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Abstract—We propose novel finite-dimensional spaces of well-behaved Rn ! Rn transformations. The latter are obtained by (fast and

highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive,

effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling

choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood

evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using

Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization

over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration;

real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.

Index Terms—Spatial transformations, continuous piecewise-affine velocity fields, diffeomorphisms, tessellations, priors, MCMC

Ç

1 INTRODUCTION

DIFFEOMORPHISMS are important in many fields such as
computer vision, medical imaging, graphics, and robot-

ics. Unfortunately, current representations of highly-expressive
diffeomorphism spaces are overly complicated. Thus, despite
their potential and mathematical beauty, their applicability is
limited, especially in large datasets or when computing time
is restricted. Moreover, in such spaces, owing to their com-
plexity, using powerful inference tools, e.g., Monte Carlo
Markov Chain (MCMC), still presents challenges, although
some encouraging recent progress has been made in this
active field of research (e.g., [1], [2], [3]). Lastly, seemingly-for-
midable mathematical preliminaries render these spaces
accessible to only a small group of geometry experts. This hin-
ders the exchange of ideas between communities and unnec-
essarily limits the potential impact of diffeomorphism-based
methods; e.g., while certain machine-learning areas can bene-
fit from suchmethods, little work has been done in this direc-
tion, partly since practical computational tools have yet to
become available.

Motivated by practicalities of probabilistic modeling and
statistical inference as well as a desire to make diffeomor-
phisms broadly accessible, in this work, which expands [4],
we propose a representation that (as we will show in

Section 4) combines simplicity, expressiveness, and effi-
ciency. Particularly, we propose new spaces of transformations
that are based on (fast, highly-accurate) integration of Continuous
Piecewise-Affine (CPA) velocity fields. Importantly, as we will
show, their benefits go beyond speed and accuracy.

Possible applications of the proposed representation are
numerous, as we demonstrate here with: image editing and
shape manipulation; unconstrained optimization over
monotonic functions; modeling of Cumulative Distribution
Functions (CDFs) and histograms with order-preserving
geometry; time warping; image registration; landmark-based
image warping/animation; “prettifying” results of (non-
diffeomorphic) dense-correspondence tools. Moreover, we
recently used the proposed representation as a key compo-
nent in a learned data-augmentation scheme [5], improving
the results of image classifiers. Finally, our code is available at
https://github.com/freifeld/cpabDiffeo.

2 RELATED WORK

Pattern Theory and Differential Geometry. Representing objects
via transformations acting on them is a Pattern-Theoretic cor-
nerstone [6]. Our work is influenced by many impressive
works in this field, primarily in the geometry-oriented areas
of computer vision and medical imaging. Due to space limits,
we canmention only a few: [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19].Most of theseworks are based on
complicated, usually1-dimensional, spaces, and the associ-
ated representations and computations are, in practice, discre-
tized and/or otherwise approximated. We take a more
practical approach and start from a finite-dimensional space,
in which discretizing the representation is unneeded, while
computations require no approximations in the 1D case and
almost no approximations in higher dimensions. The result is
a simple, efficient, and practical machinery for working with
a rich space of diffeomorphisms. The rapidness and high
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accuracy of Algorithm 1 (see Section 4), together with the fact
that the machinery is easily implemented on GPU, let us eval-
uate transformations fast. This, in turn, together with the fact
that the representation effortlessly supports coarse-to-fine
analysis and the use of smoothness priors, allows the use of
general-purpose powerful inference methods such as
MCMC. See also other recent approaches for MCMC on dif-
feomorphisms, e.g., [1], [2], [3].

In applications involving landmark pairs, most methods
above can deal with only a small number of landmarks as
their inference complexity grows super-linearly with the
number of landmarks. Consequently, they cannot leverage
the success of popular tools for dense-correspondence
extraction (e.g., [20], [21]), highlighting a disconnect with
the larger computer-vision community. Our algorithms
have linear complexity and are (embarrassingly) paralleliz-
able, yielding sub-linear running times in practice.

Note that our representation, despite the fact it involves
tessellations, is not not based on control points (such as, e.g.,
[2], [19]); e.g., in cases where we either impose volume
preservation or use type-II tessellations (see Section 4), one
cannot simply define arbitrary velocities at the tessellation
vertices as there are too few degrees of freedom.

PA and CPA Affine Maps in Computer Vision. Cootes
et al. [22] use PA transformations. The latter, while simple
and efficient, are neither continuous nor invertible. Several
other works use CPA transformations (e.g.,[23]; see also [24]),
sometimes with additional constrains (e.g., [25]). Common to
those works is the direct use of PA (or CPA) maps as transfor-
mations. Those are not differentiable (and are often not invert-
ible), hence not diffeomorphisms. In contrast, by integrating
CPA velocity fields, we obtain transformations–which them-
selves are not PA (hence not CPA)–that are (orientation-
preserving) diffeomorphisms. Lin et al. [26] work with CPA
velocity fields but, rather than integrating them, they use
them tomodelmotion pattens.

Closer to ours is the elegant log-Euclidean polyaffinemethod
proposed by Arsigny et al. [27] (see also [28], [29]) that, similar
to ours, uses finitely-many affine building blocks to build flexi-
ble velocity fields. Theyuse a spatial averagingwith smoothly-
decaying weights of the blocks to ensure a smooth velocity
field whose integration yields trajectories that define a diffeo-
morphism. However, as their integral has no closed form they
must use an approximation throughout; i.e. theymust numeri-
cally approximate the entire trajectory. This is computationally
demanding and can cause substantial approximation errors.
Their method is based on approximating the integral of a
weighted sum of affine velocity fields via a weighted sum of
the affine diffeomorphisms associated with these fields. To
reduce errors, they divide the field by a large 2#steps as the
approximation holds only for near-zero velocity. To keep the
number of steps not too large, they smartly generalize the scal-
ing-and-squaring method. The result is, however, still exact
only if a single affine component is used. For expressiveness,
however, a larger number is needed, and accuracy drops. It is
thus unsurprising they focus on a small number of affine com-
ponents, and that to achieve reasonable timings, they use their
method only in the last stage of inference; till then they resort
to a non-diffeomorphic fusion. In contrast,we use affine build-
ing blocks in a different way; i.e., we use them in a piecewise
manner, but, using linear constraints, force them to yield

everywhere-continuous velocity fields. This seemingly-subtle
difference has profound implications. In 1D, it yields a closed-
form integration; in higher dimensions it lets us integrate
almost the entire trajectory in closed form using large (hence
few) steps which are exact, and only in small portions of the
trajectory do we resort to a numerical solver. This virtually
eliminates numerical issues and allows construction of sub-
stantially more expressive transformations; e.g., Arsigny
et al. [27] report using 7 affine blocks, while we routinely use
tens or hundreds while neither accuracy nor computational
cost becomes an issue. Though this indirect comparison of
integration methods (as their method is inapplicable to our
velocity fields and vice versa, a direct comparison is impossi-
ble) favors ours, it is just part of the story. Our representation
has additional advantages over theirs, including simplicity,
better suitability for a GPU implementation, trivial handling
of boundary constraints and volume preservation, and sim-
pler encoding of statistical priors and coarse-to-fine analysis.

Discrete Representations and Approximations. Allassonni�ere
et al. [13] efficiently approximate diffeomorphisms. Unlike our
transformations, their non-differentiable transformations are
not diffeomorphisms. While we focus on a general-purpose
representation, diffeomorphic demons [16] is a registration
method, popular due to its speed, based on discretely-defined
fields. As its authors note, these may be inconsistent with a
diffeomorphic framework and may not preserve orientation.
They also cannot easily impose volume preservation, though
some success was reported [30]. Also, a computer representa-
tion of a discrete-field sequence needs plenty of memory.
These issues can be obviated by adapting their method to use
our compact and continuously-defined fields.More generally,
approximations based on discretely-defined fields and/or
discrete diffeomorphisms are widely used, e.g., in medical
imaging [16], [31], robotics [32], [33], [34], geometric model-
ing [35] and fluid dynamics [36]. Unlike these works, both our
fields and transformations are continuously-defined and
more compact.

Statistics on Manifolds and Tangent Spaces. Like many
authors (including of some aforementioned works), we han-
dle the nonlinearity of a space via the linearity of the tangent
space at the identity [11], [27], [29], [37], [38], [39], [40], [41].
Other tools (not explored here) for statistics on manifolds
that either use other tangent spaces or work on the manifold
itself [42], [43], [44], [45], [46], [47], [48] may also be applied
to our spaces. Particularly, parallel-transport tools may be
especially relevant here [49], [50], [51], [52], [53], [54], [55].

CDF/Histogram Modeling. In modeling distributions, it is
better to work with cummulative distribution functions over
densities since the latter might not exist and inter-density
Lp (or sphere-based) distances can be arbitrarily large even
if their probability measures are essentially the same. One
approach to CDF representation uses p-Wasserstein spaces,
usually p 2 f1; 2g, the p ¼ 1 case is tied to Earth Mover’s
Distance [56]. A limitation of this approach is that it needs
bounded pth-moments and hard computations. 1-Wasser-
stein methods also lack easy synthesis of new points that
are valid histograms/CDFs. While it is less of an issue for
spherical methods [57], they suffer from two issues. 1) They
do not respect the ordering of the bins or of R. While, for
histograms, bin ordering is sometimes immaterial, the order-
ing of R matters. 2) Large moves on the sphere lead to
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CDFs/histograms with negative values. The problems
above do not exist in our representation.

Image Warping and Shape Manipulation. Related to ours are
works on image warping ([58], [59], [60], [61], [62]) and
shape manipulation (e.g., [63]). Unlike most methods, ours
is fast, invertible and handles constraints effortlessly.

Benefits of the Proposed Representation. To summarize,
existing spaces of diffeomorphisms offer only subsets of the
following list: 1) high expressiveness; 2) ease of implemen-
tation; 3) modest mathematical preliminaries (basic linear
algebra and ODE); 4) ease of handling optional constraints
(e.g., volume preservation); 5) convenient modeling choices
(coarse to fine, easy-to-use smoothness priors); 6) finite
dimensionality; 7) fast and highly-accurate computations.
These benefits, especially the last three, render more tracta-
ble the use of inference tools that are usually too expensive
in the context of rich diffeomorphisms.

3 HIGH-LEVEL SUMMARY

The section provides a summary of the proposed representa-
tion, laying the ground for the formal treatment (Section 4).
Let V be either Rn or a certain type, to be defined later, of a
proper subset of Rn (i.e., VzRn). A popular way to obtain a
diffeomorphism, T : V! V, is via the integration of velocity
fields; see Fig. 1a. The choice of velocity-field family affects
the dimensionality, structure, and expressiveness of the
space of the resulting diffeomorphisms, as well as the accu-
racy and computational complexity of the integration. Thus,
this choice crucially affects which probabilistic models can
be used and the tractability of the statistical inference.

CPA Velocity Fields.We base our representation on spaces
of V! Rn CPA velocity fields (Fig. 1). The term ‘piecewise’
is w.r.t. a certain tessellation (Section 4.1), denoted by P. Let

VV;P be such a space. While VV;P depends on V and P, we
will usually notationally suppress these dependencies, and
will just write V. One appeal of these spaces is that they are
finite-dimensional and linear (although their elements, i.e., the
velocity fields, are usually nonlinear). Let d ¼ dimðVÞ. The
spaces Rd and V are identified with each other (as we will
explain in Section 4.2, Eq. (11)), where every u 2 Rd is identi-
fied with exactly one element of V, denoted by vu, and vise
versa. Symbolically, we write

u$ vu where vu 2 V ; u 2 Rd : (1)

Likewise, u þ u0 $ vu þ vu
0
, vuþu

0
and au$ avu , vau where

u; u0 2 Rd and a 2 R. Note that d depends on P (and typi-
cally grows with n). A finer P implies a higher d and richer
velocity fields and vice versa (Figs. 4, 2, and 3).

Remark 1. There are many finite-dimensional linear spaces
of continuous velocity fields (e.g., [27] or other spaces
based on splines). We will show that CPA spaces, how-
ever, have additional useful properties in our context.

From CPA Velocity Fields to Trajectories. Modulo a detail
(to be explained in Section 4.4) related to the case VzRn,
any continuous V! Rn velocity field, whether Piecewise-
Affine (PA) or not, defines differentiable R! V trajectories.
If x 2 V then vu 2 V defines a trajectory, t 7! fuðx; tÞ, such
that fuðx; 0Þ ¼ x and fuðx; tÞ solves the integral equation

fuðx; tÞ ¼ xþ
Z t

0

vuðfuðx; tÞÞ dt where vu 2 V : (2)

The equivalent ODE (with an initial condition x) is

dfuðx; tÞ=dt ¼ vuðfuðx; tÞÞ : (3)

Remark 2. Eq. (2), whose unknown fuðx; �Þ is both inside
and outside the integral, should not be confused with the

piecewise-quadratic V! Rn map, y 7! R y0n�1 vuðxÞ dx. The
latter, a popular tool in computer-vision [24] and numeri-

cal analysis, is unrelated to our work. Particularly, both

x 7! fuðx; tÞ and t 7! fuðx; tÞ are not piecewise quadratic.

CPA-Based (CPAB) Transformations. Modulo that detail,
any continuous V! Rn velocity field, whether PA or not,
defines a transformation; i.e., a map whose input and output
are viewed as points, not vectors. Letting x vary and fixing
t, x 7! fuðx; tÞ is an V! V transformation. Without loss of
generality (Section 4), we may set t ¼ 1 and define

T uð�Þ , fuð�; 1Þ; u 2 Rd : (4)

Fig. 1. (a) Integration of sufficiently-nice velocity fields is widely used to
generate well-behaved nonlinear transformations. The choice of using
CPA velocity fields, among other benefits, reduces computational costs,
increases integration accuracy, and simplifies modeling and inference. A
CPAB transformation, x7!fuðx; tÞ, is one that is based (via integration) on a
CPA velocity field, vu. (b) A 1D example. (c-d) Two 2D examples, where in
(d) there are also additional constraints. Top row: a continuously-defined vu

in select locations. Middle: Visualizing the horizontal (vuh, left) and vertical
(vuv, right) components as heat maps highlights theCPAproperty; blue=��,
green=0, and red=� where �=maxx2VmaxðjvuhðxÞj; jvuvðxÞjÞ. Bottom:
Isrc � fuð�; 1Þ.

Fig. 2. Several type-I tessellations of a 2D region.

Fig. 3. Several type-II tessellations of a 2D region.
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Since we integrate CPA velocity fields, we coin our transfor-
mations CPA-Based.

Remark 3. CPAB transformations are not CPA (unless the
CPA field is affine): while T u is continuous, it is not PA.

The notation T u ¼ expðvuÞ indicates that T u is defined by
integrating vu $ u for t ¼ 1 (see Section 4.9). We let

M , expðVÞ , fexpðvuÞ : vu 2 Vg (5)

denote the space of CPAB transformations, where we nota-
tionally suppressed that both M and V depend on both V
and P (i.e., more formally we should write MV;P). Note that
M is nonlinear: i.e., both T u þ T u0 and aT u are usually not in
M. The linearity of V, together with exp : M ! V, however,
provides a convenient way to handle this nonlinearity.

CPAB Transformations are Well Behaved. E.g., they are diffeo-
morphisms; moreover, ðT uÞ�1 2M and the inversion is simple.
Appealingly, useful subsets of M (e.g., volume-preserving
CPAB transformations) are easily obtained via linear subspa-
ces ofV (wewill return to this point in Section 4).

Remark 4. x 7!fuðx; t ¼ 1Þ should not be confused with
(the non-diffeomorphism, parametric optical-flow-like
representation) x 7! xþ vuðxÞ, the latter being only a
Taylor approximation of the former. Thus, the way we
utilize flexible parametrized vector fields is different
from, e.g., [64], [65].

Integration of CPA Velocity Fields. Integral equations usu-
ally lack analytic solutions. Since CPA velocity fields are
Lipschitz continuous and almost-everywhere smooth,
generic integration solvers are quite effective for them.
However, we can do even better. One of our contributions is
showing that integration of such fields is given in either closed
form (n ¼ 1) or almost closed form (n > 1). Besides its obvious
pluses (accuracy, computing time), this analytic solution
makes it easier to interpret the resulting trajectories/trans-
formation and is key to the theorems in Section 4.

A Specialized Numerical Solver. There is a shortcoming to
that solution: as we will explain after Theorem 2, it requires
tedious bookkeeping (if n > 1) and invoking certain rou-
tines (easy if n ¼ 1 but hard if n > 1). This is especially a
hurdle with GPU. We thus propose a practical alternative, a
specialized solver for integrating CPA velocity fields, which is
faster andmore accurate than non-specialized solvers.

Convenient Modeling, Tractable Inference. Smoothness pri-
ors onM are easy to build and use. As is common with non-
linear spaces of nonlinear transformations, the nonlinearity
of ðu; xÞ 7! T uðxÞ prohibits closed forms for the posterior or
Maximum Likelihood (ML) estimation. However, since our
transformations are evaluated fast, we rapidly evaluate
u 7!pðdatajT uÞ. This, together with the relatively-modest
dimensionality and ease of using priors, facilitates the use
of inference methods that require multiple likelihood evalu-
ations (e.g., MCMC). Lastly, spaces of CPA velocity fields
support coarse-to-fine approaches.

4 THE MATHEMATICAL REPRESENTATION

Let V be a Cartesian product of n compact intervals; i.e., V
is a closed n-orthotope, also called a (closed) hyperrectangle.
The lemmas/theorems below are proved in our supple-
mental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2016.2646685, henceforth referred to
as Sup. Mat., available online

4.1 Tessellations

A (finite) tessellation, denoted by P ¼ fUcgNPc¼1 (where NP is
a positive integer), is a set of NP closed subsets of V, also
called cells, such that their union is V and the intersection of
any pair of adjacent cells is their shared border (see Figs. 2
and 3). Henceforth we will always assume the cells are con-
vex n-polytopes (namely, a subset of Rn whose sides are flat).
We define 3 cell types. Type-I cells have nþ 1 vertices; i.e.,
intervals (if n ¼ 1), triangles (n ¼ 2), tetrahedra (n ¼ 3), etc.

Fig. 4. Samples from the prior (Section 4). (a-h) The top 3 rows echo those in Fig. 1c and Fig. 1d. The 4th row shows a deformed grid overlaid on the image.
The 5th row shows select trajectories. Note that the trajectories and transformations are differentiable (hence continuous) but not piecewise affine. The tes-
sellation in (e-h) is a refinement of the one in (a-d). (a) & (e): T u 2M. (b) & (f): T u 2Mvp. (c) & (g): T u 2M@. (d) & (h): T u 2M@;vp. See Section 4 for details.
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Type-II cells are n-orthotopes (i.e., hyperrectangles). Note
intervals fit both these types. Type-III includes all other con-
vex n-polytopes. We say that P is of type I (respectively, II,
III) if all its cells are of type I (II, III). A type-II tessellation is
called regular if its cells are evenly spaced along each of the
n dimensions. As we will show, type-I tessellations are spe-
cial, having benefits possessed by neither type II nor III.
Mathematically, there is no difference (for our purposes)
between types II and III; all theoretical results below that
apply to type-II cells also apply to type-III cells. Type-II
cells, however, lead to faster computations and simpler
implementations than both other types, especially when
compared with type III. Thus, unless stated otherwise, we
restrict our attention to types I and II. Let

Pvert ¼ f� : � is a vertex of some Uc 2 Pg (6)

and let Nv denote its cardinality; e.g., see Fig. 2 and Table 1.
Henceforth we will view Pvert as an ordered Nv-tuple; the
ordering is arbitrary, but assumed fixed. Let NP0 > NP . An
NP0-cell tessellation, P0 ¼ fUc0 gNP

0
c0¼1, is a refinement of P, a

relation denoted P � P0, if each Uc0 2 P0 is a (possibly-
improper) subset of some Uc 2 P.

Algorithm 1. Integrating vu 2 V. See Text for Details:

Input: P ¼ fCcgNPc¼1; ðA1;u; . . . ; ANP ;uÞ; U ¼ a sequence of Npts

points in V; t > 0;Nsteps; nsteps 2 Zþ

Output: fuðU; tÞ , ffuðx; tÞgx2U � V
1: Dt  t=Nsteps ; dt  Dt=nsteps

2: for c 2 f1; ::; NPg do in parallel
3: TAc;u ;Dt  expðDt

gAc;uÞ
4: for x 2 U do in parallel
5: x0  x
6: for i 2 f1; ::; Nstepsg do
7: extemp ¼ ½xT

temp 1 	T  TAgðxi�1Þ;u ;Dt
exi�1

8: if gðxi�1Þ == gðxtempÞ then
9: xi  xtemp // analytic update

10: else
// inter-cell bdry crossed

11: xi  genericODEsolver( ini. con.=xi�1, step
size=dt, nsteps, vð�Þ : x 7!AgðxÞ;uex)

12: fuðx; tÞ  xi

4.2 CPA Velocity Fields

Fix P, let x 2 V, and define the membership function
g : V! f1; . . . ; NPg ; g : x 7!minfc : x 2 Ucg : i.e, if x is not
on an inter-cell border, then gðxÞ ¼ c,x 2 Uc, while a bor-
der point is (arbitrarily) assigned to the cell of the lower
index.

Definition 1. A map, f : V! Rn, is called PA (w.r.t. P) if
ff jUc

gNP
c¼1 are affine; i.e., fðxÞ ¼ AgðxÞex where

ex , x
1

� �
2 Rnþ1 ; Ac 2 Rn�ðnþ1Þ 8c 2 f1; . . . ; NPg : (7)

Definition 2. f is called CPA if it is continuous and PA.

Fact 1. If f is CPA w:r:t: P it is CPA w.r.t. any P0 
 P.
A vector field v (on V) is an V! Rn map viewed as the

mapping of points to vectors; i.e., if x 2 V then vðxÞ is
viewed as an n-dimensional “arrow”. The terms velocity field
and vector fieldwill be used interchangeably.

Definition 3. A vector-field space is a linear space whose ele-
ments are vector fields.

Let V0V;P and VV;P be the spaces of PA and CPA velocity
fields on V w.r.t. P. Note VV;P � V0V;P . We will often write
V0 and V, suppressing the dependencies on V and P.
Lemma 1. V0 and V are linear spaces, D , dimðV0Þ ¼
ðn2 þ nÞ �NP , d , dimðVÞ � nNv with equality if and only if
P is of type I, and d � D with equality if and only if NP ¼ 1.

The values ofD and d for the tessellations in Fig. 2 appear
in Table 1. A generic element of V0 is denoted by vA where
A , ðA1; . . . ; ANP Þ consists of its associated matrices
(see Eq. (7)). IfA 2 Rn�ðnþ1Þ, then vecðAÞ 2 Rn2þn is its row-by-
row flattening to a column vector. Likewise, vecðAÞ
, ½ ðvecðA1ÞÞT . . . ðvecðANP ÞÞT 	T 2 RD. Both vecð�Þ and vecð�Þ
are linear bijections. An inner product on V0 is defined by
vA1

; vA2

� � ¼ vecðA1ÞTvecðA2Þ.
We now explain how to build an orthonormal basis for V,

how its elements are parametrized by u 2 Rd, and how PA
velocity fields are projected onto V.
Lemma 2. An element of V is any vA 2 V0 such that vecðAÞ sat-

isfies a linear system of constraints, denoted by L vecðAÞ ¼ 0.

Proof. For concreteness, we prove it for n ¼ 2 and type-I
tessellations, the other cases being similar. Let vA 2 V0.
While vA is continuous on every cell, it is (usually) discon-
tinuous on cell boundaries. Consider two adjacent cells,
Ui and Uj. Let xa and xb be their 2 shared vertices and let
Ai and Aj denote the corresponding 2� 3matrices. Conti-
nuity of vA at xa implies 2 (more generally, n) linear con-
straints on Ai and Aj. Similarly, continuity at xb implies
another constraint pair. Thus, the continuity at both xa

and xb implies the following 4 linear constraints:

~xTa 01�3 �~xT
a 01�3

01�3 ~xTa 01�3 �~xT
a

~xTb 01�3 �~xT
b 01�3

01�3 ~xTb 01�3 �~xT
b

2664
3775

4�12

vecðAiÞ
vecðAjÞ
� �

12�1

¼ 04�1 : (8)

Continuity at xa and xb implies continuity throughout
their join, i.e., Aiexa ¼ Ajexa and Aiexb ¼ Ajexb imply
(8� 2 ½0; 1	Þ

Aið�exa þ ð1� �ÞexbÞ ¼ Ajð�exa þ ð1� �ÞexbÞ : (9)

Any vA whose Ai and Aj satisfy Eq. (9) is thus continuous
on Ui [ Uj. Similar constraints for other pairs of adjacent

TABLE 1
Values of NP , Nv,D ¼ dimðV0V;PÞ, and d ¼ dimðVV;PÞ

for the P’s shown in Fig. 2. See also Section 4.

P NP Nv D ¼ 6NP d ¼ 2Nv

P1 4 5 24 10
P2 16 13 96 26
P3 64 41 384 82
P4 256 145 1536 290
P5 1024 1025 6144 1090
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cells can be stacked together in an analogous equation:

L
4Ne�6NP

vecðAÞ
6NP�1

¼ 04Ne�1 (10)

where Ne is the number of shared line segments in P and
L is the constraint matrix. Any vA whose A satisfies
Eq. (10) is thus everywhere continuous. We conclude that
the null space ofL, denoted by nullðLÞ, coincides with V.tu
Let the columns of B ¼ B1 . . . Bd½ 	 2 RD�d denote the

particular orthonormal basis of nullðLÞ which is obtained
via SVD of L. Let u ¼ u1 . . . ud½ 	T2 Rd. If vecðAÞ ¼ Bu
then vA : V! Rn is CPA. Particularly, for every

j 2 f1; . . . ; dg, vvec�1ðBjÞ : V! Rn is CPA and fvvec�1ðBjÞg
d

j¼1
is a basis for V. For a visualization of this basis, see
Sup. Mat., available online Regardless of whether vA 2 V0 is
CPA or not, vvec�1ðBBT vecðAÞÞ, its projection on V, is CPA.
When earlier we denoted a generic element of V by vu we
meant that u stands for the coefficients w.r.t. fvvec�1ðBjÞg

d

j¼1:

vuðxÞ ¼ AgðxÞ;uex ¼Xd

j¼1 ujvvec�1ðBjÞex (11)

where Au , ðA1;u; . . . ; ANP ;uÞ , vec�1ðPd
j¼1 ujBjÞ. This basis is

orthonormal w.r.t. the inner product

�; �h iB: V � V ! R ; ðvu1 ; vu2Þ7!uT1 u2 : (12)

We refer to it as a global basis since each vvec�1ðBjÞ impacts vu

on the entirety of V. We will soon describe another ortho-
normal basis which is more local in nature.

Let vuvert , fvuð�Þg�2Pvert denote the (ordered) Nv-tuple of

n-dimensional values vu takes at the Nv points in Pvert.

Lemma 3. Let Lu 7!vuvert
denote the map that sends u to vuvert.

Lu 7!vuvert
is a linear injection and its associated d� ðnNvÞ

matrix is given in closed form. If P is of type I, the map is
invertible. In which case, we denote its inverse by Lvuvert 7!u.

Let @V be the border of V and n : @V! Sn�1 be the unit
normal to it. We now discuss linear subspaces of V.
Lemma 4. Optional constraints such as vuðxÞ; nðxÞ� � ¼ 0 on

@V and/or ftrðAcÞ ¼ 0gNPc¼1, are linear and can thus extend L
(from Lemma 2) to have more rows. The null space of the
extended L is a linear subspace (whose dimension is denoted by
d0 < d) of the null space of the original L. Reusing the symbol
B ¼ B1 . . .Bd0½ 	 2 RD�d0 to denote the particular orthonormal
basis of this new null space which is obtained via SVD of the
extended L, we get a d0-dimensional basis of CPA velocity
fields, fvvec�1ðBjÞg

d0
j¼1, whose elements satisfy the new con-

straint(s).

The corresponding linear subspaces of V are denoted V@
and Vtr. We also define their intersection, V@;tr , V@ \ Vtr.
We reuse the symbol vu to denote an element of any of these
subsets, with the understanding that then u 2 Rd0 for some
d0 < d. We now define, similarly to Eq. (5), subsets ofM:

M@ , fexpðvuÞ : vu 2 V@g �M ; (13)

Mvp , fexpðvuÞ : vu 2 Vtrg �M ; (14)

M@;vp , fexpðvuÞ : vu 2 V@;trg �M : (15)

If P is of type I (so d ¼ nNv) then, by viewing vuvert as a
point in Rd, the standard basis for Rd defines another basis
for V (there is a linear bijection between the ðnþ 1Þ-tuple of
the n-dimensional velocities at the vertices of a type-I Uc

and the n� ðnþ 1Þ matrix Ac). Naturally, we refer to this
vertex-based basis as a localized basis of V. It is orthonormal
w.r.t. the following inner product, obtained by summing
the dot products between pairs of velocities at the vertices:

�; �h ivert: ðvu1 ; vu2Þ7!
X

�:�2Pvert
vu1ð�Þ � vu2ð�Þ : (16)

For V@, we can build a similar (d0-dimensional) localized
basis; however, for Vtr (and V@;tr) this is not possible. We
conclude Section 4.2 with the following fact.

Algorithm 2. A Greedy Algorithm for (Landmark-based)
Inference over a Transformation Obtained by Integrating
a Non-Stationary Field where the Field is Piecewise-Con-
stant w.r.t. Time. See Text for Details:

Input:Npts pairs of V-valued points: fðxi; yiÞgNpts
i¼1 ;

"; kmax

1: for i 2 f1; . . . ; Nptsg do in parallel
2: x

½0	
i  xi

3: for k 2 f1; . . . ; kmaxg do
4: obsk  fðxk�1

i ; yiÞgNpts

i¼1 // observations

5: uk  argmaxupðukÞLvðvu; obskÞwhere Lvðvuk ; obskÞ /
e
� 1
s2

PNpts

i¼1 kx
k�1
i
þvuðxk�1

i
Þ�yik2

// closed-form optimization; see text

6: ak  argmaxapðaukÞLT ðT auk ; obskÞ where LT ðT auk ; obskÞ
/ e

� 1
s2

PNpts

i¼1 kT
auk ðxk�1

i
Þ�yik2

/* the 1D optimization can be done by, e.g., a

line search;fT aukðxk�1
i Þg

Npts

i¼1 is computed by

Algorithm 1

7: if kukakk < " then break
Output bT , ðT aku

k � � � � � T a1u
½1	 Þ

// bT is a concatenation of points inM

Fact 2. �; �h iB and Bvary with translations of V while �; �h ivert
and the localized basis are invariant to them.

4.3 Smoothness Priors on CPA Velocity Fields

Adopting a Bayesian approach, we now present two com-
plementary methods to construct priors on CPA fields.

I: Project a prior from V0 onto V. On V0, it is easy to build
a smoothness prior that also penalizes large values; e.g., we
use a zero-mean Gaussian with a D�D covariance, SPA,
whose correlations decay with inter-cell distances, and
write vecðAÞ � N ð0D�1;SPAÞ. Next, we use the V0 ! V pro-
jection, A7!u ¼ BTvecðAÞ, to induce a prior on V:

pðuÞ ¼ N ð0d�1;SCPAÞ (17)

where SCPA ¼ BTSPAB. See Fig. 4 for samples from pðuÞ. By
Fact 2, pðuÞ depends on the origin of V.

II: Let a prior on vuvert induce a prior on vu 2 V. If the
prior on vuvert is invariant to the origin of V then so is the
resulting pðu ¼ Lvuvert 7!uv

u
vertÞ; e.g., such is the case for either a

zero-mean Gaussian whose covariance is fully determined
by inter-vertex distances, or for an MRF of the form
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Q
i;j:�i �nbrs�

cðvuð�iÞ; vuð�jÞÞ where c is some pairwise poten-

tial. Method II does not require the computation of B.
Unlike method I, however, it is applicable only if P is of
type Iand volume preservation is not imposed. Another
advantage of method I over method II (or, for that matters,
over most regularizers/priors people often place on velocity
fields in the context of diffeomorphisms) is that by defining
the prior in terms of the Ac’s (as opposed to the vuvert values
they generate), we avoid introducing fictitious variance. For
example, if vu is purely affine then the Ac’s are all the same.
Thus, w.r.t. the prior defined using the global basis (i.e.,
method I), vu is considered very smooth (in the machine-
learning sense, not calculus one). However, w.r.t. the local-
ized basis (i.e., method II), vu is less smooth since the values
of vuvert vary with the vertex location.

4.4 CPA-Based Transformations

Recall from Section 3 that, via Eq. (2), vu 2 V implies T u 2M,
a relation denoted T u ¼ expðvu) (see Eq. (5)). The detail
alluded to in Section 3 is that for Eq. (2) to be well defined,
fuðx; tÞmust always be in V, the domain of vu. This trivially
holds if V ¼ Rn. It also holds if VzRn and vu 2 V@. If VzRn

and vu 2 V n V@, it might not. Also, some of the results below
require both the continuity and PA properties of vu. This
brings us to the following lemma.

Lemma 5. If VzRn, we can extend P and constrain the velocity
fields such that we will obtain a linear subspace of V whose ele-
ments extend to CPA fields on the entirety of Rn. In which
case, we also redefine V to be equal to (the whole of) Rn.

Henceforth, if VzRn and we use V (or Vtr) and not V@ (or
V@;tr), we will assume the procedure from Lemma 5 has
been applied. Thus, Eq. (2) is well defined, T u is always an
V! V map and vu is indeed CPA. Either way, fuðx; 0Þ ¼ x
for every x 2 Vwhile fx : vuðxÞ ¼ 0g are fixed points of T u.

Fact 3. If A 2 Rn�ðnþ1Þ, let eA ¼ A
01�ðnþ1Þ

� �
2 Rðnþ1Þ�ðnþ1Þ.

The last row of expmð eAÞ (where expm is the matrix expo-

nential) is 01�n 1½ 	. Also, det expmð eAÞ > 0.

If n ¼ 1 (so eA is 2-by-2) or if A has a special structure
(e.g., if A1:n;1:nþ1 is either diagonalizable, idempotent, or a 3-
by-3 skew-symmetric matrix), then expmð eAÞ has a closed
form. Otherwise, since n is usually small and due to the
structure of eA, a generic expm routine typically approxi-
mates it well. Let t 2 R and let ct

u;c : V! Rn be the solution
to an ODE with an Rn ! Rn affine velocity field, � 7! Ac;u

e�,
and an initial condition, x:

ct
u;cðxÞ
1

� �
, TAc;u ;tex ; TAc;u ;t , expmðtgAc;uÞ : (18)

We note that the solution to Eq. (2) is the composition of a finite
number, denoted bym, of such solutions:

fuðx; tÞ ¼ ðctm
u;cm
� . . . � ct2

u;c2
� ct1

u;c1
ÞðxÞ : (19)

As mentioned earlier, T u is defined via T uðxÞ , fuðx; 1Þ. The
compact form of Eq. (19) hides a difficulty: the number of
the trajectory segments, m, their durations, ftigmi¼1, and the
indices of the cells involved, fcigmi¼1 (where a cell may

appear more than once), all depend on x. Except the index of
the first cell, c1 ¼ gðxÞ, they also depend on u and t. Thus, a
more precise and cumbersome notation would be:

c
tmx;u;t ðx;u;tÞ
u;cmx;u;t ðx;u;tÞ � . . . � c

t2ðx;u;tÞ
u;c2ðx;u;tÞ � c

t1ðx;u;tÞ
u;c1ðxÞ

� �
ðxÞ :

Remark 5. While invertible affine matrices form a group,
fuð�; tÞ : V! V is not affine, exactly because of the
x-dependencies mentioned above. In fact, since the above
quantities vary with x even within a cell, the continuous
x7!fuðx; tÞ is not PA, hence not CPA. the term CPA-based.

Amap,T : V! V, is a called a (C1) diffeomorphism (onV) if
T�1 exists and both T and T�1 are differentiable. Let G be the
space of (orientation-preserving) diffeomorphisms on V. Let
H � G be its restriction to those diffeomorphisms that can be
obtained, via integration, from uniformly-continuous station-
ary velocity fields; i.e., T ð�Þ ¼ fð�; 1Þ where fðx; tÞ ¼ xþR t
0 vðfðx; tÞÞ dt for a uniformly-continuous v : V! Rn. Both
G andH are1�dimensional nonlinear spaces.

Theorem 1. (i) If a 2 R then vu ¼ vau=a and fuð�; tÞ ¼
fauð�; t=aÞ. (ii) ðT uÞ�1 exists, is in M, and equals to T�u. (iii)
M � G. (iv) If T u 2Mvp then T u is volume-preserving (hence
the superscripted vp). (v) M is a d-dimensional nonlinear
space; similar statements hold for M@, Mvp and M@;vp,
with their respective values of d0. (vi) If P1 � P2 � . . . is a
tessellation sequence such that eventually all the cells become

arbitrarily small, thenMV;Pk
k!1����!H.

Remark 6.3. Since M is nonlinear, it is easier to work in the
linear V and then, via exp, move from V to M. This (tan-
gent-space-based) approach is popular in the context of
nonlinear differentiable manifolds and, particularly, is
used extensively in various spaces of diffeomorphisms
(e.g., [27]).

Corollary 1. If n ¼ 1, T u is increasing. Let J � R be an inter-
val. If F0 : J ! V is either non-decreasing, increasing, right-
continuous, continuous, differentiable, a diffeomorphism, or a
step function (7 non-mutually-exclusive cases), then so is
F u , T u � F0 : J ! V. If, in addition, V ¼ ½0; 1	, vu 2 V@ and
F0 is a CDF, then F u is a CDF. The (trivial) proof is omitted.

This gives an unconstrained parametrization of large
classes of increasing functions and CDFs/histograms via a
finite-dimensional linear space (Figs. 5 and 6). In the CDF
case, F0 need have neither a density nor finite moments.

4.5 Integration Details

Equation (19) justifies and simplifies the proof of Theorem 1,
provides an insight into the structure of t7!fuðx; tÞ, and, for

Fig. 5. Monotonic regression on synthetic data (top) by inferring CPA
fields (bottom), defined over 100 equal-length cells. We used a squared
loss in the 4 leftmost columns and a robust one (Geman-McClure) in the
2 others. Col. 1, 3, and 5 show ML solutions. Col. 2, 4 and 6 show MAP
solutions with a smoothness prior. In all cases, the function is increasing,
as obtained effortlessly from the representation.
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n ¼ 1, yields a closed-form solution for x 7!T uðxÞ. If n > 1, it
suggests a practical, essentially-exact solution.

Theorem 2. If n ¼ 1 then mx;u;t, ftiðx; u; tÞgmx;u;t
i¼1 , and

fciðx; u; tÞgmx;u;t

i¼2 have closed forms. Thus, so does T uðxÞ.
Proof. The notation below drops the u-dependencies. With-

out loss of generality, let t > 0. For c 2 fciðx; tÞgmx;t
i¼2 , let

Ac ¼ ½ac; bc	 and let Uc ¼ ½xmin
c ; xmax

c 	. It can be shown that

ct
cðxÞ ¼

etacxþ bcðetac�1Þ
ac

if ac 6¼ 0

xþ tbc if ac ¼ 0

8<: : (20)

Note c1 ¼ gðxÞ and suppose vðxÞ > 0. Let t1ðxÞ be the
hitting time of the right boundary of Uc1 :

t1 , minft : ct
c1
ðxÞ ¼ xmax

c1
g (21)

where, by convention, the minimum of an empty set is
1. If vðxmax

c1
Þ � 0 then t1 ¼ 1. Otherwise,

t1 ¼
1
ac1

log
xc1þ

bc1
ac1

xþbc1
ac1

 !
if ac1 6¼ 0

xc1�x
bc1

if ac1 ¼ 0

8>><>>: : (22)

If t1 > t, we are done: fuðx; tÞ ¼ ct
c1
ðxÞ. Otherwise, we

entered the next interval to the right, Uc1þ1 (so
c2 ¼ c1 þ 1), and the process (i.e., solving for t2, but this
time with xmax

c1
as the new starting point instead of x,

with t� t1 instead of t, and c2 instead of c1) is redone iter-
atively till convergence (the number of such steps,mx;t, is
finite since t is finite). A loose upper bound on mx;t is
NP � c1 þ 1. The case where vðxÞ < 0 is handled simi-
larly. Taken together,

fðx; tÞ ¼ ðctm
cm
� . . . � ct2

c2
� ct1

c1
ÞðxÞ (23)

where for 2 � i � mx;t, ci ¼ ci�1 þ signðvðxÞÞ, while mx;t

and ftigmx;t
i¼1 are found as describe above. tu

If n > 1 then T uðxÞ is given essentially in closed from in
the sense that Eq. (19) still holds, but there is the mild issue
that a generic expm is needed (see also the matrix decompo-
sition suggested in [27]) and, much more importantly, to
find the quantities from Theorem 2 one needs, for every x,
to sequentially solve, an x-dependent number of problems
of the form argmint> 0gð½expmðt eAÞ	1:n;1:nþ1e�Þ 6¼ gð�Þ where
the pair ð�; AÞ 2 V�Rn�ðnþ1Þ is (in general) different in
each problem. Doing this for n ¼ 1 is easy, fast, and accu-
rate. But for n  2, partly since fuðx; �Þmay reenter a cell

(prohibiting, e.g., a binary-search method), this requires
tedious bookkeeping, multiple expm calls, and multiple
invocations of a numerical solver. This yields slow approxi-
mated solutions that are also hard to implement in GPU.

Inference over diffeomorphisms (CPAB included) often
requires evaluating T u for multiple values of u (e.g., 10,000),
and a high Npts, where Npts is number of points to be trans-
formed (e.g., the number of image pixels). Preferring a more
practical alternative, we propose a specialized solver for
integrating CPA fields. This solver, summarized in Algo-
rithm 1, alternates between the analytic solution (with nei-
ther bookkeeping nor need to solve explicitly for mx;u;1,
fciðx; u; 1Þgmx;u

i¼2 and ftiðx; u; 1Þgmx;u
i¼1 ) and a generic solver.

Thus, the proposed specialized solver is both faster and
more accurate than a generic solver since most of the trajec-
tory is solved exactly, while only in small portions of the tra-
jectory does our solver resort to the generic one.
Importantly, in Algorithm 1, the required number of expm
calls is constant, NP , and grows with neither Npts nor t. In
fact, since Algorithm 1 is highly accurate, fast, and simple,
and since usually NP � Npts, we prefer to use it even when
n ¼ 1. Lower/upper bounds on the algorithm’s complexity
are OðC1Þ þOðC2 �Nsteps) and OðC1Þ þOðC2 �Nsteps�
nsteps) where C2 ¼ Npts=#cores and C1 ¼ expm0s cost�
NP=#cores. Usually, the OðC1Þ term is negligible. NP and u

affect inter-cell moves hence which bound is tighter; usually
it is the lower one.

Remark 7. Consecutive analytic updates (for the same
Dt
fAc) amount to taking powers of expmðDt

fAcÞ. While
ðexpmðDt

fAcÞÞk ¼ expmðkDt
fAcÞ, on a computer numerical

errors accrue and the equality may not hold [66], [67].
This issue is most noticeable when the matrices are large
(and dense) and when k is large. Here, however, this issue
does not arise in practice since both the matrices (which
also have zeros in the last row) and k are small.

In Algorithm 1, g is called often (though far less often
than when using a generic solver throughout). In our imple-
mentation, we decided against a lookup-table approach
since, once the trajectories start evolving, the argument to g

takes values in the continuum. Besides their simplicity, a
key advantage of type-II cells, most notably when compared
with type-III cells, is that evaluating g is easy and fast, espe-
cially when P is also regular (since we can then use round-
ing and modulo operations). Thus, e.g., we construct our
type-I tessellations as a refinement of regular type-II tessel-
lation. If n ¼ 2, we split each rectangle into 4 triangles while
if n ¼ 3 we split each box into 5 tetrahedra. When evaluat-
ing g, we first find the “parent” hyperrectangle and then
pick the correct type-II cell among those within that hyper-
rectangle. For n > 3, we avoided implementing type-I cells;
rather, in such cases we use only type-II tessellations.

4.6 Adaptive Tessellations

It is possible to use CPAB transformations with a data-
adaptive P; e.g., placing more cells in certain regions. The
potential expressiveness gain, however, needs to be com-
pared against: 1) the slowdown in evaluating g and thus in
evaluating x 7! T uðxÞ; 2) the need to recompute B (unless
one is content with a localized basis and priors obtained via
method II). In any case, while for high values of n (say,

Fig. 6. CDF/histogram representation. 1st row: NP ¼ 10. 2nd row:
NP ¼ 100. F0, not shown, is a CDF of a uniform distribution on
J ¼ ½�3; 3	. (a) vu 2 V@ð½0; 1	;PÞ. (b) F ¼ T u � F0. (c)

d
dx F . Note it is not

piecewise constant.H0, not shown, is a cumsum of a 20-bin uniform his-
togram. (e)H ¼ T u �H0, a cumsum of a new histogram h (f) h.
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n > 3) this may be a reasonable approach to mitigate the
curse of dimensionality, we prefer, to keep computing time
low and implementation simple, to use fixed tessellations
and handle scarce-data regions via the smoothness prior.

4.7 Computing Derivatives of T uðxÞ w.r.t. u

One of our main motivations was facilitating tractable
MCMC inference over latent diffeomorphisms. While we
empirically found MCMC methods to be easier to tune and
to produce better results than gradient-based optimization,
for completeness we provide the details for computing
dT uðxÞ=du. While one can also use finite differences, the der-
ivation below leads to better accuracy and some computa-
tional savings (e.g., no additional expm calls are needed).
Let uj denote the jth component of u. Define
yðx; tÞ , d

duj
fuðx; tÞ. It can be shown that yðx; tÞ satisfies

yðx; tÞ|fflffl{zfflffl}
n�1

¼
Z t

0

Bc;j|{z}
n�ðnþ1Þ

gfuðx; tÞ|fflfflfflffl{zfflfflfflffl}
ðnþ1Þ�1

þ Ac;u|{z}
n�ðnþ1Þ

gyðx; tÞ|fflfflffl{zfflfflffl}
ðnþ1Þ�1

dt (24)

where c ¼ gðfuðx; tÞÞ and Bc;j is the cth matrix in
vec�1ðBjÞ ¼ ðB1;j; . . . ; BNP ;jÞ. Setting t ¼ 1, the solution of

these d equations (for j 2 f1; . . . ; dg) yields dT uðxÞ
du . Any

generic numerical solver for integral equations can be used
to solve these equations, where the required values of

fuðx; tÞ can be computed using Algorithm 1. We omit the

details, but our implementation includes this derivative.

4.8 Time-Dependent Fields and Their Inference

This paper focuses on stationary CPA fields but, more gen-
erally, u may vary with t. In which case, however, Algo-
rithm 1 and Eq. (19) no longer apply (but note that most of
the other advantages of the proposed approach will still
apply; e.g., relatively-low dimensionality, compact repre-
sentation, etc.). While we are unaware of a way to exploit
the structure of general non-stationary CPA fields for better
integration, we can still apply any generic integration tech-
nique to them. That said, one useful case of non-stationary
fields is special: if uðtÞ is piecewise constant w.r.t. t, then we
(trivially) apply Algorithm 1 consecutively, once within
each time interval. Here is a usage example. Given Npts

pairs of V-valued points, fðxi; yiÞgNpts
i¼1 , consider an optical-

flow-like representation, x7!xþ vuðxÞ, together with the fol-
lowing Gaussian likelihood model,

yi �I:I:D: Nðxi þ vuðxiÞ; s2In�nÞ (25)

(s > 0), and a Gaussian prior for u as in, e.g., Eq. (17). The
following V�Rd ! Rn map,

ðx; uÞ 7! xþ vuðxÞ ¼Eqn: ð11Þ
xþ

Xd

j¼1 ujvvec�1ðBjÞex ; (26)

is affine w.r.t. u ¼ ½u1; . . . ; ud	T . It follows that there is a
closed-form MAP solution for u (obtained by applying the
standard result of computing the conditional mean of one
random variable given the other, when both are jointly
Gaussian). Let buMAP denote this solution. Importantly, the
V! Rn map,

x 7! xþ v
buMAPðxÞ ; (27)

is (usually) not a diffeomorphism; however, for any real sca-
lar a, the V! Vmap,

x 7!T abuMAPðxÞ ¼ expðvabuMAPÞðxÞ ; (28)

is a (CPAB) diffeomorphism. This suggests a practical
greedy approach for a quick-and-dirty inference over (a
transformation obtained by the integral of) a CPA velocity
field which is piecewise-constant w.r.t. time. This method,
summarized in Algorithm 2, may be adjusted to the case of
no-correspondences image registration setting.

4.9 Some Differential-Geometric Aspects

Readers less interested in differential geometry may safely
skip this section. As many readers must have recognized, V
is the tangent space at the identity to M; i.e., V ¼ TIM. Like
the transformation space from [27], M is not a Lie group
(lack of closure under composition); equivalently, V is not a
Lie algebra (lack of Lie-bracket closure). Note that V is a
finite-dimensional linear subspace of the (1-dimensional)
Lie algebra, TIG (the Lie group G was defined before Theo-
rem 1), and that exp : V !M is the restriction of the Lie-
group exponential map, exp : TIG! G, to V � TIG. This
approach, of restricting a Lie group exponential map to a
linear subspace (of the Lie algebra) lacking a Lie-bracket clo-
sure, was found useful, e.g., in the context of Symmetric
Positive-Definite (SPD) matrices (SPD is not closed under
the standard binary operation of matrix Lie groups; like-
wise, TISPD is not closed under the Lie Bracket.) [39]. The
inner product (on V ¼ TIM) in Eq. (16) is close in spirit to
the oft-used inner product (on TIGÞ:

v1; v2h i ¼
Z
V

v1ð�Þ � v2ð�Þ d� v1; v2 2 TIG : (29)

As we pointed out, one of the advantages of Eq. (12) over
Eq. (16), is related to eliminating fictitious noise. We are
unaware of works (including those using Sobelev spaces)
suggesting an inner product on TIGwith a similar property.
While here we adopt an approach exploiting (the restriction
of) the Lie group exponential of G �M, future work should
explore Riemannian geometries of M (with their Rieman-
nian exponential maps) and their relations to those of G.
While one can define M-specific Riemannian metrics, note
thatM may also inherit a Riemannian metric from G.

5 EXPERIMENTS

Sections 5.1, 5.2 and 5.3 focus on synthesis, Section 5.4 per-
tains to analysis by synthesis, Section 5.5 addresses large
numbers of landmarks, Section 5.6 is related to Algorithm 2,
and Section 5.7 illustrates representation of CDFs.

5.1 Integration Accuracy and Timings

The two parameters in Algorithm 1, Nsteps and nsteps, imply
two step sizes, one large, Dt ¼ t=Nsteps, used for exact
updates, and one small, dt ¼ Dt=nsteps, used for the generic-
solver subroutine. The reason we can make large (hence
few) steps is that we use an exact analytic update when pos-
sible. In our experiments, the generic solver was the modi-
fied Euler Method, which requires (i) the ability to evaluate
a velocity field at a given location and (ii) specifying the
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step size and number of steps. By construction, Algorithm 1
is more accurate (due to the analytic updates) and faster
(due to the smaller number of steps) than any generic solver
used as its subroutine. We also verified this empirically,
comparing the algorithm against simply running the
generic solver step size dt and Nsteps � nsteps steps. For accu-
racy, in 1D, we compared the integration error (that we can
compute this error at all, is by the virtue of our closed-form
solution; see Theorem 2) averaged over random CPA veloc-
ity fields; i.e., for each value of NP , we drew 100 CPA fields
form the prior, fvuig100i¼1, sampled (uniformly) 1000 points in
V, fxjg1000j¼1 , and then computed the error:

� ¼ 1

100

X100

i¼1
1

1000

X1000

i¼j jT
u
exactðxjÞ � T u

solverðxjÞj : (30)

Table 2 shows the relative improvements,
�generic��algorithm

�generic
, for

different values of NP (the number of intervals). For higher
dimensions, where closed form is unavailable, such error
analysis is impossible. The results of our timing experi-
ments appear in the . Sup. Mat., available online. Note that
our implementation can be further optimized. e.g., use a C+
+ wrapper instead of a Python one. Moreover, most of the

computing time is spent on evaluating g (g is continuously-
defined, so discretely-defined lookup tables will not do);
with some tricks, the number of such calls can be drastically
reduced.

5.2 Real-Time Diffeomorphic Image Editing

To highlight the speed at which CPAB transformations are
computed, our code includes a GUI where a user chooses
velocities at some/all vertices of P4. Using Lemma 3, the
Gaussian priors on vu, and the fast integration, we compute,
in real time, the conditional warp, expðEðvujuser0s choiceÞÞ.
For a demo, please see the video in the Sup. Mat., available
online

5.3 Expressiveness

While simple, CPAB transformations capture a wide range
of diffeomorphisms (obviously, like any other work on dif-
feomorphisms, we make no claims about capturing non-dif-
feomorphisms such as occlusions). One way to see this is by
inspecting samples from pðuÞ (Fig. 4). M also contains what
is sometimes called large deformations (an overloaded
term: used in some texts for elements of G outside its iden-
tity component). One way to show a nominal space captures
these is a rectangle-to-horseshoe morphing, achieved easily
here (see Sup. Mat., available online). Expressiveness is also
exemplified by the experiments below (Figs. 7 and 8) and
the demo (Section 5.2). As another example, Fig. 9 shows a
volume-preserving transformation sampled from the prior
applied to a 3D shape. Here, T u 2M@;vp, where P consists of
NP ¼ 320 cells (a layout of 4� 4� 4 cubes, each divided

TABLE 2
Accuracy: Improvement, in %, of Algorithm 1 (Nsteps ¼ 10,
nsteps ¼ 10) Over the Generic Solver (100 Steps). V ¼ ½0; 1	

Was Tessellated into NP Equal-Length Intervals

NP 5 25 45 65 85 105

improvement [%] 2.99 12.56 11.26 9.98 3.29 3.73

Fig. 7. Landmark-based warping. One example in each row. (a) Isrc (and src landmarks). (b) Isrc (and src/dst landmarks). (c) The inferred vu. (d) A
new image is synthesized by warping Isrc using T u (and dst & T uðsrcÞ landmarks). (d) Animation.

Fig. 8. Nonlinear time warping in real MoCap Data. Left: a reference signal, s0, 5 other signals, fsig5i¼1, and their mean, �s ¼ 1
5

P5
i¼1 si. The mean is

smeared since fsig5i¼1 are misaligned. Center: having inferred the warps, fT uig5i¼1, we unwarp the signals, setting ui ¼ si � T�ui . Note fuig5i¼1 are bet-
ter aligned, as is evident by the details preserved in their mean, �u ¼ 1

5

P5
i¼1 ui. Right: warping �u by T

�uþjs1�1 where �u ¼ 1
5

P5
i¼1 ui,

j 2 f�6;�4;�2; 0; 2; 4; 6g, �1 is the first principal component of fui � �ug5i¼1, and s1 is the corresponding standard deviation.
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into 5 tetrahedra) and Nv ¼ 125. The dimension, dimðM@;vpÞ,
is 20 (and not 375 ¼ 3Nv) due to the additional constraints.

5.4 Inference: Analysis-by-Synthesis

Real-world signal analysis requires 3 oft-confounded parts:
a representation; a probabilistic/deterministic model (e.g., a
likelihood); inference. While the first affects the second
which in turn affects the third, when judging a new choice
for any of these, it is crucial to distinguish between them.
For example, as noted in [68], Horn and Schunk’s represen-
tation+model of optical flow had been regarded highly inac-
curate, till modern inference rendered it almost state-of-the-
art. Since the present work is focused on representations, we
avoid advocating a particular likelihood model or inference
method, and instead use, in a coarse-to-fine manner (recall
that if vu is CPA w:r:t: P it is CPA w.r.t. P0 
 P), simple
choices such as Gaussian likelihood and either conjugate-
gradient optimization or the MCMC Metropolis algorithm
(where, in the proposal step, we use either global or local
moves, utilizing Lemma 3). Without claiming these choices
are optimal, these turned out to be effective.

Latent transformations arise in two typical settings: with
and without known correspondences. In the first, also called
(exact/inexact) diffeomorphic point matching [10], [14], one

has a set of landmark pairs, fðxi; yiÞgNpts
i¼1 and seeks

T : V! V such that fT ðxiÞ � yigNpts
i¼1 . We observe that for

n ¼ 1, by Corollary 1, our ability to easily solve this problem
using CPAB transformations lets us solve a monotonic regres-
sion problem, as Fig. 5 demonstrates. Particularly, by adding
boundary constraints and simulated annealing, we can well
fit a CPAB transformation to any reasonable CDF. More gen-
erally, but still for n ¼ 1, ourmethod can be used to solve sta-
tistical/optimization problems over monotonic functions,
CDFs and (cumulative sums of) histograms/filters while
respecting bin ordering. The case of n > 1 appears, e.g., in
landmark-based image warping. As shown in Fig. 7, using
real images and landmarks from an online hands dataset
(http://www.imm.dtu.dk/pubdb/p.php?403), we infer a

transformation between different hands in different poses.
We then apply it to the whole source image, creating new
hands, whose appearance belongs to the source hands, with
geometry akin to the destination hands. We also animate the
source image by evaluating fu for different t’s (including out-
side of ½0; 1	); e.g., Fig. 7e shows animated frames for the
example in the second row of Fig. 7a-7d.

In the no-known-correspondences case, there are two
subsets of V, denoted Usrc and Udst, and two feature maps,
Isrc : Usrc ! F and Idst : Udst ! F , where F is some feature
space (e.g., color), and one seeks T : V! V such that
Idst � T�1 � Isrc (or such that Isrc � T � Idst). This is, e.g., the
case for time warping (when n ¼ 1) and landmark-free
image registration (n > 1). Fig. 8 (left and middle) shows
inferred time warps for motion-capture data from [69]. A
similar procedure can be applied to 2D images, in which
case it is known as image registration. Fig. 10 shows some
results for registrations of images of digits using a pixelwise
Gaussian likelihood model and MCMC inference over
CPAB transformations. We used 10K iterations for each sin-
gle registration which took 10 [sec] (i.e., � 0:001 [sec] per
each MCMC iteration).

As an example for statistics on the inferred transforma-
tions, Fig. 8 (right) shows a 1D warping of �u (defined in
the figure’s caption) along the 1st eigen warp (computed
using PCA on inferred velocity fields); i.e., we use euclid-
ean statistics in the linear V and map the results to the
nonlinear M. For a 2D example in the same spirit, we first
performed thousands of within-class pairwise registra-
tions of images of digits as described above. Overall we
estimated � 30; 000 transformations i.e., � 3; 000 per class
(class of 1’s, class of 2’s, etc.). Next, we computed PCA on
the inferred CPA velocity fields; Fig. 11 shows the first
eigen wrap of each class. The Sup. Mat., available online
includes a video showing the result of applying the first 3
eigen warps (per class) applied to 100 random images
from the training set.

Fig. 9. A 3D example. Left: Source shape (taken from the Tosca Date-
set: http://tosca.cs.technion.ac.il) . Right: Result of applying a volume-
preserving transformation, sampled from the prior, to the source.

Fig. 10. Example registrations of images from the MNIST dataset.

Fig. 11. The 1st eigen wrap of class. Center row: the mean (identity)
transform. Top row: the mean plus 3 standard devidations. Bottom row:
the mean minus 3 standard deviations.
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5.5 Handling a Large Number of Landmarks

In the hand experiment we showed inference for landmark-
based warping using a relatively small set of landmarks on
real data. The inference technique used there was MAP esti-
mation using the Metropolis algorithm. Here we show,
using synthetic data, that the framework can easily utilize a
large set of landmark for inference over the latent transfor-
mation between the landmark sets; see Fig. 12. The tech-
nique used here is ML estimation using the Metropolis
algorithm. It is not surprising that with more data the
results improve, suggesting empirical evidence that the

estimation procedure is consistent. However, our point here
is that most other methods cannot easily utilize a large set
of landmarks.

5.6 Inference over a CPA Field Piecewise w.r.t. t

As a proof-of-concept for the utility of Algorithm 2, we used
it to “prettify” the output of a dense-correspondence tool.
We extracted dense correspondences, fðxi; yiÞgNpts

i¼1 , between
two images using SIFT-Flow [20]. Then, we discarded the
images and treated the correspondences as noisy observations
fed as input to Algorithm 2. Finally, for visualization pur-
poses, we used the output of Algorithm 2 to warp the source
image. Fig. 14 shows a typical result.

5.7 Representing a CDF Using a CPAB
Transformation

Fig. 13 shows results (using Metropolis’ algorithm) for fit-
ting F u , T u � F0 , where F0 is the CDF of the uniform distri-
bution on J ¼ ½�7; 7	, to a 3-component Gaussian mixture.
Note F u well approximates the target CDF.

Fig. 12. Landmark-based Maximum Likelihood (ML) estimates of latent transformations. The dimension of the transformation space in this example is
d ¼ 38. Rows differ in the number of landmarks, Npts. Top row: Npts ¼ 30. Middle: Npts ¼ 100. Bottom: Npts ¼ 10; 000. Colors: green=src, blue=dst,
red=T u(src), where T u is the ML transformation, found by Metropolis’ algorithm. (a) original grid lines + src landmarks; (b) grid lines deformed by the
Ground-Truth (GT) transformation + dst landmarks. (c) grid lines deformed by the GT transformation. (d) grid lines deformed by the ML transforma-
tion. (e) grid lines deformed by the GT transformation (blue) and grid lines deformed by the ML transformation (red). (f) dst landmarks (blue) and the
src landmarks transformed by the ML transformation (red).

Fig. 14. “Prettifying” the result of a dense-correspondence tool. From left
to right: Isrc; Idst; warping Isrc according to SIFT-Flow [20]; warping Isrc
using the output of Algorithm 2 where the SIFT-Flow was the input.

Fig. 13. CDF Representation. The source is the CDF of the uniform dis-
tribution. The target is the CDF of a 3-component Gaussian mixture. The
setting and the inference procedure, where we used a Maximum Likeli-
hood (ML) solution obtained using MCMC, are virtually the same as in
the monotonic-regression experiment, except here we also used simu-
lated annealing, gradually reducing the standard deviation of the “noise”
to zero. Typical to an ML solution, the inferred vu is non-smooth. MAP
estimation (not shown) leads to a smoother field, analogously to the
results in Fig. 5.
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6 CONCLUSION

We proposed new classes of diffeomorphisms that are sim-
ple, expressive, efficient, and have many applications. We
showed these objects are evaluated fast and with high accu-
racy (exact in 1D) and that they are highly expressive. While
we required V to be a hyperrectangle it is not hard to see
that, more generally, V may be any finite intersection of
closed half spaces of Rn. Like the space in [27], our spaces
lack closure under composition; but since T u2 � T u1 2 G, our
representation can still be used within frameworks that
apply consecutive transformations [16]. In fact, Algorithm 2
deals exactly with such scenarios. While this work focused
on representation it was primarily motivated by modeling-
and-inference considerations: e.g., the ability to quickly run
MCMC inference over diffeomorphisms is a hallmark of the
method, showing that simplicity pays off.

ACKNOWLEDGMENTS

O.F. and J.W.F. are partially supported by U.S. Office of
Naval Research MURI program, award N000141110688,
and VITALITE, which receives support from U.S. ARO
MURI, award W911NF-11-1-0391. S.H. was funded by the
Danish Council for Independent Research, Natural Sciences.

REFERENCES

[1] S. Allassonni�ere, E. Kuhn, and A. Trouv�e, “Construction of Bayes-
ian deformable models via a stochastic approximation algorithm:
A convergence study,” Bernoulli, vol. 16, pp. 641–678, 2010.

[2] S. Allassonniere, S. Durrleman, and E. Kuhn, “Bayesian mixed
effect atlas estimation with a diffeomorphic deformation model,”
SIAM J. Imag. Sci., vol. 8, pp. 1367–1395, 2015.

[3] M. Zhang and P. T. Fletcher, “Bayesian statistical shape analysis on
the manifold of diffeomorphisms,” in Algorithmic Advances in Rie-
mannian Geometry and Applications. Berlin, Germany: Springer, 2016.

[4] O. Freifeld, S. Hauberg, B. Kayhan, and J. W. Fisher III, “Highly-
expressive spaces of well-behaved transformations: Keeping it
simple,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2911–2919.

[5] S. Hauberg, O. Freifeld, A. Larsen, J. Fisher, and L. Hansen,
“Dreaming more data: Class-dependent distributions over diffeo-
morphisms for learned data augmentation,” presented at the 19th
Int. Conf. Artif. Intell. Statist., Cadiz, Spain, 2016.

[6] U. Grenander, General Pattern Theory: A Mathematical Study of Reg-
ular Structures. Oxford, U.K.: Clarendon, 1993.

[7] U. Grenander and M. Miller, “Representations of knowledge in
complex systems,” J. Roy. Statistical Soc. Series B: Methodological,
vol. 56, pp. 549–603, 1994.

[8] P. Dupuis, U. Grenander, and M. I. Miller, “Variational problems
on flows of diffeomorphisms for image matching,” Quart. Appl.
Math., vol. 56, pp. 587–600, 1998.

[9] A. Trouv�e, “Diffeomorphisms groups and pattern matching in
image analysis,” Int. J. Comput. Vis., vol. 28, pp. 213–221, 1998.

[10] S. C. Joshi and M. I. Miller, “Landmark matching via large defor-
mation diffeomorphisms,” IEEE Trans. Image Process., vol. 9, no. 8,
pp. 1357–1370, Aug. 2000.

[11] M. Vaillant, M. I. Miller, L. Younes, and A. Trouv�e, “Statistics on
diffeomorphisms via tangent space representations,” NeuroImage,
vol. 23, pp. S161–S169, 2004.

[12] M. F. Beg, M. I. Miller, A. Trouv�e, and L. Younes, “Computing
large deformation metric mappings via geodesic flows of
diffeomorphisms,” Int. J. Comput. Vis., vol. 61, pp. 139–157, 2005.

[13] S. Allassonni�ere, A. Trouv�e, and L. Younes, “Geodesic shooting
and diffeomorphic matching via textured meshes,” in Proc. 5th
Int. Conf. Energy Minimization Methods Comput. Vis. Pattern Recog-
nit., 2005, pp. 365–381.

[14] H. Guo, A. Rangarajan, and S. Joshi, “Diffeomorphic point
matching,” in Handbook of Mathematical Models in Computer Vision.
Berlin, Germany: Springer, 2006.

[15] U. Grenander and M. Miller, Pattern Theory: From Representation to
Inference. London, U.K.: Oxford Univ. Press, 2007.

[16] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache,
“Diffeomorphic demons: Efficient non-parametric image regis-
tration,” NeuroImage, vol. 45, pp. S61–S72, 2009.

[17] D. Mumford and A. Desolneux, Pattern Theory: The Stochastic Anal-
ysis of Real-World Signals. Natick, MA, USA: AK Peters, 2010.

[18] L. Younes, “Spaces and manifolds of shapes in computer vision:
An overview,” Image Vis. Comput., vol. 30, pp. 389–397, 2012.

[19] S. Durrleman, S. Allassonni�ere, and S. Joshi, “Sparse adaptive
parameterization of variability in image ensembles,” Int. J. Com-
put. Vis., vol. 101, pp. 161–183, 2013.

[20] C. Liu, J. Yuen, and A. Torralba, “SIFT flow: Dense correspon-
dence across scenes and its applications,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 5, pp. 978–994, May 2011.

[21] J. Kim, C. Liu, F. Sha, and K. Grauman, “Deformable spatial pyra-
mid matching for fast dense correspondences,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2013, pp. 2307–2314.

[22] T. F. Cootes, C. J. Twining, V. Petrovic, R. Schestowitz, and C. J.
Taylor, “Groupwise construction of appearance models using
piecewise affine deformations,” in Proc. Brit. Mach. Vis. Conf.,
2005, pp. 879–888.

[23] A. Fawzi and P. Frossard, “Measuring the effect of nuisance varia-
bles on classifiers,” in Proc. Brit. Mach. Vis. Conf., 2016.

[24] R. Szeliski, Computer Vision: Algorithms and Applications. Berlin,
Germany: Springer, 2010.

[25] M. Galun, T. Amir, T. Hassner, R. Basri, and Y. Lipman, “Wide
baseline stereo matching with convex bounded distortion con-
straints,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2228–2236.

[26] D. Lin, E. Grimson, and J. Fisher, “Modeling and estimating per-
sistent motion with geometric flows,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 1–8.

[27] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, “A log-
Euclidean polyaffine framework for locally rigid or affine
registration,” in Biomedical Image Registration. Berlin, Germany:
Springer, 2006.

[28] V. Arsigny, X. Pennec, and N. Ayache, “Polyrigid and polyaffine
transformations: A novel geometrical tool to deal with non-rigid
deformations–application to the registration of histological slices,”
Med. Image Anal., vol. 9, pp. 507–523, 2005.

[29] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, “A log-
Euclidean framework for statistics on diffeomorphisms,” in Med.
Image Comput. Comput. Assisted Intervention, vol. 9, pp. 924–931,
2006.

[30] T. Mansi, X. Pennec, M. Sermesant, H. Delingette, and N. Ayache,
“iLogDemons: A demons-based registration algorithm for track-
ing incompressible elastic biological tissues,” Int. J. Comput. Vis.,
vol. 92, pp. 92–111, 2011.

[31] M. Zhang and P. T. Fletcher, “Finite-dimensional Lie algebras for
fast diffeomorphic image registration,” Inf. Process. Med. Imag.,
vol. 24, pp. 249–259, 2015.

[32] A. Censi and R. M. Murray, “Learning diffeomorphism models of
robotic sensorimotor cascades,” in Proc. IEEE Int. Conf. Robot.
Autom., 2012, pp. 3657–3664.

[33] A. Censi, A. Nilsson, and R. M. Murray, “Motion planning in
observations space with learned diffeomorphism models,” in
Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 2860–2867.

[34] A. Nilsson and A. Censi, “Accurate recursive learning of uncer-
tain diffeomorphism dynamics,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2013, pp. 1208–1215.

[35] M. Kilian, N. Mitra, and H. Pottmann, “Geometric modeling in
shape space,” ACM Trans. Graph., vol. 26, 2007, Art. no. 64.

[36] E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden, and M. Desbrun,
“Geometric, variational discretization of continuum theories,”
Physica D: Nonlinear Phenomena, vol. 240, pp. 1724–1760, 2011.

[37] P. Fletcher, C. Lu, and S. Joshi, “Statistics of shape via principal
geodesic analysis on Lie groups,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 2003, pp. I-95–I-101.

[38] E. G. Miller and C. Chefd’hotel, “Practical non-parametric density
estimation on a transformation group for vision,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2003, pp. II-114–
II-121.

[39] F. Porikli, O. Tuzel, and P. Meer, “Covariance tracking using
model update based on Lie algebra,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2006, pp. 728–735.

[40] D. Lin, E. Grimson, and J. Fisher, “Learning visual flows: A Lie
algebraic approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2009, pp. 747–754.

[41] O. Freifeld and M. Black, “Lie bodies: A manifold representation
of 3D human shape,” in Proc. 12th Eur. Conf. Comput. Vis., 2012.

2508 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017



[42] X. Pennec, “Probabilities and statistics on Riemannian manifolds:
Basic tools for geometric measurements,” in Proc. Nonlinear Signal
Image Process., 1999, pp. 194–198.

[43] P. Fletcher, C. Lu, S. Pizer, and S. Joshi, “Principal geodesic analy-
sis for the study of nonlinear statistics of shape,” IEEE Trans. Med.
Imag., vol. 23, no. 8, pp. 995–1005, Aug. 2004.

[44] S. Sommer, F. Lauze, S. Hauberg, and M. Nielsen, “Manifold val-
ued statistics, exact principal geodesic analysis and the effect of
linear approximation,” Proc. 11th Eur. Conf. Comput. Vis., 2010,
pp. 43–56.

[45] R. Subbarao and P. Meer, “Nonlinear mean shift over riemannian
manifolds,” Int. J. Comput. Vis., vol. 84, pp. 1–20, 2009.

[46] A. Srivastava, S. H. Joshi, W. Mio, and X. Liu, “Statistical shape
analysis: Clustering, learning, and testing,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, no. 4, pp. 590–602, Apr. 2005.

[47] J. Hinkle, P. T. Fletcher, and S. Joshi, “Intrinsic polynomials for
regression on Riemannian manifolds,” J. Math. Imag. Vis., vol. 50,
pp. 32–52, 2014.

[48] M. T. Harandi, M. Salzmann, and R. Hartley, “From manifold to
manifold: Geometry-aware dimensionality reduction for SPD
matrices,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 17–32.

[49] M. Lorenzi, N. Ayache, and X. Pennec, “Schild’s ladder for the
parallel transport of deformations in time series of images,” in
Information Processing in Medical Imaging. Berlin, Germany:
Springer, 2011.

[50] S. Taheri, P. Turaga, and R. Chellappa, “Towards view-invariant
expression analysis using analytic shape manifolds,” in Proc. IEEE
Int. Conf. Autom. Face Gesture Recognit. Workshops, 2011, pp. 306–
313.

[51] M. Lorenzi and X. Pennec, “Geodesics, parallel transport & one-
parameter subgroups for diffeomorphic image registration,” Int. J.
Comput. Vis., vol. 105, pp. 111–127, 2013.

[52] Q. Xie, S. Kurtek, H. Le, and A. Srivastava, “Parallel transport of
deformations in shape space of elastic surfaces,” in Proc. IEEE Int.
Conf. Comput. Vis., 2013, pp. 865–872.

[53] P. Fletcher, “Geodesic regression and the theory of least squares
on Riemannian manifolds,” Int. J. Comput. Vis., vol. 105, pp. 171–
185, 2012.

[54] S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi,
“Kernel methods on the Riemannian manifold of symmetric posi-
tive definite matrices,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2013, pp. 73–80.

[55] O. Freifeld, S. Hauberg, and M. J. Black, “Model transport:
Towards scalable transfer learning on manifolds,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1378–1385.

[56] Y. Rubner, C. Tomasi, and L. Guibas, “Metric for distributions
with applications to image databases,” in Proc. 6th Int. Conf. Com-
put. Vis., 1998, pp. 59–66.

[57] A. Srivastava, I. Jermyn, and S. Joshi, “Riemannian analysis of
probability density functions with applications in vision,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1–8.

[58] F. L. Bookstein, “Principal warps: Thin-plate splines and the
decomposition of deformations,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 11, no. 6, pp. 567–585, Jun. 1989.

[59] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun, “Image warping
by radial basis functions: Application to facial expressions,”
CVGIP: Graph. Models Image Process., vol. 56, pp. 161–172, 1994.

[60] C. Liu, H.-Y. Shum, and C.-S. Zhang, “A two-step approach to hal-
lucinating faces: Global parametric model and local nonparamet-
ric model,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2001, pp. I-192–I-198.

[61] T.-L. Chen and S. Geman, “Image warping using radial basis
functions,” J. Appl. Statist., vol. 41, pp. 242–258, 2014.

[62] M. Nielsen, P. Johansen, A. Jackson, B. Lautrup, and S. Hauberg,
“Brownian warps for non-rigid registration,” J. Math. Imag. Vis.,
vol. 31, 2008, Art. no. 221.

[63] O. Weber, R. Poranne, and C. Gotsman, “Biharmonic coor-
dinates,” Comput. Graph. Forum, vol. 31, pp. 2409–2422, 2012.

[64] T. Nir, A. M. Bruckstein, and R. Kimmel, “Over-parameterized
variational optical flow,” Int. J. Comput. Vis., vol. 76, pp. 205–2016,
2008.

[65] J. Wulff and M. Black, “Efficient sparse-to-dense optical flow esti-
mation using a learned basis and layers,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2015, pp. 120–130.

[66] C. Moler and C. Van Loan, “Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later,” SIAM Rev.,
vol. 43, pp. 3–49, 2003.

[67] A. H. Al-Mohy and N. J. Higham, “Computing the action of the
matrix exponential, with an application to exponential integra-
tors,” SIAM J. Sci. Comput., vol. 33, pp. 488–211, 2011.

[68] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation
and their principles,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2010, pp. 2432–2439.

[69] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu,
“Human3.6M: Large scale datasets and predictive methods for 3D
human sensing in natural environments,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 7, pp. 1325–1339, Jul. 2014.

Oren Freifeld received the BSc and MSc degrees
in biomedical engineering from Tel-Aviv University,
in 2005 and 2007, respectively. He received the
ScM and PhD degrees in applied mathematics
from Brown University, in 2009 and 2013, respec-
tively. Later, he was a postdoc with MIT Computer
Science & Artificial Intelligence Laboratory. He is
currently an assistant professor in the Department
of Computer Science, Ben-Gurion University. His
main fields of research are computer vision, statisti-
cal inference, andmachine learning.

Søren Hauberg received the PhD degree in
computer science from the University of Copen-
hagen, in 2011. He has been a visiting scholar
with UC Berkeley (2010), and a post doc in the
Perceiving Systems Department, Max Planck
Institute for Intelligent Systems (2012-2014). He
is currently a post doc in the Section for Cognitive
Systems, Technical University of Denmark. He
works in the span of geometry and statistics.

Kayhan Batmanghelich received the PhD
degree in electrical and system engineering from
the University of Pennsylvania, in 2012. He is cur-
rently a postdoctoral associate with MIT Com-
puter Science & Artificial Intelligence Laboratory.
He works in the span of machine learning, medi-
cal imaging, and computational biology.

John W. Fisher III received a PhD degree in elec-
trical and computer engineering from theUniversity
of Florida, Gainesville, Florida in 1997. He is a
Senior Research Scientist in the Computer Sci-
ence and Artificial Intelligence Laboratory at the
Massachusetts Institute of Technology. Prior to
joining the Massachusetts Institute of Technology
he was a member of the research staff with the
Electronic Communications Laboratory at the
University of Florida from 1987 to 1997, during
which time he conducted research in the areas of

ultra-wideband radar for ground and foliage penetration applications,
radar signal processing, and automatic target recognition algorithms. His
current area of research focus includes information theoretic approaches
to signal processing, multi-modal data fusion, machine learning and
computer vision.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FREIFELD ET AL.: TRANSFORMATIONS BASED ON CONTINUOUS PIECEWISE-AFFINE VELOCITY FIELDS 2509



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


