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Abstract

The Nakagami distribution describe the square root of a random variable drawn
from a Gamma distribution. Equivalently, the Gamma distribution can be seen as a
one-dimensional Wishart distribution. In this note, we consider the distribution of
the square root of a random variable drawn from a non-central one-dimensional
Wishart distribution. We present the probability density function of this distribution
along with closed-form expressions for its moments.

This document is just a short technical note. Comments can be directed at sohau@dtu.dk

1 The Nakagami distribution

Let zd ∼ N (0, σ2), d = 1, . . . , D be iid samples from a zero-mean normal distribution. Then

x =

D∑
d=1

z2d ∈ R+ (1.1)

follows a Gamma distribution. Equivalently, and more suitable for our purposes, x also follows a
one-dimensional Wishart distribution [1],

x ∼ W1(D,σ2) (1.2)

p(x) =W1(x | D,σ2) =

√
xD−2

2D σ2D
Γ (D/2)

−1
exp

(
− x

2σ2

)
. (1.3)

This distribution can be seen as describing the squared norm of a zero-mean normally distributed
vector. The norm of this vector is then given by y =

√
x, which follows a Nakagami distribution [2],

y ∼ Nakagami
(
D/2, Dσ2

)
(1.4)

p(y) = Nakagami
(
y | D/2, Dσ2

)
=

2

Γ (D/2) (
√

2σ)D
yD−1 exp

(
− y2

2σ2

)
. (1.5)

This expression is easily derived by the change of value theorem; see next section.

The expectation and variance of a Nakagami distributed variable is

E [y] =
Γ
(
D+1
2

)
Γ
(
D
2

) √2σ (1.6)

var [y] = σ2

(
D − 2

(
Γ ((D + 1)/2)

Γ (D/2)

)2
)
. (1.7)

We will derive a more general version of these results in the next section.
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2 The non-central Nakagami distribution

Now, let zd ∼ N (µd, σ
2), d = 1, . . . , D be independent samples from normal distributions with

variance σ2. Then

x =

D∑
d=1

z2d ∈ R+ (2.1)

follows a one-dimensional non-central Wishart distribution [1],

x ∼ W1(D,σ2,Ω) (2.2)

Ω =

∑D
d=1 µ

2
d

σ2
(2.3)

p(x) =W1(x | D,σ2,Ω)

=

√
xD−2

2D σ2D
Γ (D/2)

−1
0F1

(
D/2, 1/4Ωσ−2x

)
exp

(
− x

2σ2

)
exp

(
−Ω

2

)
.

(2.4)

Here 0F1 is a generalized hypergeometric function; see Sec. 7.3 of Muirhead’s book [1]. This
distribution can be seen as describing the squared norm of a normal distributed vector with isotropic
variance. The norm of this vector is then given by y =

√
x, which we say follows a non-central

Nakagami distribution. This distribution can be derived by change-of-variables to be

p (y) =W1(y2 | D,σ2,Ω) · 2y (2.5)

=
yD−1

2(D−2)/2 σD Γ (D/2)
0F1

(
D

2
,Ω

y2

4σ2

)
exp

(
− y2

2σ2

)
exp

(
−Ω

2

)
. (2.6)

To compute the moments of
√
x we recall the following result from Muirhead [1, Theorem 10.3.7].

Let X ∈ Rq×q and X ∼ Wq(D,Σ,Ω) then

E
[
(det(X))k

]
= (det(Σ))k2qk

Γq(D/2 + k)

Γq(D/2)
1F1(−k,D/2,−1/2Ω), (2.7)

where 1F1 is a generalized hypergeometric function. Since y =
√
x is a positive scalar, its determinant

is merely y, and we get

E
[√

x
2k
]

= σ2k2k
Γ(D/2 + k)

Γ(D/2)
1F1(−k,D/2,−1/2Ω). (2.8)

From this we see that the mean and the variance of y =
√
x is

E
[√
x
]

= σ2
1/2 Γ((D+1)/2)

Γ(D/2)
1F1(−1/2,D/2,−1/2Ω) (2.9)

E [x] = σ22
Γ((D+2)/2)

Γ(D/2)
1F1(−1,D/2,−1/2Ω) (2.10)

var
[√
x
]

= E
[
x
]
− E

[√
x
]2

(2.11)

=
σ22

Γ(D/2)

(
Γ

(
D + 2

2

)
1F1(−1,D/2,−1/2Ω)

− Γ((D+1)/2)2

Γ(D/2)
1F1(−1/2,D/2,−1/2Ω)2

)
.

(2.12)
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