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Abstract. Tractography in diffusion tensor imaging estimates connec-
tivity in the brain through observations of local diffusivity. These obser-
vations are noisy and of low resolution and, as a consequence, connections
cannot be found with high precision. We use probabilistic numerics to es-
timate connectivity between regions of interest and contribute a Gaussian
Process tractography algorithm which allows for both quantification and
visualization of its posterior uncertainty. We use the uncertainty both in
visualization of individual tracts as well as in heat maps of tract loca-
tions. Finally, we provide a quantitative evaluation of different metrics
and algorithms showing that the adjoint metric [8] combined with our
algorithm produces paths which agree most often with experts.

1 Introduction

Diffusion tensor imaging (DTI) is a non-invasive imaging technology generating
a global mapping of local brain diffusivity. DTI estimates, in each voxel, the
local directional probability of water molecule displacement, represented as a
tensor field. Assuming high diffusion along brain fibers, global connections can
be estimated by integrating the tensor field, a process referred to as tractography.

Shortest path algorithms for tractography are useful for quantifying structural
brain connectivity between regions of interest (ROIs), as needed for structural
brain connectivity graphs. Due to low resolution and a low signal-to-noise ratio,
one cannot find connections with high precision. Quantification and interpreta-
tion of the uncertainty of solutions is thus an important problem [18]. We use
probabilistic numerics [12] both to estimate connectivity in the form of tracts
connecting ROIs, and to quantify and visualize the tracts and their uncertainty.

We apply a recent algorithm [12] to infer a distribution of possible solutions
to shortest path problems in tractography. This distribution is represented as
a Gaussian Process (GP) over the solution to an ordinary differential equation
(ODE). GPs offer novel ways to quantify and visualize uncertainty arising from
the numerical computation, and allow marginalization over a space of feasible
solutions. This has two strong advantages: 1) the inclusion of quantified numer-
ical uncertainty into the final tractography result gives a more honest view of
the accuracy of the algorithm; and 2) visualizing the uncertainty emphasizes the



fact that the shortest paths solutions found are not real fibers in the brain, but
mathematical abstractions of probable connectivity.

Contribution and organization. In Sec. 1.1 we provide a brief overview of
tractography. We then present the suggested algorithm for tractography based
on a probabilistic numerical solution to the ODEs arising when a Riemannian
metric is estimated from the diffusion tensors (Sec. 2). This gives a distribution
of possible shortest paths in the form of a GP. We then show new visualization
techniques emerging from the availability of the uncertainty of the GP solution
(Sec. 3). Finally, the same section provides results from a quantitative analy-
sis demonstrating that the adjoint metric [8] combined with GP ODE solvers
produces shortest paths matching best to expert annotations compared to state-
of-the-art in shortest path tractography.

1.1 Background and Related Work

Current tractography methods are either fiber tracking or shortest path methods.

Fiber tracking methods greedily trace the most probable path in any
direction from a chosen seed until a stopping criterion is met. Deterministic
fiber tracking algorithms [2] trace paths by following a non-stochastic rule, while
probabilistic algorithms [15] randomly sample different directions in each step
and continue forward from the best one(s).

While popular, these methods suffer from two problems. 1) Exploratory
tracking methods continue tracing out a path until the algorithm no longer
knows where to go. Because of this, many tracking algorithms either get lost in
low-connected areas or in areas with crossing fibers. 2) Voxels near the start-
ing region are explored more thoroughly than voxels far away. Some parts of
the brain can, thus, be under-explored. This not only introduces a bias towards
paths close to the starting region, but may also have the effect that the opti-
mal path is never explored. This is particularly important when tractography is
used to generate structural connectivity networks between ROIs for population
studies of brain networks. Weak connections will be far less reliably estimated
than strong ones, meaning that any graph analysis performed on the resulting
network is biased towards finding differences in strong connections.

Shortest path methods tackle these problems by specifically computing
connections between ROIs rather than connections from a seed. To derive efli-
cient algorithms, optimal connections are often defined as shortest paths under
a Riemannian metric, which is inversely proportional to the local diffusion ten-
sor [13,14]. This way, local steps of short length correspond to local steps of large
diffusion. While multiple shortest paths might exist between two given voxels,
only one solution is obtained. Hence, many voxels are considered (cf. Fig. 3).
In more detail, from the diffusion tensor D; at voxel i, a local distance measure
dist®(a,b) = a;(a—b)TD; *(a—b) is defined. Here q; is a per-voxel scaling factor,
where most commonly «; = 1 [13,14]. Hao et al. [11] argue that a per-voxel scal-
ing is needed and provide a numerical scheme for computing «;. Fuster et al. [8]
show that shortest paths only correspond to free Brownian motion under the



implied Riemannian metric when «; = det D;. This is called the adjoint metric.
We investigate this choice further in the empirical evaluation (Sec. 3).

Discrete shortest path methods construct a graph with vertices corre-
sponding to voxel positions, edges between neighboring voxels, and edge length
defined according to the local distance measure. Shortest paths can then be
found either using Dijkstra’s algorithm [14] or fast marching methods [16]. This
is computationally efficient, but suffers from discretization errors as the shortest
paths are restricted to go through the voxels.

Continuous shortest path methods smoothly interpolate the per-voxel
metric tensors M; = «;D; ! to form a continuous metric space. The shortest
path from a to b can then be found by solving the following system of ODEs [13]
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where vec M € R? stacks the columns of M and ® is the Kronecker product.
The solution is a continuous curve c : [0,1] — R3, so discretization issues are
avoided. Unlike discrete methods, the solution found by the numerical solver
might only provide a locally optimal path. This concern, along with their ease
of implementation, has made discrete methods the most common solution in
shortest path tractography [8,11,14,16].

Non-trivial ODEs such as (1) cannot be solved analytically. Traditional nu-
merical algorithms return a point estimate in the solution space of all curves
agreeing with the finitely many evaluation points of the ODE. This might lead
to the impression that this is the true solution rather than an uncertain approx-
imation. GP ODE solvers return a more accurate picture in this regard.

2 Methodology

We propose a probabilistic continuous shortest path tractography algorithm.
Similarly to Lenglet et al. [13] we form a continuous Riemannian metric through
trilinear interpolation of the metric tensors given at voxel locations. We then
provide a method for solving Eq. (1) numerically which gives explicit estimates
of the uncertainty of the solution.

2.1 Probabilistic ODE Solvers

The central idea in recent work on probabilistic solvers for ODEs is to assign a
prior probability distribution over possible solutions to the ODE, then iteratively
refine it to a posterior distribution by repeatedly evaluating the ODE at test
inputs. For algebraic as well as conceptual reasons [4], GPs are a preferable
choice for the prior distribution. We first review GPs and then discuss their
application in ODE solvers.



Review of GP regression. A Gaussian Process GP(c; 1, k) [17] is a prob-
ability distribution over real-valued functions ¢ : R — R such that any finite re-
striction to function values {c(t1),...,c(tn)} has a Gaussian distribution. GPs
are parameterized by a mean function g : R — R and a covariance function
k:R x R+ R. GPs are closed under linear transformations; a linear operation
@ induces a distribution over @c as GP(Pc; Pu, PkPT), where T denotes appli-
cation of @ to the left. Given observations (T,Y) = [(t1,41),---, (tn,yn)]T of
likelihood N (y; ®c, 0*1), the posterior over ¢ is a GP(c; i, lNc) with

A(t) == pu(t) + k(t, T)ST (Pkrr®T + o?1)~H(Y — du(T)) (2)
k(t,u) == k(t,u) — k(t, T)®T (PkprdT + o21) " Pk(T, u), (3)

where (kr7)i; := k(t;,t;) is the covariance matrix of input locations [17, §2.2].
Fig. 1 illustrates the concept with a GP pos-
terior belief GP(c; fi, k) (green) and its deriva-
tive GP(dc;dfi, OkAT) (orange). Bold lines
show posterior mean and filled areas show
point-wise two times the standard deviation.
The posterior was generated from 5 observa-
tions (black). Beliefs over multi-output func- \

tions ¢ = [¢i(t)],s = 1,...,D can be con- GP(dc; Ofi, OkAT)
structed through vectorization. If the covari-

ance structure is assumed to factorize between Fig. 1. GP example.
inputs and outputs

cov(es(t), e;(w)) = Vi - k(t,w), (4)

then the belief over ¢ can be written as p(c(t)) = GP(¢; pe, V@K). (The important
special case V' =TI amounts to independent GP priors for each dimension of ¢).
The covariance structure determines the regularity and uncertainty of the curve.

GP ODE solvers. In [12], Hennig & Hauberg studied a framework, origi-
nally envisioned by Skilling [19], for obtaining a posterior probability distribution
p(c) over the solution ¢ to an ODE like Eq. (1). The general concept was also
recently analyzed by Chkrebtii et al. [4]. It works as follows.

Since differentiation is a linear operation, a GP distribution on ¢ induces a GP
belief on its derivatives, if the mean and kernel functions are sufficiently smooth.
One can now repeatedly construct an estimate ¢(t;) for the true solution ¢(t;) to
the ODE and use it to construct approximate observations y; = f(é(t;), 9¢(t;))
of 8%c(t;). As ¢(t;) is only an approximation to the true solution c(¢;), the ob-
servation y; is imprecise up to some error that, in this framework, is estimated
by propagating the current uncertainty over ¢ through the ODE:

At step 4, assume a current posterior p(c) = GP(c; jit, l;:’) We construct the
estimates ¢ and O¢ as the current “best guess”, the mean: [¢, 9¢] = [f(t;), Ofu(t;)].
The estimate for the error of this guess is the current marginal variance

G+, K (ts, t;) %
cov | £ ( i) ) - i t=t; —. 5 (5)
oct(t;)) — | 2kltti) 92k (t,u) =4
ot t=t; otou tu=t;




Assuming we have access to upper bounds or other estimates U > 9f/sc and
U’ > 9f/ac on the gradients of f, we can use X' to construct an estimate
for the error on y; as [U, U’|TXU,U’] =: A%, which gives a likelihood function
p(yi | 0%c(ti)) = N (ys; £(&, 0¢%), A%). Using (2) and (3), the belief can be updated
to obtain i+, k1, and the process repeats.

GP ODE:s for tractography. For the DTT shortest path problem (1), we
make the following specific choices: For the prior covariance we use the Kronecker
form of (4), with a Gaussian kernel k(¢;,¢;) = exp [—(t; — t;)?/(2A?)], which has
one free model parameter, the length scale A. In contrast to [12], we estimate
both V and A with a marginal moment matching method instead of evidence
maximization [17, §2.3], which allows for more adaptive solutions. Like [12], we
include boundary conditions analytically in the prior belief as direct observations
of ¢ with vanishing noise, using a regular grid with 2N observations spread over
the domain ¢ = [0, 1]. We initialize the prior mean for the solver from a discrete
shortest path vg = a,v1,...,uy = b, which we pre-process with a GP least-
squares smoother (with a square exponential kernel function, whose parameters
are optimized using evidence maximization [17, §5.3] separately for each output
dimension). This gives a smooth prior mean function for the GP solver.

GP ODE solutions. The output of the ODE solver is a posterior GP belief
GP(c; fi, k). The repeated linear extrapolation to construct the &(t;) in the GP
solver is structurally very similar to Runge-Kutta methods [10], but does not
afford the strong analytic guarantees of those classic solvers. However, this al-
gorithm, at any point during its runtime, retains a joint, consistent probability
distribution over one locally distinct solution ¢ and all its derivatives (cf. Fig. 1),
from which joint samples (candidate solutions for the ODE) can be drawn. In
contrast, classic solvers only return a single joint point estimate for ¢, with local
error estimates that do not allow joint sampling.

3 Experiments

Data. Tractography was performed on pre-processed diffusion data of 40 sub-
jects provided as a subsample from the Q3 release of the Human Connectome
Project (HCP) [6,7,9,20]. The pre-processed HCP diffusion data contains 270
diffusion directions distributed equally over 3 shells with b-values = 1000, 2000
and 3000 s/mm? [20]. DTI tensors for each voxel were computed with dtifit [1].
Segmentation was performed with FAST [22]. The cortico-spinal tract (CST)
used for experiments was obtained from the expert annotated Catani tract at-
las [3]. ROT atlases were constructed in “template space” by overlapping the tract
atlas with regions defined by the Harvard-Oxford cortical and sub-cortical at-
las [5] using the overlap with the brainstem, the hippocampus and the amygdala
for one region, and the overlap with the superior frontal gyrus, the precentral
gyrus and the postcentral gyrus for the second region. The warp fields provided
by HCP were used to warp the ROIs from “template space” to “subject spaces”.

Evaluation. We subsample 250 pairs of points at random from the ROIs
for all 40 subjects and compute the discrete and continuous shortest paths. To
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Fig. 2. Box plot of the evaluation score of different methods under different metrics.

compare the quality of the solutions we compute the set of voxels each path
passes through. Taking the Catani atlas as a reference we measure accuracy
defined as the percentage of voxels which are classified as belonging to the CST
by at least one expert. We evaluate both the standard inverse metric [13,14] and
the adjoint metric [8]. Fig. 2 shows the results for all 40 subjects.

Discrete (adjoint) Discrete (inverse) GP ODE (adjoint) GP ODE (inverse)

Fig. 3. Top: Geodesics under the inverse [13,14] and the adjoint metrics [8] in the right
CST. Blue area shows voxels in the Catani atlas which at least one expert considered
to be part of the tract. By considering different endpoints, bifurcating tracts can be
discovered (1°* and 3™ figure). Bottom: Density of discrete (left) and continuous
(right) paths using two different metrics. CST of the Catani atlas as defined by at least
one expert as reference (blue). Also see the supplementary material®.

Fig. 3 shows example paths from both algorithms and metrics computed on
a single subject. The supplementary material* further contain an animation of
samples from the GP solutions. Additionally, by counting the number of discrete
paths going through each voxel, we produce a 3D density of paths. For each GP
posterior we sample several curves, and proceed as in the discrete case. Fig. 3

* http://probabilistic-numerics.org/0DEs.html


http://probabilistic-numerics.org/ODEs.html

shows a 2D heat map slice of the 3D density, chosen via principal component
analysis to contain maximal variance.

4 Discussion and Conclusion

We use probabilistic numerics to compute shortest paths for tractography. This
captures the uncertainty inherent in the shortest path computation which can
be used when visualizing the results. Sampling and averaging from the GP pos-
terior allows us to marginalize over its uncertainty. We utilize this to generate
heat maps of path densities. Compared to discrete methods, these heat maps
appear smoother due to marginalization, but also sharper due to the continuous
description of the sampled solutions.

Fig. 3 shows the classic “spaghetti plot” used for visualizing tractography re-
sults. The discrete solutions show tendencies to straight line segments connected
by rather sharp turns which cannot solely be explained by the discretization
error. In general, the continuous solutions bend less drastically, as we would
expect from actual fibers. The figure only shows the mean function of the GP
estimates of the geodesics; the supplements contain an animation of the
uncertainty?. This provides a visualization of the solutions which makes it very
clear that individual paths cannot, and should not, be interpreted as individual
fibers in the brain — a common misinterpretation of “spaghetti plots”.

We introduce a quality measure to compare different methods. First, we
compare the standard inverse metric [13,14] to the recently suggested adjoint
metric [8]; empirical results show that the theoretically strong adjoint metric is
consistently better. Secondly, we find that the GP posteriors agree with experts
slightly more often than the discrete solutions. Generally, samples from the pos-
terior score lower than the mean prediction, but this is to be expected since the
Gaussian distribution puts non-zero probability mass everywhere.

A general disadvantage of shortest path tractography is that there will always
be some path connecting any two points, whether it is anatomically there or not.
This can be alleviated to some extent by discarding improbable paths.

Recent work by Wassermann et al. [21] illustrates that GPs form a partic-
ularly useful representation of shortest paths for population studies of brain
connectivity. Our GP solution to the tractography problem lends itself particu-
larly well to this type of population analysis as it avoids the post-hoc GP fitting
used by Wassermann et al. This will be further investigated in future work.
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