
SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 1

Scalable Robust Principal Component
Analysis using Grassmann Averages

Søren Hauberg, Aasa Feragen, Raffi Enficiaud, and Michael J. Black

Abstract—In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with
data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that
outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note
that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold.
We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple
algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than
PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust
averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann
Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational
complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow
removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method.
Source code is available online.

Index Terms—Dimensionality reduction, Subspace estimation, Robust Principal Component Analysis

F

1 INTRODUCTION

A CROSS many fields of science and in many application
domains, principal component analysis (PCA) is one of

the most widely used methods for dimensionality reduction,
modeling, and analysis of data. It is a core technique used
throughout computer vision. While methods exist for scaling
PCA to large datasets, one fundamental problem has yet
to be addressed. Large datasets are often collected either
fully or semi-automatically and are too large to be verified
by humans. As a result, we should expect a significant
number of outliers. In essence, “big data” implies “big
outliers.” This requires a form of PCA that is robust to
outliers. While there are several solutions that make PCA
robust to outliers [1]–[6], these generally do not scale to
large datasets. Typically, robust methods for PCA are not
scalable and scalable methods for PCA are not robust. Our
contribution is a novel formulation and a scalable algorithm
for robust PCA that outperforms previous methods, has low
computational complexity, and scales to large datasets.

Our first contribution is to formulate subspace estimation
as the computation of averages of subspaces. Given a zero-

• S. Hauberg is with the Section for Cognitive Systems at the Technical
University of Denmark.
E-mail: sohau@dtu.dk

• A. Feragen is with the Department of Computer Science at the University
of Copenhagen, Denmark.
E-mail: aasa@diku.dk

• R. Enficiaud is with the Software Workshop at the Max Planck Institute
for Intelligent Systems in Tübingen, Germany.
E-mail: raffi.enficiaud@tue.mpg.de

• M.J. Black is with the Perceiving Systems Department at the Max Planck
Institute for Intelligent Systems in Tübingen, Germany.
E-mail: black@tue.mpg.de

Fig. 1. Left: A zero-mean dataset represented as a set
of points. Center: The same data represented as a set
of one-dimensional subspaces. Right: The blue dotted
subspace is the average subspace.

mean dataset x1:N ⊂ RD, we observe that each observation
xn spans a one-dimensional subspace. Mathematically,
each of these subspaces can be described as a point on
the Grassmann manifold (the space of subspaces of RD;
see Sec. 3). We then develop an averaging operator on
the Grassmann manifold that formalizes the notion of the
average subspace spanned by the data; see Fig. 1 for an
illustration. We show how this Grassmann Average (GA)
relates to standard PCA and prove that, for Gaussian data,
the subspace found by the GA corresponds to that of standard
PCA. We show both formally and experimentally that GA
is already more robust than PCA as it optimizes an L1 style
energy. But robustness can be further improved.

Understanding how PCA can be reformulated as the
computation of averages (of subspaces) leads to a key obser-
vation: Robust averages are theoretically well understood and
can be computed efficiently. We leverage this fact to define
the Robust Grassmann Average (RGA), which generalizes
PCA to robust PCA. There are a range of robust averaging
methods, and any of these are appropriate for RGA but some

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 2

scale better than others.
In many fields and applications, outliers exist within a

data vector while the majority of the vector is perfectly fine.
This is the common situation in computer vision, where, e.g.
a few pixels in an image may be corrupted. We show that
the robust averaging in RGA can be done at the “element”
level, and we adopt a trimmed average that is both robust
and can be computed efficiently. The resulting Trimmed
Grassmann Average (TGA) can cope with both isolated
outliers within a vector (image) or entire data outliers.

The resulting algorithm is straightforward, theoretically
sound, and computationally efficient. We provide a detailed
evaluation of the method’s robustness and efficiency in
comparison with related methods. We focus on problems
involving images and image sequences although the method
is general. We compare with Candes et al. [5] on their data
and show similar or superior results. Furthermore, we show
superior results to both Candes et al. and De la Torre and
Black [6] on a problem of archival film restoration; here
we are able to provide a quantitative comparison. Finally,
we show how the method scales by applying it to video
modeling problems where all previous robust PCA methods
fail; for example, we compute TGA for all 179,415 frames
of Star Wars IV. Our implementation is available online1,
which makes it easy to apply it to new problems.

This paper extends a previous conference paper [7] with
a probabilistic interpretation of subspace averages, a more
elaborate review of the literature, more intuitive illustrations,
and a more thorough experimental evaluation.

2 RELATED WORK
Consider the problem of estimating a one-dimensional
subspace. PCA finds the subspace in which the projected
observations are as similar as possible to the original
observations [8]

qPCA = argmin
v, ‖v‖=1

N∑
n=1

‖xn − (xᵀ
nv)v‖

2
, (1)

where the resulting unit vector, v, spans the estimated
subspace. This least-squares energy implies that outliers
have a large influence on the results. Indeed, a single outlier
can arbitrarily corrupt the estimated components. We say
that PCA has a break-down point of 0% [2]; i.e. if more
than 0% of the data are outliers we cannot trust the results.

2.1 Robust PCA
Many suggestions have been made for how to make PCA
robust to outliers. The most classic approaches attempt to
estimate the covariance matrix in a robust way by assigning
weights to each data point, depending on how likely it is to
be an outlier [1]–[4], [9], [10]. In this scenario, the principal
components are defined as the eigenvectors of

Σrobust =

N∑
n=1

αnxnx
ᵀ
n , with αn ≥ 0. (2)

1. http://http://ps.is.tue.mpg.de/research projects/robust-pca

Xu and Yuille [4] restrict the weights α1:N to be binary and
estimate these by optimizing Eq. 1 with an added regularizer
ν
∑

n(1−αn) that avoids the trivial solution αn = 0. This is
optimized using a mean field approximation, which reduces
the problem to solving a non-linear program. This works
well and provides a classification of the data points into
inliers / outliers, but is computationally demanding.

Feng et al. [3] iteratively estimate the weights α1:N by
performing ordinary PCA and assigning lower weights to
points that contribute substantially to the total projected
variance. The approach can theoretically handle up to 50%
outliers, which makes it very powerful. Unfortunately, the
repeated computation of ordinary principal components
prevents the algorithm from scaling to large datasets.

Rather than estimating weights for each data point,
several authors have suggested replacing the squared error
in (1) with a measure that is less sensitive to outliers
[5], [6], [11]. Ding et al. [11] suggest replacing ‖ · ‖2
with ‖ · ‖ in (1), leading to the so-called R1-PCA. The
resulting energy can be optimized by iteratively estimating
a robust covariance matrix, which makes the approach
computationally demanding. Alternatively, Eq. 1 can be
rewritten as the maximization of explained variance

qPCA = argmax
v, ‖v‖=1

N∑
n=1

(xᵀ
nv)

2. (3)

Kwak [12] suggests replacing the square in this expression
with an absolute value to provide a robust energy, though
it is not robust to pixel-level outliers. Kwak provides a
local optimizer, while McCoy & Tropp [13] show that the
general problem is NP-hard and provide a semi-definite
approximation algorithm, which is guaranteed to provide
a near-optimal solution. Naor et al. [14] extend this work
to estimate multiple components. We show that Kwak’s
approach gives an average subspace, and use this observation
to derive a general pixel-wise robust subspace average.

2.1.1 Robust M–Estimators

In computer vision, outliers often occur at the pixel level
rather than at the image level [5], [6]. De la Torre and Black
phrase robust subspace estimation in the framework of M–
estimators [2] and develop a robust extension of Eq. 1 using
the Geman-McClure error function [15]. This energy is
optimized using gradient descent with an annealing scheme
over the parameters of the Geman-McClure error function.
Their approach uses an initial singular value decomposition
(SVD) followed by a series of iterative updates. While each
iteration of this scheme only has linear complexity, the
reliance on SVD gives an overall cubic complexity [16].
This makes the algorithm impractical for large datasets.

2.1.2 Convex Programs

The approach from Candes et al. [5] decomposes the data
matrix X ∈ RN×D into

X = L+ S, (4)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 3

where L is low rank and S is sparse; i.e. it contains the pixel-
level outliers. They show that under very broad assumptions
this can be solved as a convex program, and provide a
series of algorithms, where the so-called Inexact ALM [17]
method is most commonly used. This algorithm repeatedly
computes an SVD of the data giving it cubic complexity [16].
Again, this complexity renders the approach impractical for
anything beyond small-to-medium scale data sizes. This can
be alleviated somewhat through parallel implementations of
SVD [18], but this requires the availability of large compute
farms and does not address the underlying complexity issues.
Netrapalli et al. [19] show that the decomposition can be
performed with a per-iteration rank-reduced SVD, which
only has quadratic. complexity. While an improvement, this
is still impractical for large datasets.

2.1.3 Approximation Techniques
The non-linear complexity of the different robust formula-
tions of PCA has led to the development of a multitude of
approximation techniques. Both Mackey et al. [20] and Lui
et al. [21] propose subsampling algorithms for solving the
decomposition problem of Candes et al. [5]. This improves
scalability as they need only solve smaller SVD problems.
While theoretical analysis shows that subsampling provides
good approximations, it is inherently disappointing that to
analyse large quantities of data one should ignore most of
it. In a similar spirit, Mu et al. [22] propose to replace the
data matrix with a low-rank counterpart found through a
random projection during optimization. This again allows
for computational gains as smaller SVD problems need to
be computed when parts of the data are not used.

2.2 Scalable PCA
Most PCA implementations either perform eigenvalue
decomposition on the data covariance matrix or SVD on the
data matrix [8]. The former only works in low-dimensional
scenarios, where the covariance can easily be stored in
memory, while the latter is impractical when either the
number of observations or the dimensionality is large.

Due to the importance of PCA for data analysis, scalable
implementations are readily available [23], [24]. A common
choice is the EM PCA algorithm [24], which computes each
principal component by repeatedly iterating

ṽ ←
N∑

n=1

(xᵀ
nvi−1)xn and vi ←

ṽ

‖ṽ‖
(5)

until convergence. Here vi denotes the estimate of the
principal component at iteration i of the algorithm. This
can either be derived as an EM algorithm [24] under an
uninformative prior, as a gradient descent algorithm or as a
power iteration [16]. One iteration of the algorithm has linear
complexity and the low memory use makes it highly scalable.
Unfortunately, the approach converges slowly and “zig-zags”
around the optimum, implying low numerical precision.
This imprecision accumulates when multiple components
are estimated, which practically limits the approach to only
estimate a few of the leading components.

Fig. 2. An illustration of the Grassmann manifold
Gr(1, 2) of 1-dimensional subspaces of R2. Any sub-
space is represented by a point on the unit sphere with
the further identification that opposing points on the
sphere correspond to the same point on Gr(1, D).

2.3 Subspaces in Vision

Subspace estimation appears throughout computer vision,
so it is not surprising that the Grassmann manifold has
seen many applications; for a survey see e.g. [25]. In
this paper we consider the problem of estimating a single
subspace from data. The more general problem of estimating
multiple subspaces can also be considered. For example
Generalized PCA [26] provides an elegant algebraic solution
to this subspace clustering problem. The numerical solution
requires fitting a higher order polynomial to the data, which
tends to be unstable in poor signal-to-noise scenarios.

In the absence of noise, the subspace clustering problem
can be studied by assuming that any data point can be
expressed as a linear combination of a few other data points.
This leads to a sparse convex optimization problem, which
can be made robust to noisy data [27]–[29]. The algorithms,
however, do not scale to large datasets as they rely on SVD.

3 THE GRASSMANN AVERAGE

Our key contribution is to formulate dimensionality reduc-
tion as the estimation of the average subspace of those
spanned by the data. Informally, if we seek an averaging
operation that returns a subspace, then the input to this
operation must be a collection of subspaces. To formalize
this idea we need the notion of “a space of subspaces,”
which is provided by the classical geometric construction
known as the Grassmann manifold [30, p. 24]:

Definition 1. The Grassmann manifold Gr(k,D) is the
space of all k-dimensional linear subspaces of RD.

Assuming we are given a dataset x1:N with the mean
subtracted, then each observation spans a one-dimensional
subspace of RD and, hence, is a point in Gr(1, D). The
space of one-dimensional subspaces in RD takes a particu-
larly simple form since any such subspace can be represented
by a unit vector u or its antipode −u. Thus, Gr(1, D) can
be written as the quotient SD−1/{±1} of the unit sphere
with respect to the antipodal action of the group {±1} [30].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 4

We denote points in Gr(1, D) as

[u] = {u,−u}, (6)

and note that [u] = [−u]; i.e., given an observation, xn, we
represent the spanned subspace as [un] = ±xn/‖xn‖, where
the sign is unknown (see Fig. 2).

3.1 The Average Subspace

With zero-mean data, we now define the average subspace
corresponding to the first principal component. Weighted
averages are commonly defined as the minimizer of the
weighted sum-of-squared distances; i.e.

[q] = argmin
[v]∈Gr(1,D)

N∑
n=1

wndist
2
Gr(1,D)([un], [v]), (7)

where w1:N are weights and distGr(1,D) is a distance on
Gr(1, D). We define this distance through the quotient space
construction of Gr(1, D) as [31, p. 65]

dist2Gr(1,D)([u1], [u2]) (8)

= min{dist2SD−1(v1,v2) | v1 ∈ [u1],v2 ∈ [u2]},

where distSD−1 is a yet-to-be-defined distance on the unit
sphere SD−1. With this, the subspace distance distGr(1,D) is
merely the shortest spherical distance between any possible
pair of unit vectors representing the subspaces. The spherical
distance will be chosen to give an efficient algorithm for
computing averages on Gr(1, D), but first we prove a useful
relationship between averages on Gr(1, D) and those on
the unit sphere SD−1:

Lemma 1. For any weighted average [q] ∈ Gr(1, D)
satisfying Eq. 7, and any choice of q ∈ [q] ⊂ SD−1, there
exist u1:N ⊂ [u1:N ] ⊂ SD−1 such that q is a weighted
average on SD−1:

q = argmin
v∈SD−1

N∑
n=1

wndist
2
SD−1(un,v). (9)

Proof: Select any q ∈ [q]. Note, from Eq. 8, that
distSD−1(q,un) ≥ distGr(1,D)([q], [un]) for all n and
un ∈ [un], thus, the function minimized in Eq. 9 will
never have a smaller minimum value than the one found in
Eq. 7. Note moreover that we can find un ∈ [un] such that
distSD−1(un, q) = distGr(1,D)([un], [q]) for all n. But then
q is a minimizer of Eq. 9 and hence a weighted average on
the sphere SD−1.

Lemma 1 is useful because it reduces the problem of
computing averages on Gr(1, D) to a problem of computing
averages on SD−1, optimized over the possible representa-
tives ±u1:N ⊂ [u1:N ].

3.2 Computing the Average Subspace

To compute averages on Gr(1, D) we suggest a straight-
forward algorithm, which repeats the following two steps
until convergence

1) Pick representations u1:N of [u1:N ] that are closest
to the current average estimate q under distSD−1 .

2) Update q to be the spherical average of u1:N .
For this algorithm to be practical, we need the ability to
compute fast spherical averages. With this in mind, we pick

dist2SD−1(u1,u2) =
1

2
‖u1 − u2‖2 = 1− uᵀ

1u2. (10)

Under this distance, the weighted average of data u1:N ⊂
SD−1 is given in closed-form by [32, §2.1]

q =
µ(w1:N ,u1:N )

‖µ(w1:N ,u1:N )‖
, (11)

where

µ(w1:N ,u1:N ) =

(
N∑

n=1

wn

)−1 N∑
n=1

wnun (12)

denotes the weighted Euclidean average. This is also the
max-likelihood estimator of the mean of the spherical von
Mises-Fisher distribution [32]. As we need to normalize the
data, x1:N , to unit length before viewing each observation
as a subspace it is natural to pick subspace weights

wn = ‖xn‖. (13)

Noting that the optimal sign for un is αn = sign(uᵀ
nqi−1),

we arrive at the following iterative scheme for computing
an average subspace:

Algorithm: Grassmann Average (GA)
Let un = xn

‖xn‖ , and i = 1.
repeat

αn ← sign(uᵀ
nqi−1) ∀n,

qi ←
µ(w1:N , (αu)1:N )

‖µ(w1:N , (αu)1:N )‖
,

i← i+ 1,

(14)

until ‖qi − qi−1‖ < ε.

The algorithm is initialized with a uniform random sample
q0. Each iteration of this algorithm has complexity O(ND),
which is the same as EM PCA (5). This algorithm was also
studied by Kwak [12] who proved finite-time convergence.

3.2.1 Multiple Components
The above algorithm only computes the leading component
of the data. We compute additional components in a greedy
fashion by adding the further constraint that components
should be orthogonal. We compute this using deflation [16]
by removing the estimated component from the data and
computing the next component from the residual. Formally,
if X ∈ RN×D denotes the data matrix, then

X̂ ←X − (Xq)qᵀ (15)

is the updated data matrix where the component q is
removed. The next component can then be computed on
X̂ as above. This approach is optimal for Gaussian data
(see Sec. 3.2.3). While we do not have results for other
distributions we show that it works well in practice. As

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 5

Fig. 3. Left: Zero-mean Gaussian data (orange) and
the unit circle (black). Right: The distribution of the
Gaussian data projected onto the unit circle. As the
data has zero mean, the projected distribution has two
equal-sized modes at opposing points. The Grassmann
average is such a mode.

projection on a subspace does not remove outliers, the
same level of robustness is needed for every component.
This greedy approach is problematic for EM PCA as
inaccuracy in one estimated component influences the
following components. This is not the case for the GA
algorithm as the found local minimum is exact to numerical
precision due to the closed-form spherical average.

3.2.2 An Energy Minimization View

The GA algorithm represented by (14) is derived as an
algorithm for computing the average subspace spanned by
the data, but it proves insightful to look at which underlying
energy is being optimized. From (8) and (10) we see that

dist2Gr(1,D)([u1], [u2]) = 1− |uᵀ
1u2|, (16)

and the average (7) reduces to

[q] = argmax
v∈SD−1

N∑
n=1

|xᵀ
nv|. (17)

This is an energy in the projection pursuit family [33].
Compared with PCA, which maximizes explained variance
(3), we see that the GA can be expected to be more resilient
to outliers than ordinary PCA as the square has been replaced
with an absolute value. However, as the GA relies on an
ordinary average (12) it still has a break-down point of 0%.
In Sec. 3.3 we will improve upon this with robust averages.

3.2.3 Relationship to PCA (Gaussian Data)

To show how GA is related to ordinary PCA, we now
show that they coincide when the observed data follows
a normal distribution. Before stating a formal result, we
provide some intuitions. Let x1:N ∼ N (0,Σ) be sampled
from a multivariate zero-mean normal distribution on RD,
with a covariance with distinct eigenvalues. The subspace
spanned by data point xn is represented by the natural
basis vector un = xn

‖xn‖ . This follows a projected normal
distribution [34], un ∼ PN (0,Σ). Our interest is in the
distribution of the one-dimensional subspaces [un] spanned

by the data. As PN (0,Σ) is mirror-symmetric we have

p([un]) = PN ({un,−un} | 0,Σ) (18)
= PN (un | 0,Σ) + PN (−un | 0,Σ) (19)
= 2PN (un | 0,Σ). (20)

As PN (un | 0,Σ) = PN (−un | 0,Σ) we note that the
distribution of subspaces p([un]) is unimodal with a mode
corresponding to the first principal component of the data;
see also Fig. 3.

Since p([un]) is symmetric around the mode, it is natural
to think that the mode and the mean coincide. This, however,
depends on the metric used to compare subspaces. The
argument holds for any rotationally invariant metric; in the
following we provide a proof for the metric in Eq. 16.

Theorem 2. Let x1:N ∼ N (0,Σ) be sampled from a
multivariate normal distribution on RD. In the limit of
infinite data, the average subspace (17) coincides with the
first principal component.

Proof: First note that 1
N

∑N
n=1 |xᵀ

nv| is the fi-
nite sample approximation of the expectation value
E(|xᵀv|) =

∫
|xᵀv|p(x)dx. Therefore, in the limit of

infinite data, argmaxv∈SD−1
1
N

∑N
n=1 |xᵀ

nv| coincides with
argmaxE(|xᵀv|). Since x is sampled from a normal
distribution, the projection xᵀv follows a univariate normal
distribution, N (0, σ2

v), with σ2
v = vᵀΣv [35, §2.3]. Thus,

|xᵀv| follows a half-normal distribution with expected
value proportional to σv [36]. The standard deviation, σv ,
is maximized when v is the principal eigenvector of Σ,
thus argmaxE(|xᵀv|) coincides with the first principal
component as defined by ordinary PCA.

3.2.4 A Probabilistic Interpretation

The idea of computing an average subspace implicitly
assumes a unimodal subspace distribution p([un]). As
[un] = {un,−un} this implicit assumption can also be
seen as a mirror-symmetric bimodal distribution on SD−1;
i.e. p(un) = p(−un) = 1/2p([un]).

An equivalent formulation of the Grassmann average can,
thus, be attained as a two-class clustering problem on the unit
sphere with antipodal cluster centers. For clusters following
a von Mises-Fisher distribution [32], the Grassmann average
algorithm (14) can be derived as a spherical two-class k-
means with antipodal means. This view has the advantage
that it provides a generative model for subspaces. Let the
spherical clustering have cluster means ±µ, i.e.

p(un) =
1

2
vMF(un | µ, κ) +

1

2
vMF(un | −µ, κ) (21)

vMF(un | µ, κ) =
κ

D/2−1

(2π)D/2ID/2−1(κ)
exp (κµᵀun) , (22)

where vMF is the von Mises-Fisher density; Iv the modified
Bessel function of the first kind and order v; and κ ≥ 0 a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 6

Fig. 4. Gaussian data (orange) along with the average
subspace (black line). The light gray subspace interval
corresponds to the 95% confidence interval of the mean
estimate under the probabilistic interpretation (27).

concentration parameter. The subspace distribution is then

p([un]) = p(un) + p(−un) (23)

=
1

2
vMF(un | µ, κ) +

1

2
vMF(−un | µ, κ) (24)

+
1

2
vMF(un | −µ, κ) +

1

2
vMF(−un | −µ, κ) (25)

= vMF(un | µ, κ) + vMF(−un | µ, κ) (26)
= vMF([un] | µ, κ). (27)

This model immediately allows us to sample new subspaces
[32], estimate confidence intervals for the subspace [37,
§5.3.1–5.3.2], and derive central limit theorems for the mean
estimate [38]. As an example, Fig. 4 shows 95% confidence
intervals for the estimation of the leading component from
Gaussian data. This type of subspace reasoning is not
available with conventional PCA models, but follows easily
from the subspace estimation formulation.

3.3 Robust Grassmann Averages
The core computational part of the GA algorithm (14) is
the spherical average (11) which, in turn, merely computes
a normalized Euclidean average (12). From this we see that
even a single outlier can arbitrarily corrupt the result.

A straight-forward solution to this issue is to replace the
average with a robust average, giving the following scheme:

Algorithm: Robust Grassmann Average (RGA)
Let µrob denote any robust averaging operator.
Let un = xn

‖xn‖ and i = 1.
repeat

αn ← sign(uᵀ
nqi−1) ∀n,

qi ←
µrob(w1:N , (αu)1:N )

‖µrob(w1:N , (αu)1:N )‖
,

i← i+ 1

(28)

until ‖qi − qi−1‖ < ε or i > max_iter.

The algorithm is initialized with a uniform random sample
q0. We call this the Robust Grassmann Average (RGA).

Here, µrob can be chosen to have the robustness properties
relevant to the application. While we do not have a formal
general convergence proof, empirical experience indicates
that the algorithm converges in finite time.

In computer vision applications, we often deal with image
data where individual pixels are corrupted. Consequently,
when computing average images robustly it is common
to do so on a per pixel basis; i.e. as a series of one-
dimensional robust averages. A standard approach to create
a robust one-dimensional average is the trimmed average
[2]. This removes the largest and smallest observations prior
to computing the mean. If we remove P% of the data from
both sides, we get a break-down point of P%. For P = 50%
we get the maximally robust median [2].

To build a subspace estimator that is robust with respect to
pixel outliers, we pick µrob as the pixel-wise trimmed mean.
We call the resulting estimator the Trimmed Grassmann
Average (TGA) and let TGA(P,K) denote the estimator that
finds K components and trims P percent of the smallest and
largest elements in the data. Note that P and K are the only
parameters of the estimator, where the choice P = 50%
gives the maximally robust median [2].

Each iteration of TGA(P,K) has computational complex-
ity O(KND) as the trimmed average can be computed in
linear time using a selection algorithm [39, §9]. We thus
have a robust subspace estimator that can deal with pixel-
wise outliers and has the same computational complexity as
both GA (14) and EM PCA (5). In the appendix we show
that a version of TGA(50%, 1) converges in finite time to
a local minimum of the trimmed version of Eq. 7. We do
not have similar results for other versions of RGA, but
empirically we find that an optima is always found.

3.4 Practical Considerations

It has great practical value that a robust subspace estimator
can be created using only a robust average, as it is often
easy to compute a robust average which takes the structure
of the problem into account. With this, the data can be made
“zero mean”, and a robust Grassmann average (RGA) can
be computed by repeated averaging and deflation.

Picking a suitable dimensionality for the estimated
subspace is a general problem that influences all current
methods either directly or through a regularization parameter.
For PCA it is common to pick enough dimensions to explain
e.g. 90% of the variance in the data. This approach is,
however, troublesome in the presence of outliers as they will
dominate the variance estimate. Our probabilistic Grassmann
average (Sec. 3.2.4) provides an estimate of the confidence
interval of a given subspace. One option is to keep increasing
the dimensionality of the estimated subspace until this
confidence interval is larger than a specified threshold. In
practice this is, however, also sensitive to outliers. In our
experiments, we either rely on prior knowledge or use a
trimmed variance estimator to determine dimensionality.

The RGA algorithm finds a local optimum, so the average
subspaces are not guaranteed to be computed in order of
decreasing variance. This is a general issue for methods

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 7

that estimate one basis vector at a time; e.g. both EM PCA
and the method from De la Torre and Black [6] are not
guaranteed to provide ordered components. The standard
solution is a simple post hoc reordering according to the
amount of variance captured by each subspace.

The recursive deflation approach (15) for estimating mul-
tiple components relies on the specification of a projection
operator. As linear projection is known to be sensitive to
outliers [40] it may be beneficial to use a robust projection
operator. We investigate this option empirically in Sec. 4.9.

4 RESULTS

In this section we compare our method with the approaches
of Candes et al. [5] and De la Torre and Black [6]. For
comparative purposes, all algorithms are implemented in
Matlab, and, unless otherwise stated, the experiments are
performed on an 6 core 3.3GHz Intel Xeon W3680 with 24
GB of memory. When using TGA we subtract the pixel-wise
median to get a robust estimation of a “zero mean” dataset,
and we trim at 50% when computing subspaces. For [5] we
use the default parameters of the published code2. For [6]
we also use the default parameters of the published code3,
but with the same number of components as TGA.

Section 4.1 explores the application of robust PCA to
the restoration of archival film data, while in Sec. 4.2 and
4.3 we repeat the experiments from [5]. We quantitatively
compare the robustness of different methods in Sec. 4.4 and
investigate the empirical impact of trimming in Sec. 4.5.
Theorem 2 is empirically verified in Sec. 4.6, and the impact
of outliers is studied in Sec. 4.7. The random initialization
is studied in Sec. 4.8, different projections are compared in
Sec. 4.9, and finally Sec. 4.10 measures scalability.

4.1 Video Restoration

Archival films often contain scratches, gate hairs, splices,
dust, tears, brightness flicker and other forms of degradation.
Restoring films often involves manual labor to identify and
repair such damage. As these degradations vary in both
space and time, we treat them collectively as pixel-level
outliers. Assuming a static camera, we perform robust PCA
on the frames of a movie clip and reconstruct the clip using
the robust subspace. We perform the reconstruction using
orthogonal projection; this choice is investigated in Sec. 4.9.

As an example, we consider a scene from the 1922 classic
movie Nosferatu. We restore the frames using TGA, [5],
and [6]. We expect the true rank of the inliers to correspond
to the number of frames in the sequence. This consists of
80 frames, so for TGA and [6] we compute 80 components.
This may intuitively seem like “too many” components,
but as robust methods disregard parts of the data (e.g.
through trimming) they often allow for more components
than observations. Figure 5 shows two representative frames
and the restored movies are available in the supplementary

2. http://perception.csl.illinois.edu/matrix-rank/sample code.html#
RPCA

3. http://users.salleurl.edu/∼ftorre/papers/rpca2.html

Groundhog Day Pulp Fiction
(85 frames) (85 frames)

TGA(50%, 80) 0.0157 0.0404
Inexact ALM [5] 0.0168 0.0443
De la Torre and Black [6] 0.0349 0.0599
GA (80 comp) 0.3551 0.3773
PCA (80 comp) 0.3593 0.3789

TABLE 1
The mean absolute reconstruction error of the different

algorithms on recent movies with added noise
estimated from Nosferatu.

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Trimming percentage (%)

M
ea

n
 a

b
so

lu
te

 d
ev

ia
ti

o
n

 

 

Groundhog Day

Pulp Fiction

Fig. 6. The mean absolute deviation from ground-truth
measured at noisy pixels for two sequences.

material. TGA removes or downweights the outliers while
mostly preserving the inliers. Both algorithms from Candes
et al. [5] and De la Torre and Black [6] oversmooth the
frames and drastically reduce the visual quality of the video.
This is visually evident in the supplementary video.

Note that this is not a fully general algorithm for film
restoration but with modifications for camera stabilization
and dealing with fast-moving regions, TGA might form a
component in a film restoration system, cf. [41].

To quantify the performance of the algorithms, we
generate artificially corrupted videos by taking the detected
outliers from Nosferatu, binarizing them to create an outlier
mask, translating these masks and combining them in
random order to produce new outlier masks and then
applying them to clean frames from Hollywood movies.
This corrupts approximately 10% of the pixels. To measure
the accuracy of the different reconstructions, we measure
the mean absolute deviation between the original and the
reconstructed images at the pixels where noise was added.
This is shown in Table 1 where TGA is consistently better
than the other algorithms, though Inexact ALM does almost
equally well. For completeness, Table 1 also shows the
accuracy attained by ordinary PCA and GA (14).

These results are obtained with a pixel-wise median; i.e.
50% trimming. Figure 6 shows the impact of this parameter.
When we trim more than 10–15% we see substantial
improvements compared to no trimming.

4.2 Background Modeling

We now repeat an experiment from Candes et al. [5] on
background modeling under varying illumination conditions.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 8

Original Data TGA(50%, 80)

Inexact ALM [5] De la Torre and Black [6]

Fig. 5. Two representative frames from the 1922 film Nosferatu as well as their restoration using TGA and the
algorithms from [5], [6]. TGA removes many outliers and generally improves the visual quality of the film, while
Inexact ALM oversmoothes the results and De la Torre and Black oversmooth and introduce artifacts. This is
also seen in the absolute difference between the data and the reconstruction, which is also shown (inverted and
multiplied by 2 for contrast purposes). We also refer the reader to the supplementary video.

A static camera records a scene with walking people, while
the lighting conditions change throughout the sequence.
Robust PCA should be able to capture the illumination
difference such that the background can be subtracted.

The first sequence, recorded at an airport [42], was used
by Candes et al. [5] to compare with the algorithm from De
la Torre and Black [6]. We only compare with [5], which
was reported to give the best results.

Figure 7 (left) shows select frames from the airport
sequence as well as the reconstruction of the frame with
Inexact ALM and TGA with 50% trimming and 5 compo-
nents. See also the supplementary video. In general, TGA
gives noticeably fewer ghosting artifacts than [5].

We repeat this experiment on another video sequence
from the CAVIAR4 dataset. The results, shown in Fig. 7
(right), confirm the results from the airport sequence as
TGA(50%, 5) produces noticeably less ghosting than [5].

4.3 Shadow Removal for Face Data
We repeat the shadow removal experiment from Candes et
al. [5], which considers images of faces under different

4. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

illumination conditions, and, hence, with different cast
shadows [43]. Assuming the faces are convex Lambertian
objects, they should lie near a nine-dimensional linear space
[44]. In this model, the cast shadows are outliers that can be
removed with robust PCA. We estimate images with smooth
shading, but without cast shadows using TGA(50%, 9).

We study the same people as Candes et al. [5]. Figure 8
shows the original data, the reconstruction using different
algorithms as well as the absolute difference between images
and reconstructions. While there is no “ground truth”, both
TGA and Inexact ALM [5] remove cast shadows equally
well, though TGA keeps more of the shading variation and
specularity while Inexact ALM produces a more matte result.
Note that the theory says that a nine-dimensional subspace is
sufficient to capture most of the variance in the reflectance
of a smooth Lambertian surface under distant isotropic
illumination [44]. It does not say that it has to contain only
Lambertian reflectance, particularly if the reflectance itself
is low dimensional.

4.4 Vector-level Robustness
So far, we have considered examples with pixel-wise outliers.
For completeness, we also consider a case where the entire

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 9

Data TGA(50%, 5) Inexact ALM [5] Data TGA(50%, 5) Inexact ALM [5]

Fig. 7. Reconstruction of the background from video sequences with changing illumination; three representative
frames. Left: the airport sequence (3584 frames), which was also used in [5]. Right: a sequence from the CAVIAR
dataset (1500 frames).

Data TGA(50%, 9) Inexact ALM Data TGA(50%, 9) Inexact ALM

Fig. 8. Shadow removal using robust PCA. We show the original image, the robust reconstructions as well as their
absolute difference (inverted). TGA preserves more specularity, while Inexact ALM produce more matte results.

vector observation is corrupted. We take two 425-frame clips
from contemporary Hollywood movies (the same as in the
quantitative experiment in Sec. 4.1) and treat one clip as the
inliers. We then add an increasing number of frames from the
second clip and measure how this influences the estimated
components. We use the standard error measure, expressed
variance [3], which is the ratio between the amount of
variance captured by the estimated principal component and
that captured by the ground truth component vgt,

E(v) =
∑N

n=1(x
ᵀ
nv)

2∑N
n=1(x

ᵀ
nvgt)2

. (29)

Here we only consider one component to emphasize the
difference between the methods; for [5] we remove outliers
and then reduce to a one-dimensional subspace using PCA.
Figure 9a shows the results. Both [5] and [6] have difficulties
with this problem, but this is not surprising as they are
designed for pixel-wise outliers. Both TGA and GA handle
the data more gracefully, in particular versus PCA.

In summary GA is quite robust when there are vector-

level outliers and is a good basic alternative to PCA. When
every vector has some data-level outliers, GA performs like
PCA (Table 1), and TGA offers significant robustness.

4.5 Statistical Efficiency vs. Robustness

In Fig. 9a it is worth noting that TGA(25%, 1) performs
better than TGA(50%, 1) for a small number of outliers.
Medians are known [2] to require more observations to
give accurate answers than a non-robust average, but on the
other hand the median is maximally robust. The trimming
parameter, thus, provides a trade-off between statistical
efficiency and robustness. This is well-known for robust
estimators and it is not surprising that the TGA is affected
by this as well. Thus, one should use as low a trimming
parameter as the data allows to get as efficient an estimator
as possible; see e.g. [2] for further discussions on the matter.

Some insight into the statistical efficiency of the TGA
estimator can be gained by studying its behavior on data
with no outliers. Figure 9b shows the expressed variance as
a function of the number of observations N and the level of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 10

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

Number of observations (N)

E
xp

re
ss

ed
 V

ar
ia

nc
e

EM PCA (5 comp)
GA (5 comp)
TGA(50, 5)

a b c

d e
E

xp
re

ss
ed

 V
ar

ia
nc

e

E
xp

re
ss

ed
 V

ar
ia

nc
e

E
xp

re
ss

ed
 V

ar
ia

nc
e

Number of observations (N)Outlier Percentage (%)

Outlier Percentage (%) rank / D
0 0.2 0.4 0.6 0.8 1

O
ut

li
er

 P
er

ce
nt

ag
e 

(%
)

0

12.5

25

37.5

50
0.88

0.9

0.92

0.94

0.96

0.98

1

0.95

0.9

Outlier Percentage (%)
0 12.5 25 37.5 50

In
it

ia
li

za
ti

on
s

10

20

30

40

50

60

70

80

90

100 0.9

0.91

0.92

0.93

0.94

0.95

0.96

f

Fig. 9. (a) The expressed variance for different methods as a function of the percentage of vector-level outliers.
Note that EM PCA and Inexact ALM provide near-identical solutions. (b) The expressed variance as a function of
the number of observations N . Here the dimensionality is fixed at D = 100. The different curves correspond to
different levels of trimming. (c) Expressed variance as a function of number of samples from a known Gaussian
distribution. The results are for D = 30 dimensional data, and are averaged over 5 experiments with randomly
generated covariance matrices. (d) Expressed variance for Gaussian inliers with an increasing number of outliers.
The results are for D = 30 dimensional data, and are averaged over 50 experiments with randomly generated
covariance matrices. (e) Expressed variance (color coded from 0.86 (blue) to 1 (yellow)) as a function of the relative
rank of the inliers verses the percentage of outliers. (f) Impact of initialization is studied in TGA by measuring
expressed variance (see color code) for different random initializations.

trimming. Here the dimensionality is fixed at D = 100. In
low-sample scenarios the amount of trimming has a large
impact on the quality of the estimator. As the number of
observations increase, the impact of trimming decreases.

Throughout this paper, we consistently trim 50%; i.e.
a pixel-wise median. In some experiments slightly better
results can be attained by trimming less, but we opted for
a median to avoid parameter tuning.

4.6 Performance on Gaussian Data

Theorem 2 states that for Gaussian data, the component
estimated by GA coincides with the principal component
defined by PCA. The result is, however, only in expectation
and may not hold for finite data samples. We investigate
this empirically by sampling data from a Gaussian distri-
bution with known covariance, such that the ground truth
principal component can be estimated through an eigen-
decomposition. Figure 9c shows the expressed variance as
a function of the number of samples for both EM PCA, GA
and TGA with 50% trimming. EM PCA has slightly better
performance compared to GA, which, in turn, is slightly
better than TGA. This is to be expected as EM PCA directly
optimizes to get the principal component. TGA does slightly

worse than GA due to lower statistical efficiency as described
in Sec. 4.5. Overall GA and TGA provide results that are
very similar to PCA for Gaussian data.

4.7 Performance with Vector-level Outliers

We further measure the methods’ performance when the data
is Gaussian with vector-level outliers. We sample inliers
from a Gaussian distribution with a random covariance Σ.
Outliers are sampled from a Gaussian distribution with a
mean placed along the smallest eigenvector of Σ, giving
a consistent bias away from the principal components of
the inliers. Figure 9d shows the expressed variance for
an increasing number of outliers for EM PCA, GA and
TGA with 50% trimming. As expected, the performance of
EM PCA quickly drops, while the performance of GA drops
more slowly. TGA, on the other hand, is very robust and
attains a strong performance until the number of outliers
exceeds that of the inliers.

We repeat the experiment for TGA with inliers of varying
rank. We consider N = 1000 inliers in D = 100 dimensions
with a rank between 1 and D, and add up to N outliers for
a total of 2N observations. We estimate a robust subspace
using TGA(50%, 5). Figure 9e shows the expressed variance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 11

as a function of both rank and number of outliers. In contrast
to Fig. 9d, the expressed variance is now color coded with
yellow being 1 and dark blue being approximately 0.86.
TGA is robust over a broad range of ranks and outlier
percentages as can be seen by the contours showing robust
solutions capturing 0.9 and 0.95 of expressed variance.

4.8 Quality of Local Optima
TGA provides a locally optimal solution, which depends on
a random initialization. To understand the quality of these
optima, we sample a single set of inliers (N = 1000, D =
100), and add an increasing number of outliers as in Sec. 4.7.
Figure 9f shows the expressed variance as a function of the
outlier percentage for 100 different initializations. While
small fluctuations appear, it is evident that almost equally
good solutions are found for all initializations.

4.9 Robust vs. Orthogonal Projections
In the experiments, we estimate robust subspaces with a
basis Q ∈ RD×K , where K is the number of components
and D is the dimensionality of the data space. Data is then
projected into the subspace using orthogonal projection,

P =XQQᵀ, (30)

where X ∈ RN×D is the data matrix. This projection finds
the subspace point P closest to the original point X; i.e. a
least-squares optimization problem where (30) is the solution
[40]. As least-squares problems are sensitive to outliers, it
is reasonable to have a robust projection operator.

One such robust projection operator is derived by Black
and Jepson [40] using the Geman-McClure error function
[15]. This projection is then optimized using gradient
descent.

We have experimented with the robust operator, and find
that it provides minor improvements. We first consider a
synthetic experiment: we select an increasing number of
random pixels from the Groundhog Day sequence and make
them white, thereby adding biased outliers. We estimate
a subspace from the noise-free data, and reconstruct the
noisy data by projecting it into the subspace. We consider
both orthogonal and robust projection. We measure the
mean absolute difference between the projections from noise-
free and noisy data. Figure 10(left) shows that the robust
projection generally is better than orthogonal projection.

For non-synthetic examples we observe less of a dif-
ference. To illustrate this, we reconstruct a frame from
the Nosferatu experiment using both orthogonal and robust
projection. The data and results are given in Fig. 10(center),
where the different projections appear to give nearly identical
results. Minor differences between the methods do appear
and the figure shows the pixels where they disagree. When
the images are represented using 8 bits per pixel (i.e.
between 0 and 255), the largest observed absolute difference
between the reconstructions was 1 gray level.

As the use of a robust projection only resulted in small
improvements, we opted for the much faster orthogonal
projection throughout the paper. We speculate that the small

difference between robust and orthogonal projection is due
to the outliers having a maximal value of 255.

It is worth noting that outliers generally do not influence
the deflation estimator (15) of multiple components. After
the leading component has been subtracted from the data,
the outliers will generally still be present in the data, if the
leading component was estimated robustly. As long as a
robust subspace estimator is applied, this procedure can be
repeated until the outliers dominate the residual data.

4.10 Scalability
An important feature of the Grassmann average is that it
scales gracefully to large datasets. To show this, we report
the running time of the different algorithms for increasing
numbers of observations. We use video data recorded with
a static camera looking at a busy parking lot over a two-
day period. Each frame has a resolution of 320× 240 and
we consider up to 38, 000 frames, requiring a total of 22
GB of memory. Figure 10(right) shows the running times.
Inexact ALM [5] and the algorithm from De la Torre and
Black [6] quickly become impractical due to their memory
use; both algorithms run out of memory with more than
6000 observations. TGA, on the other hand, scales roughly
linearly with the data. In this experiment, we compute 100
components, which is sufficient to capture the variation in
the background. For comparison, we also show the running
time of EM PCA [24]. TGA is only slightly slower than
EM PCA, which is generally acknowledged as being among
the most practical algorithms for ordinary PCA on large
datasets. It may be surprising that a robust PCA algorithm
can achieve a running time that is comparable to ordinary
PCA. While each iteration of EM PCA is computationally
cheaper than for TGA, we find that the required number of
iterations is often lower for TGA than for EM PCA, which
explains the comparable running times. For 38, 000 images,
TGA(50%, 100) used 2–134 iterations per component, with
an average of 50 iterations. EM PCA, on the other hand,
used 3–729 iterations with an average of 203 iterations.

In the above, all algorithms are implemented in Matlab
and have seen the same level of code optimization. We also
have a C++ implementation of TGA that is significantly
faster than the Matlab implementation (Fig. 10 (right)).
Both implementations are available online1.

To further emphasize the scalability of TGA, we compute
the 30 leading components of the entire Star Wars IV movie.
This consists of 179,415 RGB images in full DVD resolution
(704× 306). This requires 431 GB of memory using single
precision. Computing 30 components takes 34 hours on an
AMD Opteron 6378 (64 cores) with 1TB of memory, running
at 2.4GHz, using the C++ implementation of TGA. It takes
24 hours to compute the leading 30 principal components
using a C++ implementation of EM PCA with the same
multi-threading scheme.

Figure 11 shows the leading odd-numbered components
as computed by TGA with 50% trimming. We note some
similarities between the estimated components and those
attained from the analysis of natural images [45]. An appli-
cation made possible by the scalability of the Grassmann

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 12

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Outlier percentage (%)

M
ea

n
ab

so
lu

te
de

vi
at

io
n

Orthogonal projection
Robust projection

Original data Orthogonal projection

Robust projection Thresholded difference

Fig. 10. Left: Mean absolute deviation of a reconstruction attained by different projection operators. Robust
projection generally improves results. Center: Comparison between orthogonal and robust projection. The panel
shows the data, its reconstruction using both orthogonal and robust projections, as well as the thresholded
difference between the two projections methods; when pixels are represented using 8 bits (between 0 and 255),
the maximal observed absolute pixel-difference is 1. Right: Running time of the algorithms as a function of the
size of the problem. The dimensionality is fixed at D = 320× 240 while the number of observations N increases.
TGA is comparable to EM PCA, while [5] and [6] are unable to handle more than 6000 observations.

average is the recent work on optical flow from Wulff &
Black [46]. They learn a robust basis for full-frame optical
flow using TGA on 180,000 flow fields computed from
movies. Robustness is important because the computed flow
fields contain outliers.

5 DISCUSSION
The principle idea of this work is to rephrase linear subspace
estimation directly in the space of subspaces. In particular,
we suggest to compute the average subspace spanned by
the data, i.e. the first moment on the Grassmann manifold.
As standard PCA is concerned with the second moment
of the data (covariance) our approach simplifies subspace
estimation. This is also evident in the efficient algorithm
and the ease with which robust extensions are developed.

The concept of studying the subspaces spanned by the
data (rather than the data itself) opens several new directions
which can be explored; here we discuss a few.

5.1 Choice of Metric
The general formulation of the average subspace (7) allows
for any metric on the Grassmann manifold. We picked the
Euclidean metric (10) as it both allows for closed-form
spherical averages and makes it straightforward to extend to
pixel-wise outliers. While these advantages are substantial,
other metrics may be worth investigating.

A first question is: does standard PCA compute an
average subspace under a particular metric? Standard
PCA minimizes the reconstruction error (1), which can
be rewritten as

qPCA = argmin
v∈SD−1

N∑
n=1

w2
n

(
1− cos2 (θn(v))

)
, (31)

where wn = ‖xn‖ and θn(v) denotes the angle between xn

and v. This implies that PCA computes an average subspace
under the metric

dist2PCA(xn,v) = 1− cos2 (θn(v)) . (32)

However, this is not a proper metric as it does not satisfy
the triangle inequality. It is unclear if a proper metric exists
under which standard PCA is the average subspace.

A perhaps more natural distance measure between sub-
spaces is the angle between them; this is known as the
intrinsic metric. Unfortunately, even on a sphere, the
computation of an average under the intrinsic metric requires
non-linear optimization [47]. This may limit the practical
use of the intrinsic metric.

5.2 Probabilistic Interpretation
On the Grassmann manifold Gr(1, D), it is not hard to
develop distributions of the subspaces spanned by the data.
We considered a von Mises-Fisher distribution as its mode
coincides with the Grassmann average. Other choices are
equally possible, though the choice of metric will influence
which distributions are easy to work with.

Having a distribution over subspaces has several advan-
tages not found in classic subspace estimators. It becomes
easy to specify a prior over which subspaces are of interest;
confidence intervals for the estimated subspace can be
derived, allowing hypothesis testing; new random subspaces
can be drawn from the distribution; etc.

5.3 Online Algorithms
We have not explored an online extension of the GA
algorithm, which would only see one data point at a time.
As we are only considering averages, we expect such online
algorithms exist. As central limit theorems are available on
the Grassmann manifold [38] it should be further possible
to bound the performance of such online estimators.

5.4 Non-orthogonal Components?
In our formulation, we require orthogonal subspaces when
we compute multiple components. This has computational
advantages, but it may not always be ideal. If orthogonality
is not a desired property, one can, instead of computing

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 13

Fig. 11. The leading odd-numbered principal components of Star Wars IV as computed by TGA(50%, 30)). The
top row contains components 1, 3, 5, 7, and 9 from left to right, and so forth.

averages, seek modes of the distribution of subspaces.
Finding such modes can be done, for example, with k-means
or mean-shift [48] directly on the Grassmann manifold.
These are straightforward exercises.

6 CONCLUSION
Principal component analysis is a fundamental tool for data
analysis and dimensionality reduction. Previous work has
addressed robustness at both the data vector and vector-
element level but fails to scale to large datasets. This is
troublesome for big data applications where the likelihood
of outliers increases as data acquisition is automated.

We introduce the Grassmann average (GA), which is a
simple and highly scalable approach to subspace estimation
that coincides with PCA for Gaussian data. We have further
shown how this approach can be made robust by using
a robust average, yielding the robust Grassmann average
(RGA). For a given application, we only need a robust
average to produce a suitable robust subspace estimator. We
develop the trimmed Grassmann average (TGA), which is
a robust subspace estimator working at the vector-element
level. This has the same computational complexity as the
well-known scalable EM PCA [24], and empirical results
show that TGA is not much slower while being substantially
more robust. Our implementation is available online1.

The availability of a scalable robust PCA algorithm opens
up to many new applications. We have shown that TGA
performs well on different tasks in computer vision, where
alternative algorithms either produce poor results or fail
to run at all. We can even compute robust components of
entire movies at full resolution in a reasonable time. Further,
the ubiquity of PCA makes RGA relevant beyond computer
vision; e.g. for large datasets found in biology, physics and
weather forecasting. Finally, as our approach is based on
standard building blocks like trimmed averages, it is very
easy to speedup via parallelization.

ACKNOWLEDGMENTS
Søren Hauberg is funded in part by the Villum Foundation
and the Danish Council for Independent Research (DFF),
Natural Sciences; Aasa Feragen is funded in part by the
DFF, Technology and Production Sciences. The authors are
grateful to anonymous reviewers for helpful feedback.

REFERENCES

[1] N. Campbell, “Robust procedures in multivariate analysis I: Robust
covariance estimation,” Applied Statistics, vol. 29, no. 3, 1980.

[2] P. J. Huber, Robust Statistics. Wiley: New York, 1981.
[3] J. Feng, H. Xu, and S. Yan, “Robust PCA in high-dimension: A

deterministic approach,” in International Conference on Machine
Learning, 2012.

[4] L. Xu and A. L. Yuille, “Robust principal component analysis by
self-organizing rules based on statistical physics approach,” IEEE
Transactions on Neural Networks, vol. 6, no. 1, pp. 131–143, 1995.

[5] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal
component analysis?” Journal of the Association for Computing
Machinery, vol. 58, no. 3, 2011.

[6] F. De la Torre and M. J. Black, “A framework for robust subspace
learning,” International Journal of Computer Vision, vol. 54, pp.
117–142, 2003.

[7] S. Hauberg, A. Feragen, and M. J. Black, “Grassmann averages for
scalable robust PCA,” in Computer Vision and Pattern Recognition
(CVPR), 2014.

[8] I. Jolliffe, Principal component analysis. Springer, 2002.
[9] F. H. Ruymgaart, “A robust principal component analysis,” Journal

of Multivariate Analysis, vol. 11, pp. 485–497, 1981.
[10] H. Aanæs, R. Fisker, K. Åström, and J. Carstensen, “Robust

factorization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 9, pp. 1215–1225, Sep 2002.

[11] C. Ding, D. Zhou, X. He, and H. Zha, “R1-PCA: rotational
invariant l1-norm principal component analysis for robust subspace
factorization,” in International Conference on Machine Learning,
2006, pp. 281–288.

[12] N. Kwak, “Principal component analysis based on l1-norm max-
imization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 9, pp. 1672–1680, Sept 2008.

[13] M. McCoy and J. A. Tropp, “Two proposals for robust pca using
semidefinite programming,” Electronic Journal of Statistics, vol. 5,
pp. 1123–1160, 2011.

[14] A. Naor, O. Regev, and T. Vidick, “Efficient rounding for the
noncommutative grothendieck inequality,” in Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing, ser. STOC
’13. ACM, 2013, pp. 71–80.

[15] S. Geman and D. McClure, “Statistical methods for tomographic im-
age reconstruction,” Bulletin of the International Statistical Institute,
vol. 52, no. 4, pp. 5–21, 1987.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, Oct. 1996.

[17] L. W. Z. Lin, M. Chen and Y. Ma, “The augmented lagrange multiplier
method for exact recovery of corrupted low-rank matrices,” UILU-
ENG-09-2215, Tech. Rep., 2009.

[18] R. Tron and R. Vidal, “Distributed computer vision algorithms through
distributed averaging,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2011, pp. 57–63.

[19] P. Netrapalli, N. U N, S. Sanghavi, A. Anandkumar, and P. Jain, “Non-
convex robust pca,” in Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1107–1115.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 14

[20] L. W. Mackey, A. S. Talwalkar, and M. I. Jordan, “Divide-and-conquer
matrix factorization,” in Advances in Neural Information Processing
Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger, Eds., 2011, pp. 1134–1142.

[21] R. Liu, Z. Lin, Z. Su, and J. Gao, “Linear time principal component
pursuit and its extensions using l1 filtering,” Neurocomputing, vol.
142, pp. 529 – 541, 2014, SI Computational Intelligence Techniques
for New Product Development.

[22] Y. Mu, J. Dong, X. Yuan, and S. Yan, “Accelerated low-rank visual
recovery by random projection,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2011, pp. 2609–2616.

[23] R. Arora, A. Cotter, K. Livescu, and N. Srebro, “Stochastic optimiza-
tion for PCA and PLS,” in Communication, Control, and Computing
(Allerton). IEEE, 2012, pp. 861–868.

[24] S. T. Roweis, “EM algorithms for PCA and SPCA,” in Advances in
Neural Information Processing Systems (NIPS). MIT Press, 1998.

[25] Y. M. Lui, “Advances in matrix manifolds for computer vision,”
Image and Vision Computing, vol. 30, pp. 380–388, 2012.

[26] R. Vidal, Y. Ma, , and S. Sastry, “Generalized principal component
analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 12, pp. 1945–1959, 2005.

[27] P. Favaro, R. Vidal, and A. Ravichandran, “A closed form solution
to robust subspace estimation and clustering,” in Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE,
2011, pp. 1801–1807.

[28] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 11, pp. 2765–2781, 2013.

[29] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank
representation,” in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010, pp. 663–670.

[30] J. Lee, Introduction to Smooth Manifolds. Springer, 2002.
[31] M. R. Bridson and A. Haefliger, Metric spaces of non-positive

curvature. Springer, 1999.
[32] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley, 1999.
[33] P. J. Huber, “Projection pursuit,” Annals of Statistics, vol. 13, no. 2,

pp. 435–475, 1985.
[34] F. Wang, “Space and space-time modeling of directional data,” Ph.D.

dissertation, Duke University, 2013.
[35] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.
[36] F. C. Leone, L. S. Nelson, and R. B. Nottingham, “The folded normal

distribution,” Technometrics, vol. 3, no. 4, pp. 543–550, 1961.
[37] N. I. Embleton, T. Fisher, and B. J. J. Lewis, Statistical analysis of

spherical data. Cambridge University Press, 1993.
[38] R. Bhattacharya and V. Patrangenaru, “Large sample theory of

intrinsic and extrinsic sample means on manifolds,” The Annals
of Statistics, vol. 31, no. 1, pp. 1–29, 2003.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[40] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,”
International Journal of Computer Vision, vol. 26, pp. 63–84, 1998.

[41] H. Ji, S. Huang, Z. Shen, and Y. H. Xu, “Robust video restoration
by joint sparse and low rank matrix approximation,” SIAM Journal
on Imaging Sciences (SIIMS), vol. 4, no. 4, pp. 1122–1142, 2011.

[42] L. Li, W. Huang, I. Gu, and Q. Tian, “Statistical modeling of complex
backgrounds for foreground object detection,” IEEE Transactions on
Image Processing, vol. 13, no. 11, pp. 1459–1472, 2004.

[43] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting
and pose,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 643–660, 2001.

[44] R. Basri and D. Jacobs, “Lambertian reflectance and linear subspaces,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 2, pp. 218–233, 2003.

[45] P. J. Hancock, R. J. Baddeley, and L. S. Smith, “The principal
components of natural images,” Network: computation in neural
systems, vol. 3, no. 1, pp. 61–70, 1992.

[46] J. Wulff and M. J. Black, “Efficient sparse-to-dense optical flow
estimation using a learned basis and layers,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) 2015, Jun. 2015.

[47] X. Pennec, “Probabilities and statistics on Riemannian manifolds:
Basic tools for geometric measurements,” in Proceedings of Nonlinear
Signal and Image Processing, 1999, pp. 194–198.

[48] H. Çetingul and R. Vidal, “Intrinsic mean shift for clustering on
Stiefel and Grassmann manifolds,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2009, pp. 1896–1902.

Søren Hauberg received his Ph.D. in com-
puter science from the Univ. of Copenhagen
in 2011. He has been a visiting scholar at
UC Berkeley (2010), and a post doc at the
Perceiving Systems department at the Max
Planck Institute for Intelligent Systems in
Tübingen, Germany (2012–2014). He is cur-
rently a post doc at the Section for Cognitive
Systems, at the technical Univ. of Denmark.
His research is at the interplay of geometry
and statistics.

Aasa Feragen holds a Ph.D. in mathematics
from the Univ. of Helsinki (2010) and has
since been post doc and later Associate
Professor at DIKU at the Univ. of Copenhagen.
From 2012 to 2014 she was a post doc in the
Machine Learning and Computational Biology
Research Group at the Max Planck institute
for Developmental Biology and Max Planck
Institute for Intelligent Systems, Tübingen,
Germany. Her research is on geometric mod-
eling for imaging and vision.

Raffi Enficiaud received his M.Sc. from
the National Institute of Telecommunications,
Paris-Evry, France, in 2000, and his Ph.D.
from Paris School of Mines, France, in 2007.
He worked as a research engineer for DxO
Labs, Paris and INRIA Paris-Rocquencourt
(2007-2013). He is currently running the Soft-
ware Workshop at the Max Planck Institute
for Intelligent Systems, Tübingen, Germany.
His research interests include computer vision
and image processing.

Michael J. Black received his B.Sc. from
the Univ. of British Columbia (1985), his M.S.
from Stanford (1989), and his Ph.D. from Yale
(1992). After research at NASA Ames and the
Univ. of Toronto, he was at Xerox PARC as a
member of research staff and area manager
(1993-2000). From 2000 to 2010 he was on
the faculty of Brown Univ. (Assoc. Prof. 2000-
2004, Prof. 2004-2010). Since 2011 his one
of the founding director at the Max Planck
Institute for Intelligent Systems in Tübingen,

Germany, where he leads the Perceiving Systems department.
Significant awards include the 2010 Koenderink Prize (ECCV) and
the 2013 Helmholtz Prize (ICCV). He is a foreign member of the
Royal Swedish Academy of Sciences and is a co-founder and board
member of Body Labs Inc.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2511743

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


