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Abstract

The Nakagami distribution describe the square root of a random variable drawn
from a Gamma distribution. Equivalently, the Gamma distribution can be seen as a
one-dimensional Wishart distribution. In this note, we consider the distribution of
the square root of a random variable drawn from a non-central one-dimensional
Wishart distribution. We present the probability density function of this distribution
along with closed-form expressions for its moments.

This document is just a short technical note. Comments can be directed at sohau@dtu.dk

1 The Nakagami distribution

Let zg ~ N(0,02),d = 1,..., D be iid samples from a zero-mean normal distribution. Then
D
r=Y 3R (L.1)
d=1

follows a Gamma distribution. Equivalently, and more suitable for our purposes, = also follows a
one-dimensional Wishart distribution [1],

z ~ Wi (D,c?) (1.2)
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This distribution can be seen as describing the squared norm of a zero-mean normally distributed
vector. The norm of this vector is then given by y = /z, which follows a Nakagami distribution [2],

y ~ Nakagami (D/2, Do) (1.4)
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This expression is easily derived by the change of value theorem; see next section.

The expectation and variance of a Nakagami distributed variable is
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var [y] = o* (D -2 (W) > : (1.7)

We will derive a more general version of these results in the next section.
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2 The non-central Nakagami distribution

Now, let zg ~ N (p1q,02),d = 1,..., D be independent samples from normal distributions with
variance o2. Then

D
z=Y z5€RT 2.1)
d=1

follows a one-dimensional non-central Wishart distribution [1],
z~ Wi (D,o% Q) (2.2)
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= WF (D/Q)_l oF1 (D/Q, 1/49072x) exp (_%> exp (_2) )

Here o F} is a generalized hypergeometric function; see Sec. 7.3 of Muirhead’s book [1]. This
distribution can be seen as describing the squared norm of a normal distributed vector with isotropic
variance. The norm of this vector is then given by y = /&, which we say follows a non-central
Nakagami distribution. This distribution can be derived by change-of-variables to be

p(y) =Wi(y’ | D, 0% Q) -2y 2.5)
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To compute the moments of /z we recall the following result from Muirhead [1, Theorem 10.3.7].
Let X € R?? and X ~ W, (D, 3, Q) then

r,(p k
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q
where 1 F is a generalized hypergeometric function. Since y = / is a positive scalar, its determinant
is merely y, and we get

E {\/52’“} - 02’“2’“%;)@@1(—&13/2, —159). 2.8)
From this we see that the mean and the variance of y = /7 is
E[Vz] = aQVzwlFl(—l/z,D/z, —1/Q) (2.9)
(D+2) /2
E[z] = 0—22%%)/)15(_19/27 —1/502) (2.10)
var [Vz] = E[z] — E[Va]? @.11)
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