research and single-

center clinical use to routine cancer care, the clinical
evaluation must be accurate and reproducible. The
International Immuno-Oncology Biomarker Working
Group on Breast Cancer (also called the TILs-WG:
www.tilsinbreastcancer.org) has formulated a set of
guidelines for visual TIL assessment (VTA) on hema-
toxylin and eosin (H&E)-stained slides [13]. Although
this method of analyzing TILs is reproducible among
trained pathologists [14,15], there remains a need for
additional training, particularly because tumor hetero-
geneity affects reproducibility [16]. For this reason,
the US Food and Drug Administration (FDA) recently
provided an online publicly available continuing med-
ical education (CME) accredited TIL training course
for pathologists (https://ceportal.fda.gov/).

Recent developments in machine learning (ML) have
had a major impact on computational pathology [17],
including automated evaluation of TILs using ML and
image analysis – also referred to as computational TIL
assessment (CTA). CTA is a promising solution for
many of the issues of VTA and may lead to a standard-
ized and more reliable evaluation of TILs to complement
local TIL assesment when needed.

Using ML and digital image analysis to analyze
immune cell infiltration is not a new idea, having been
studied sporadically for the last decade or so, mainly
employing immunohistochemistry (IHC) [18–21].
Several novel approaches have demonstrated the prom-
ise of deep neural network-based algorithms for this task
on H&E stains [22–24]. However, important issues must
be taken into consideration during the development of
algorithms to evaluate TILs in BC, and new research,
development, and validation are required before ML
tools can be incorporated into the routine clinical man-
agement of BC.

In this review, we provide a perspective of the cur-
rent state of CTA and focus on how pitfalls with man-
ual assessment [14] also impact ML-based methods.
This is achieved by categorizing the inconsistent cases
reported in recent studies [22–24], and we extend the
analysis to include the unique challenges involved in
solving pitfalls with automated TIL evaluation. We
group our findings into four main areas: (1) general
pathology pitfalls, (2) ML and image analysis, (3) data
challenges, and (4) validation.

Background

In the TIL-WGVTA guidelines [13], TILs are defined as
mononuclear immune cells, lymphocytes, and plasma
cells. Intratumoral TILs (iTILs) that are in direct contact
with tumor cells are distinguished from stromal TILs
(sTILs) located in the stromal tissue between tumor cells
islands. The guidelines recommend focusing on sTILs
because their evaluation is more reproducible [7].
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sTILs are assessed as the ratio of the area occupied by
sTILs divided by the total tumor-associated stromal area,
with the final score reported as a percentage value. It is
imperative that areas of necrosis, ductal, and lobular
carcinoma in situ (DCIS/LCIS), and normal breast tissue
are excluded from the analysis.

The TIL-WG has reported on how computational
assessment of TILs could be designed, with the recom-
mendation that ‘computational TILs assessment (CTA)
algorithms need to account for the complexity involved
in TIL-scoring procedures, and to closely follow guide-
lines for visual assessment where appropriate’ [25].
Several approaches to CTA can be considered, from
more granular approaches, closely mimicking the guide-
lines recommended by TIL-WG, to coarser strategies,
with methods also varying in their level of automation.
In this article, we focus predominantly on recently cre-
ated CTA algorithms that adhere to the guidelines.

Bai et al [23] produced an algorithm using the open-
source software QuPath [26], in which inclusion of
tumor regions and exclusion of noninvasive epithelium
(DCIS/LCIS and normal ducts and lobules) are manually
annotated by a specialist pathologist. Therefore, the
algorithm relies on an experienced pathologist since it
cannot identify the correct areas for analysis, nor can it
eliminate common artifacts [23]. This algorithm applies
color normalization before cells are segmented using a
traditional image analysis algorithm (background sub-
traction, thresholding, and watershed) to compensate for
H&E variability. Finally, a model trained on extracted
handcrafted cellular features classifies all cells as tumor
cells, TILs, fibroblasts, or others. The algorithm then
outputs five quantitative variables with prognostic sig-
nificance, including the TIL-WG definition: (1) total
area of TILs within the stroma (percentage); (2) number
of TILs in the annotated region; (3) amount of stromal
cells in the annotated region; (4) the total number of cells
in the annotated region; and (5) the proportional number
of TILs relative to the tumor [13].

Sun et al [24] presented a more comprehensive
approach, although still relying on manually annotated
regions by a pathologist. After identifying tumor regions
and excluding noninvasive regions, a tissue-level model
automatically detects and excludes necrosis to ensure that
necrotic cells are not misclassified as lymphocytes. Cells
are subsequently detected and classified as malignant epi-
thelial cells, TILs, or others using a cell-level model. The
classified cell algorithms are then used to identify the
tumor-, stroma-, and lymphocyte-dense regions using a
rule-based system, which produces a regional-based quan-
titative variable of the area coverage of sTILs.

Thagaard et al [22] reported a fully automatic system
using commercial software (VisiopharmA/S, Hørsholm,
Denmark), in which a tissue-level model identifies the
tissue types and then, with no manual interaction, auto-
matically identifies the invasive tumor, noninvasive
breast structures, and stromal and necrotic regions. A
cell-level model then identifies TILs and reports sTIL
density as a quantitative variable. Other studies have
proposed alternative metrics [21,27,28] or used stains

other than H&E [29–31]. We have found that these
methods show inconsistency with the TIL-WG VTA
guidelines (see [25]).
The common findings from these studies are that CTA

has good to excellent agreement with VTA and, more
importantly, is independently associated with clinical
outcome, confirming that patients with TNBC and a high
CTA score have improved survival [22,24]. In addition,
the studies indicate that current CTA is not a panacea for
the limitations of VTA, and more research is needed to
address handling pitfalls, along with further develop-
ment and clinical validation of CTA.

Common pitfalls between visual and computational
assessments

On behalf of the TIL-WG, Kos et al [14] identified and
reported the most common pitfalls of evaluating TILs by
eye. Some are also relevant when developing ML
approaches and will be discussed here, as will those
unique to CTA.

Including wrong areas or cells
The most frequent cause of inconsistent CTA results
compared to manual scoring is the inclusion of incorrect
areas for evaluation. These tissue-level pitfalls include
(1) TILs around noninvasive structures (DCIS/LCIS,
benign lesions, and normal ducts and lobules)
(Figure 1) [22,24]; (2) lymphocytes associated with
other structures (such as lymphovascular invasion and
vessels in general; Figure 1) [24]; (3) necrotic areas [24];
and (4) tertiary lymphoid structures (TLSs), possibly as
an aggregate because H&E staining does not allow differ-
entiation between B- and T-cells [23]. In addition, training
algorithms are commonly developed on ductal tumors,
making potential pitfalls for lobular histology and less
common histologic subtypes such as mucinous, metaplas-
tic, apocrine, and papillary cancers [22,24]. Both Sun et al
and Bai et al suggested excluding these confounding
regions manually, which is therefore subject to the same
pitfalls as full VTA and reduces time efficiency due to
pathologist involvement [23,24]. In Thagaard et al this step
was performed automatically, with issues for complex pat-
tern equivocal DCIS but not benign regions or uniform
DCIS. Overall, manual and automatic approaches have
the same pitfalls regarding regions of equivocal DCIS.
The extent to which this impacts the accuracy of computa-
tional tools for TILs has yet to be fully resolved [22].
Cell-level problems where incorrect cell detections

are included are less prevalent in CTA. Bai et al reported
substantial segmentation failure in 1–2%, i.e. where the
segmentation model is the major cause of discordant
cases. The main cause was an inability to distinguish
iTILs from sTILs, causing tumors with a high proportion
of iTILs to be excluded from the study. Apoptotic bod-
ies, neutrophils, and low-grade or neuroendocrine
tumors can also lead to false-positive TIL detection [23].
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The aforementioned performance pitfalls can be
addressed using approaches described in the subsequent
section ‘Image analysis challenges when adhering to a
clinical guideline’ and by using variable data for model
training described in ‘Training data challenges to create
robust and generalizable algorithms’.

Technical factors that impact ML algorithms
Slide-related issues are a common challenge for VTA [14]
and also impact CTA. Variables in the preanalytic
workflow include cautery artifacts, as well as tissue dyes
used to mark resection margins during macroscopic exam-
ination. Artifacts of histological preparations include those
derived from tissue processing, microtomy, staining, and
mounting (zonal fixation, blade lines, tissue disruption,
microchatters, air bubbles, floaters). Out-of-focus areas,
pen markings, tissue folds, blurring, air bubbles, thick
sections, and crush artifacts can each confuse tissue- or
cell-level models and consequently lead to inaccurate

quantification. For example, poor sectioning can cause
false-negative TILs, thereby producing an underestimation
of the true TIL density [22].

Scanning variability among different manufacturers is
also a problem when comparing cohorts of multi-
institutional studies because of the lack of standardized
acquisition parameters. The extent of this issue in CTA has
yet to be properly investigated [22], but for applications
such as detection of prostate cancer, variation influences
the uniform interpretation of CTA. Similarly, inter- and
intrasite variation in slide preparation and/or staining may
contribute to differences in CTA between cohorts [23,24],
similar to other applications [32].

There are two main approaches to combating these
problems. First, they can be handled manually or by
employing a separate model, e.g. excluding out-of-focus
cells [33] or fields [34] in a preanalysis phase. Second,
more variability in scanning and staining quality metrics
can be incorporated into the dataset used to develop
CTA, and we cover key aspects of these issues in what

Figure 1. Lymphocyte-dense regions associated with other structures should be excluded as the inflammation is not necessarily an immune
response to the tumor. (A) TLS. (B) Lymphocytes surrounding vessels. These areas are reported [24] as possible false-positive areas in CTA at
much higher levels than VTA. Images by Elisabeth Specht Stovgaard from Herlev cohort used in [22].
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follows (‘Training data challenges to create robust and
generalizable algorithms’).

Heterogeneity in sTIL distribution and
tumor-compartment definitions
One pitfall that causes the highest manual interobserver
variation is the presence of increased sTILs at the lead-
ing edge of a tumor compared to the central tumor
area [14] (Figure 2A). This aspect of CTA compared to
VTA was highlighted in recent studies [22,24]. The
increased density of sTILs at a tumor’s leading edge
can cause a lower CTA score, because the immune-
deserted stromal region in the central tumor region will
contribute to a larger stromal area quantification than
would be estimated by manual assessment. In contrast,
if stroma is scarce in the central tumor, the high-density
margin will contribute most to the overall score,
resulting in a higher CTA score.

In general, the identification of tumor-associated stro-
mal regions in which sTILs should be scored is not
strictly defined in manual guidelines. Sometimes there
are larger stromal areas within the tumor core, but the
allowable distance between stromal TILs and tumor
nests for quantitation remains unclear (Figure 2B).
Similarly, there is no quantitative definition of outlier
TIL density hotspots that should be excluded. This can
lead to discrepancies between VTA and CTA [22],
depending on the CTA integration details method and
the validation approach employed (discussed further in
the sections ‘Image analysis challenges when adhering
to a clinical guideline’ and ‘Validation challenges when
comparing CTA with VTA’).

Moving beyond human capabilities
Some of the aforementioned discrepancies may be elim-
inated by algorithm improvements, such as more accu-
rate delineation of stroma [24]. However, other pitfalls
may arise when tissue-level outlining becomes too
precise [22]. Specifically, CTA detects very small areas
of stroma within tumor nests, which a pathologist might
not consider due to their size, but no rules exist to define
how small a stromal area can be to be included. This
problem can lead to higher or lower measurements of
TILs than a manual score if these areas include many
TILs (larger TIL count) or do not include TILs (larger
stromal area). The highly accurate quantification
allowed by CTA will therefore lead to discrepancies
with VTA pathologic evaluation; the gold standard will
be the method that provides the highest clinical benefit,
measured by its predictive or prognostic accuracy [22].
The choice between standard VTA and CTA-derived
guidelines will be settled by discrepancy aspects, which
is discussed subsequently.

Image analysis challenges when adhering to a
clinical guideline

Many of the pitfalls mentioned can be attributed to the
image analysis approach that is used to implement the
rules of the VTA guideline. However, the gold reference
for scoring most existing histology-based biomarkers is
currently the pathologists’ assessment, for instance,
HER2 [34] and the VTA guideline [13]. Hence, the
computational pathology community always needs to

Figure 2. Examples of discrepant cases from Herlev cohort used in [22]; purple areas: tumor nests, heatmap areas: sTIL regions. (A) A case of
high sTIL density at tumor margin compared to central area. As the stroma is scarce inside the tumor, sTIL density is reported to be very high in
CTA as mostly the margin contributes to the score. (B) The tumor grows irregularly with small tumor nests between larger invasive tumor
areas. In these cases, the CTA includes more stroma than VTA, resulting in a lower sTIL density score (larger denominator) than the manual
score.
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answer the same question first: What strategy do we
want to use to translate the rules of manual guidelines
into something a computer can execute? There are many
valid answers to this question and we review the pros
and cons of CTA in the following sections.

Different approaches to the computer vision
problems relevant for building interpretable TIL
algorithms
Here, we focus on three main categories of computa-
tional approaches for quantifying tissues and cells:
(1) patch classification, (2) object detection, and
(3) image segmentation. Although several other methods
exist, we focus on the most commonly used approaches
(see [35] for a more extensive review).
First, the simplest approach is classification, some-

times referred to as patch-based approaches in digital
pathology, especially for methods employing deep
learning models. A supervised learning algorithm incor-
porates an image patch/field of view (FOV) for classifi-
cation into one discrete label/class from a predefined set
of labels. Second, object detection extends classification
by producing one class per object of an image along with
its spatial location. The location of objects of interest is
marked with a box around the detected object, or the
object is marked at its center. Finally, segmentation goes
beyond detection by assigning a label/class to every
pixel in the image to create a semantic map of the types
of objects and their location. In contrast to object detec-
tion, segmentation can outline the border of the objects
at very high resolution and accuracy. The general con-
sideration when selecting a category for a computer
vision problem is to determine the level of precision/
resolution needed (i.e. how coarse the output can be to
still adhere to the guideline). There are also differences
in terms of training data and validation requirements that
we will cover in later sections.
According to the TIL-WG guideline [24], a CTA

algorithm should be able to (1) detect and compartmen-
talize tissue into tumor structures, tumor-associated
stroma, and stroma outside tumor borders and (2) quan-
tify TILs in the compartment. Different considerations
apply to these two topics.

Considerations for tissue-level models
Object detection is not suited for subdividing complex
tissue structures into distinct areas (e.g. highly infiltrat-
ing tumor nests) and is therefore often excluded for the
recognition and compartmentalization of tissue. Most
CTA algorithms use a classification approach [21,27]
or full segmentation [20,36]. The main difference is the
granularity of the annotated maps produced, with seg-
mentation being finer than classification, although reso-
lution varies depending on the overlap and tile size of the
input image patches and the size of the sliding window.
When using a direct classification of image patches as

tumor, stromal, or lymphocyte regions, an individual
patch may contain different tissue components, making

classification not only difficult to train because of the
inherent noise in the annotations but also imprecise for
prediction due to the presence of multiple classes in a
single image for only one output class. Moreover, a
patch-based approach may not provide detailed, quanti-
tative information on TIL density; for instance, an accu-
rate patch-based lymphocyte classifier would produce the
same output whether only one or many lymphocytes are
within an input image. Bai et al [23] used manual
outlining by a pathologist and did not discriminate
between tumor and stromal areas, which was problem-
atic for high-iTIL cases, as mentioned previously. Sun
et al [24] also used manual outlining in combination
with a patch-based model to identify and exclude
necrosis. They then used the cell-level output (see the
next section for details) and empirically defined a tumor
area as a patch containing more than two tumor cells.
This sliding window approach produced relatively
coarse boundaries compared to a full segmentation
model [20,22].

Providing models that segment the tissue allows for
the construction of more detailed and quantitative infor-
mation at the cellular level. Even though segmentation
seems the obvious choice to carry out the tissue-level
task of detecting the stromal areas necessary for CTA,
the approach also has disadvantages. First are potential
segmentation artifacts from a sliding window analysis,
which is preferred due to the gigapixel size of whole-
slide images (WSIs). This can also lead to tiling-induced
issues that result in incorrect labeling/misleading cate-
gorization (e.g. one glandular structure is divided in two,
and these are analyzed independently, with one part
being segmented as invasive tumor and the other part
as DCIS). In the naïve setup, the ML model only takes
into account one part at a time in what is called the
receptive field (i.e. the tissue structure that the model
sees at each prediction). Such inconsistencies along the
edges of each FOV need to be handled, and in this
postprocessing strategies can be helpful. If two segments
of DCIS and invasive tumor regions touch as a single
object, the size and shape of the DCIS segment can be
considered in a logical postprocessing step to determine
whether both should be segmented as DCIS or invasive
tumor [22]. The important point is that these events are
handled consistently, and with relevance to the clinical
guideline. For example, one should rather exclude DCIS
because there is often a high density of stromal TILs
around these preinvasive lesions, and including false-
positive regions around DCIS structures would heavily
influence the overall TIL score. Systematic inclusion of
clinical guidelines in the digital framework is needed at
either the data preprocessing or postprocessing stage.

Considerations for cell-level models
The objective of TIL quantitation is to output the per-
centage of TILs in a given tissue region. This step is
usually performed at the same or higher magnification
than is used for tissue-level analysis to include sufficient
cell-level image features for accurate model predictions.
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The main goal is to distinguish mononuclear immune
cells from other cells. Previous studies performed this
task by classification, detection, and segmentation.
Janowczyk and Madabushi [37] used a classification
model with a small sliding window to obtain the most
likely location of each lymphocyte. A potential draw-
back of this method is computational inefficiency, as its
high precision requires highly overlapping predictions.
More recently, several studies [22,38,39] employed seg-
mentation models to directly predict the center of all
TILs in a FOV, avoiding the latter inefficiency issue.
Others [24,40] used a combination of both object detec-
tion and segmentation [41] to obtain the location and
outline of TILs simultaneously. There are minor differ-
ences between the methods; the main challenges for cell-
level models relate to the requirements of the training
data required for their development, which we discuss in
the following section. Future work should also investi-
gate improving the accuracy of cell classification to guide
the model with information about the location of cells
derived from compartment classification/segmentation.
The idea is that the probability that cells will belong to a
particular category (e.g. lymphocytes, fibroblasts)
depends on their location in tissue compartments (like
epithelium or stroma).

Another consideration here is the definition of the
final sTIL score as a quantitative output variable, and
recent methods have used different definitions. TheVTA
guideline uses an area coverage approach, which is the
most accessible for humans to estimate. However, this
introduces a slight size bias toward larger TIL nuclei.
Does this mean that a CTA should do the same? We
argue that as long as the CTA quantifies the degree of
immune cell infiltration and is interpretable by patholo-
gists (either by heatmaps or a score), then it is a valid
score, and validation methods will then identify the most
appropriate scoring system. That recent papers [22–24]
found seven output variables associated with survival is
evidence for this. Interestingly, although the VTA guide-
line explicitly states that sTILs should not be scored as a
fraction of TILs compared to other cell populations, two
variables of this assessment type consistently provide
better results [23]. Thus, there might be other ways of
creating a CTA, but it could also just be a derivative of
the model design proposed in that paper.

Training data challenges to create robust and
generalizable algorithms

The described models are exclusively built using deep
learning, a powerful form of ML that, given sufficient
training examples, learns to unravel and identify com-
plex patterns. We will not review all aspects of this field
but instead refer the reader to other excellent review
articles [35,42]. However, since the most promising
CTA algorithms use deep learning, we will cover one
of the main challenges of creating such algorithms:
obtaining the training data required.

Data variation considerations
The general rule for creating a development/training
dataset (i.e. the data used to develop the algorithm) is
to include as much interclinical variation as the algo-
rithm can be expected to encounter. Therefore, the
requirements depend on the scope of the CTA algorithm,
meaning the level of generalization required. For
instance, single-center research studies are deployed in
only one laboratory. In a multicenter study, different
laboratories participating in the training relate to internal
validation, or a laboratory outside of model development
is related to external validation. The answer to these
questions indicates what boundaries of variation the
CTA algorithm is expected to handle. The main sources
of variation originate from the significant challenges in
standardization within pathology. As such, before begin-
ning image analysis, quality control of tissue, histology
slide, stain, and WSI should be confirmed to ensure that
a standard is met that will allow the collection of reliable
data. Variability across pathology laboratories in
preanalytical (e.g. fixation, sectioning) and analytical
(e.g. staining protocol, scanner model) variables causes
distributional shifts in the image data. Studies have
investigated the impact of such variables, and methods
to normalize and/or decrease variability from scanners
[43–45] and staining [32,46] have been developed.
Another important factor when curating a dataset is

the impact of histological subtype variability (invasive
ductal, invasive lobular, mucinous) on the underlying
data distribution. Even the most powerful computational
models, such as deep learning, may not generalize out-
side the subtype seen during training [47,48] – one
should not expect to successfully implement a model
on lobular carcinoma if the data used for model devel-
opment include only ductal carcinomas. This aspect sets
some requirements on how to source and sample the
patient cohort as part of relevant inclusion and exclusion
criteria in the study design and should yield a balanced
and realistic dataset. It is important to remember that for
any digital model to work in a generalizable manner,
interclass (between-group) variation must be higher than
the intraclass (within-group) variance.
Generally, the solution to these issues is straightfor-

ward. Simply including relevant and sufficient variation
in the development dataset aids in making the algorithm
robust and generalizable. But even with increased sam-
ple numbers, the training set will only partially represent
the full data distribution, and the trained algorithm will
therefore be confronted with some previously unseen
situations during application. Methods to identify, mon-
itor, and flag additional novel classes [47], dataset shifts
[48,49], and normalization schemes [32,43,46] should
help to reduce this problem.

Data labeling considerations
Acquiring an adequate number of manual labels is a
critical step in computational pathology, given the time
and effort required from pathologists and others with the
specific expertise required. Several approaches have
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been proposed to address the need for manual labels in
large-scale datasets. The requirements for time, exper-
tise, and methods depend on the model type being
trained. The magnitude of investment correlates with
the precision of the output required. In general, classifi-
cation labels are the simplest to obtain (only one value is
needed per image), then object detection labels (one
click and one label per object), and then segmentation
labels (many clicks and one label per object). For the
new approaches being proposed, the major objective is
to limit pathologist involvement to avoid the high cost,
the time constraints of clinical practice, and the repetitive
nature of annotating multiple examples.
The most straightforward strategy is manual annota-

tions by a large number of experts. This approach gen-
erates high-quality labels because ambiguous labels are
identified and corrected, but it remains expensive and
suffers from interlabeler variability and the subjective-
ness inherent in histopathology. One solution is to ask
multiple annotators to annotate the same data and pro-
duce a consensus label or model label variability [50]. A
crowdsourcing framework for both tissue-level segmen-
tation and cell-level classification, object detection, and
segmentation was proposed to reduce pathologist effort
and to model the interlabel variability of multiple
labelers [40,51]. Multiple nonpathologists (up to six)
were required to match the performance of a senior
pathologist. However, the benefit is restricted to anno-
tating predominant and visually distinctive patterns,
implying that pathologist involvement, and possibly
full-scale labeling effort, will be needed to supplement
uncommon and difficult classes that require expertise.
Of note, training and test sets must include borderline
cases that are encountered in real life but might be hard
to annotate. Otherwise, when trained and tested exclu-
sively on ‘clean’ data, the algorithm may have difficul-
ties with data for which the decision is harder to
establish.
One of the most important aspects of developing a

labeled dataset for CTA is the consistency of labels and
annotations, i.e. minimization of ambiguous samples in
the dataset. This consistency is difficult to adhere to
when relying on manual labels. Compared to other
fields, such as radiology, histopathology is unique in
terms of creating a ground-truth definition. For many
applications, we rely on experts for ground truth, but we
can also use the antibody–antigen specificity of
immunohistochemical stains. Recently, multiple label-
ing schemes were proposed to obtain tissue- and
cell-level labels [22]. The idea is to use IHC to guide
semiautomatic labels that can be transferred to primary
H&E slides, and models can then be trained and
deployed on H&E only. The obvious pitfall is the need
to prepare new serial sections, which means using more
tissue. Also of relevance for TILs, cellular information
might be compromised between consecutive sections.
Alternatively, the H&E section can be restained if the
expertise is available, thereby ensuring that IHC-stained
lymphocytes can be found in the previously H&E-
stained slide. Even though this approach requires

additional developmental effort, the quality and consis-
tency of the labels were reported to be higher than those
of manual labels, and only one pathologist was needed to
review the labels, decreasing the time and effort required
for model development [22].

Because WSIs are gigapixel files, it is intractable to
manually label entire WSIs. Therefore, one needs to
sample training regions, where it is important to use
the same principles of including data (label) variation,
e.g. regions with low-, medium-, and high-density TILs
should be included, also with varying proximity to inva-
sive cells. One solution is to build weakly supervised
image segmentation models that do not require detailed
cell-level labels.

Althoughmany schemes can be employed to optimize
the time and necessity for pathologist involvement, such
procedures have their own pitfalls, as discussed earlier.
We always advise developing an annotation protocol
and labeling strategy in collaboration with a pathologist
and treat it as an iterative process to identify errors and
inconsistencies that will enhance the quality and scale of
the training labels [52].

Data access and sharing considerations
It is obvious that access to raw data is a prerequisite for
developing CTA algorithms. However, there are substan-
tial challenges in collecting and/or accessing appropriate
sets of data. Not all laboratories systematically scan all
slides on modern scanners into an image management
system (IMS) or picture archiving and communication
system (PACS). Even fewer departments have digitized
their archived slides or, indeed, have enough computer
storage for such archiving. Scanning large retrospective
datasets is, on the one hand, time-consuming since most
scanners need to be manually checked for quality,
although on the other hand this may simplify future
research.

A key aspect of developing successful CTA algo-
rithms is collaboration between partners, among aca-
demic centers or academia and industry. The
development of such algorithms on WSIs will be
reviewed by a pathologist to communicate with the data
scientists to improve algorithm adjustment and ML
training. Another important aspect is analysis of the
pathologist’s notes. These notes and the complete
clinical-morphological data include information regard-
ing stage, molecular profile, previous biopsies, and post-
treatment changes. Such analysis might be performed
using a natural language processing pipeline to extract
data for further standardized reporting. Getting the legal
terms and conditions into place to share data can be a
lengthy process. Sharing is recommended because it
substantially eases this process for patient information
protection regulations and the included requirement on
information technology infrastructure and security.
Another important consideration is the size of the
datasets and how local or cloud platforms can be used
to store, access, and share data.
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There are successful studies sharing high-quality his-
tology datasets publicly under Creative Commons
(CC) licenses [53,54], either fully public [51,55] or
restricted for noncommercial use [56]. The latter can
hinder academia–industry collaborations. The most
commonly used platforms for public sharing of datasets
are the Grand Challenges website [57] and The Cancer
Genome Atlas (TCGA) [58]. Historically, there has been
a shortage of publicly available datasets for developing
CTA systems, with TCGA a notable exception and
providing the foundation for many CTA studies
[21,22,24,40]. Nonetheless, care must be taken to
avoid bias and batch effect implications from public
datasets, which were not necessarily created for TIL
evaluation [59]. There are recent joint efforts from the
FDA and TIL-WG to create datasets for algorithm
validation [50,60], to fill the critical need for the
availability of development datasets. Collecting a large
number of WSIs is time-consuming and is subject to
approval by institutional review boards and a data
protection officer to comply with privacy and patient
laws. Conversely, curating remains a barrier to the
scaling of CTA algorithms.

Validation challenges when comparing CTA
with VTA

Quantitative metrics on the performance of the different
parts of a CTA algorithm need to be evaluated during
development and, especially, during validation of the
image analysis model [61]. As previously reviewed by
the TIL-WG [24], there are different levels of perfor-
mance measurement. Briefly, analytical validation
(AV) refers to low-level metrics such as accuracy and
reproducibility; clinical validation (CV) describes the
discrimination of patients into clinical subgroups; and
clinical utility measures the overall benefit in a clinical
setting. In the following subsections, we discuss poten-
tial pitfalls in model validation.

Subcomponents of modular systems need different
evaluation metrics
It is clear that to adhere to the TILS-WG guideline, an
accurate CTA algorithm must consist of multiple models
aimed at solving different parts of the guideline. Hence,
AV applies to the subcomponents as well as to the entire
system. As the subcomponents can be different model
approaches, the AV metric needs to capture aspects of
each approach while providing information in situations
where failure of a subcomponent will cause failure of
CTA. Metrics such as accuracy, precision, recall,
F-scores, and Matthew’s correlation coefficient are some
of the other measures used to evaluatemodel performance.

If a subcomponent is a segmentation model (e.g. the
tumor, necrosis, and noninvasive tissue-level model),
standardized metrics such as the F1 score can be used
to evaluate AV. The F1 score can be interpreted as the

weighted average of the precision and recall/sensitivity.
However, it is important to consider that the F1 score on
a FOVwith no true-positive segments of any given class
will be evaluated as zero for that class, implying that
potential false positives will not be captured as false
positives, invalidating the overall F1 score. Another
challenge for subcomponent AV is the impact of the
exact test score of the model. A benchmark for the exact
model selection does not always exist; hence, it is diffi-
cult to know if an exact score is sufficient or if a better
(or worse) model would impact the AV and/or CV of
the CTA.
Dudgeon et al [50] proposed both a metric and a

dataset that might qualify as a FDA Medical Device
Development Tool [60]. The metric is a multireader,
multicase version of the mean squared error. Similar
metrics such as Spearman rank-based correlation are
often used for the algorithm-to-pathologist comparison
[20,22]. One of the pitfalls of such count-based metrics
is that they do not capture whether the pathologist and
algorithm are counting the same or different TILs
because they compare only the sum of TILs. However,
the metrics are easy to use and interpret, and they capture
the most clinically relevant aspect of the algorithm – the
extent of TILs in a defined region.

Considerations regarding clinical validation and
utility
For the AV of the full algorithm, the same metrics can be
used for the algorithm-to-pathologist comparison.
However, as recently commented [62], the best method
to evaluate digitally assessed biomarkers, such as CTA
for both AV and CV, remains an open question. This
point to the paradox of selecting the ground truth for
digital pathology in TILs as either concordance between
the pathologist and computational score or patient out-
come, or a combination of both. This also raises the
question of clinical cut-off value for sTILs, since there
are no formal recommendations at this time. The lack of
manual VTA-based cut-off for patient stratification into
clinically meaningful subgroups makes the process of
CV more challenging for CTA because any cut-off com-
parison between VTA and CTA might be arbitrary.
Current CTA studies [22–24] use other cut-off points
than those used for VTA [3,62–64] to identify two
patient groups (TILs-high versus TILs-low) and find
different levels of agreement between manual and auto-
mated methods at different cut-offs. Sun et al [24] found
moderate to substantial agreement depending on the
exact cut-offs, but only moderate agreement at a 10%
cut-off. In contrast, a different cohort [22] showed sub-
stantial agreement at 10% cut-off. Interestingly, the for-
mer findingsmight imply different TIL cut-off values are
important, depending on the cohort and patient ethnici-
ties, although no significant difference in TIL distribu-
tion was found between Asians and Caucasians [24].
This highlights the general difficulties of finding a cut-
off for biomarkers, which still involves a high degree of
uncertainty [62]. In contrast, both studies found that
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CTA score as a continuous variable was associated with
disease-free survival (DFS) and OS. Hence, TILs could
be better integrated into prognostic modeling containing
existing clinical variables such as age, lymph node
status, tumor size, tumor grade, and tumor type,
removing the need to determine a cut-off even for dif-
ferent ethnicities. The optimal method of TIL
assessment – threshold versus continuous may be
different for VTA versus CTA and remains an area of
active research, e.g. against alternative endpoints such as
BC progression [65].

Discussion

Current state-of-art CTA algorithms suggest that sTILs
can be assessed computationally and represent a crucial
prognostic and predictive factor for TNBC [7]. This
review highlights different methodological approaches to
designing algorithms. Beyond methodological design,
many of the same pitfalls exist for VTA [14]. Whether
these influence the clinical validation of CTA is to be
determined, given that it depends on the future approaches
taken to validate these algorithms. The TIL-WG is cur-
rently organizing a grand challenge using phase 3 clinical
trial data, which is a crucial step in validating any CTA
algorithm [62]. This may answer many of the questions
related to the clinical importance of CTA precision that are
currently difficult to evaluate. However, similar collabora-
tive community-driven initiatives are needed to create
robust and generalizable CTA algorithms. Many techno-
logical and procedural standardizations and harmoniza-
tions are necessary to counteract model-decay and
interinstitutional differences in workflow, especially in
difficult tissues (e.g. small, deformed morphology or poor
tissue integrity). Currently, there is no public framework or
infrastructure to work collaboratively on different labeling
strategies ensuring that CTA algorithms can identify and
handle all histological components, includingDCIS, fibro-
sis, hyalinization, and a larger number of granulocytes.
There is currently no easy and practical way of building
combined versioned datasets of standardized WSI and
label formats, largely due to institutional data-sharing
restrictions and privacy requirements.
Another important unresolved aspect is the human–

algorithm interaction, i.e. when and how the algorithm
should be introduced into the workflow. Should the
pathologist be required to open a case and manually
annotate or edit regions, send the case for analysis, and
wait for the result? Or should the algorithm be auto-
mated so that a case is analyzed based on slide metadata
readily available after scanning, meaning that the case
will have already been analyzed when the pathologist
opens it for the first time? We deem the former unreal-
istic due to time and workload constraints. Different
implementations will need to be optimized to augment
and not disrupt the current workflow. Similarly,
uncertainties remain on the best way to present the
quantitative results of CTA, e.g. a precise count of

TILs per square millimeter or a relative area. A dichot-
omous score of both computational and manual mea-
surement may predict outcomes better than either
variable alone [24]. This might affect whether the
CTA should provide the primary score or work as a
secondary reader on difficult cases.

It is clear that CTA is a powerful tool, but it is
beneficial only when in the hands of expert pathologists.
Work is in progress on many of these challenges as we
look to an exciting future. Aware of the responsibility of
the pathologist’s decision-making, we hold as our ulti-
mate goal the development of robust tools for patholo-
gists that assist with personalized precision care in a
standardized and time-efficient manner. We hope that
by highlighting the specific pitfalls in usingML for sTIL
assessment during both the model development and the
clinical translation stages, future developments and col-
laborations will be positioned/forged to find the solu-
tions needed to ensure reliable computational reporting
of sTILs, with the end goal of using this tool in the
routine clinical management of BC.
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