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APPENDIX A
PROOF OF THEOREM 2

In this appendix we prove Theorem 2.

Theorem 2. Let x ∈ TµM, where M is either the D-
sphere, the Euclidean plane, or the hyperbolic plane, follow
a zero-mean elliptical distribution with support inside the
cut-locus and finite covariance Σ. Let v1, . . . ,vD be the
eigenvectors of Σ in order of decreasing eigenvalues. Then,
the principal geodesic t 7→ Expµ(t ·v1) is a principal curve.

Proof for the Euclidean plane: The result is well-
known in the Euclidean case [1].

Proof for the sphere SD: A point on the principal
geodesic is written as

ct ≡ c(t) = Expµ(t · v1) = cos(t)µ+ sin(t)v1. (1)

An orthonormal basis of Tct
SD is given by v̂1,v2, . . . ,vD,

where v̂1 denotes the velocity of the principal geodesic at
ct. The collection of points on SD that project onto the
principal geodesic at ct can be written as

ĉ⊥(t̂) = Expct
(t̂ · v̂⊥), t̂ ∈ (−π/2, π/2), (2)

where

v̂⊥ =

D∑
d=2

wdvd, s.t. ‖v̂⊥‖ = 1. (3)

Note that the unit norm constraint can be dropped if the
domain of t̂ is changed accordingly; for our purposes this
is irrelevant. We have

ĉ⊥(t̂) = cos(t̂)ct + sin(t̂)v̂⊥ (4)

= cos(t̂) cos(t)µ+ cos(t̂) sin(t)v1 + sin(t̂)v̂⊥.

To compute the logarithm of ĉ⊥(t̂) we will need

µᵀĉ⊥(t̂) = cos(t̂) cos(t) ≡ ∆(t̂). (5)
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Fig. 1. Notation for the proof of the hyperbolic case.

With this, we compute

Logµ(ĉ⊥(t̂)) = cos−1(∆(t̂))
ĉ⊥(t̂)−∆(t̂)µ

‖ĉ⊥(t̂)−∆(t̂)µ‖
(6)

= cos−1(∆(t̂))
cos(t̂) sin(t)v1 + sin(t̂)v̂⊥

‖ cos(t̂) sin(t)v1 + sin(t̂)v̂⊥‖
. (7)

This is a point in TµSD. Expressed in the basis v1, . . . ,vD
it has coordinates Logµ(ĉ⊥(t̂)) = (t, a · w2, . . . , a · wD)ᵀ,
where

a =
cos−1(∆(t̂)) sin(t̂)

‖ cos(t̂) sin(t)v1 + sin(t̂)v̂⊥‖
. (8)

Next, we compute

Logµ(ĉ⊥(−t̂))

= cos−1(∆(t̂))
cos(t̂) sin(t)v1 − sin(t̂)v̂⊥

‖ cos(t̂) sin(t)v1 + sin(t̂)v̂⊥‖
,

(9)

which has coordinates Logµ(ĉ⊥(−t̂)) = (t,−a ·
w2, . . . ,−a ·wD)ᵀ. The symmetry of elliptical distributions
then implies that

p(ĉ⊥(t̂)) = p(ĉ⊥(−t̂)). (10)

This symmetry implies that the expectation of all points
along ĉ⊥(t̂) is ct. As this holds for any ĉ⊥, we have

E(x | projc(x) = ct) = ct (11)

and self-consistency follows.
Proof for the hyperbolic plane: Let

y1 = t · v1 + u · v2

y2 = t · v1 − u · v2

(12)
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Fig. 2. Data is distributed uniformly in a band around the equator of the unit sphere. Weights (indicated by color)
change smoothly according the z-coordinate, yet the intrinsic mean changes discontinuously.

be two points in the tangent space at µ, and let x1 =
Expµ(y1) and x2 = Expµ(y2) be the corresponding points
in the hyperbolic plane. Let p1 = Expµ(t̂1 · v1) and p2 =

Expµ(t̂2 · v1) denote the projections of x1 and x2 onto the
principal geodesic. Then (µ,x1,p1) and (µ,x2,p2) form
two right hyperbolic triangles with identical angles θ at µ.
From hyperbolic trigonometry it follows that

tanh(t̂1) = cos(θ) · tanh(‖y1‖)
tanh(t̂2) = cos(θ) · tanh(‖y2‖),

(13)

which implies that t̂1 = t̂2, i.e. x1 and x2 project to the
same point on the principal geodesic. Trigonometry further
shows

sinh(dist(x1,p1)) = sin(θ) · sinh(‖y1‖)
sinh(dist(x2,p2)) = sin(θ) · sinh(‖y2‖),

(14)

which implies that x1 and x2 are equally far away from
the principal geodesic. As p(x1) = p(x2), the average of
x1 and x2 equals the point at which they project to the
principal geodesic. Since this holds for any point pair (12),
the principal geodesic is self-consistent.

APPENDIX B
DISCONTINUOUS INTRINSIC MEANS

In Sec. 3.2 of the manuscript it is noted that a smooth
change in the weights of a weighted intrinsic mean can
cause a discontinuous change in the intrinsic mean. This
issue is best illustrated by an example.

Consider data x1:N distributed uniformly in a band around
the equator of the unit sphere. With equal weights, two
equally optimal intrinsic means are available in the form
of the poles of the sphere. We assign weights to each
observation according to its z-coordinate

wn = exp

(
− (zn − µz)2

2σ2

)
. (15)

Changing µz smoothly then causes a smooth change in the
weights. It is, however, easy to see that the intrinsic mean
is given by

µ = sign(µz)

 0
0
1

 , (16)

which changes discontinuously with µz . This is illustrated
in Fig. 2.
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