
Multi-chart flows

Dimitris Kalatzis∗
dika@dtu.dk

Johan Ziruo Ye∗
ziruoye@gmail.com

Jesper Wohlert∗
jesper@wohlert.nu

Søren Hauberg∗
sohau@dtu.dk

Abstract

We present Multi-chart flows, a flow-based model for concurrently learning topo-
logically non-trivial manifolds and statistical densities on them. Current methods
focus on manifolds that are topologically Euclidean, enforce strong structural priors
on the learned models or use operations that do not scale to high dimensions. In
contrast, our model learns the local manifold topology piecewise by “gluing” it
back together through a collection of learned coordinate charts. We demonstrate
the efficiency of our approach on synthetic data of known manifolds, as well as
higher dimensional manifolds of unknown topology, where we show better sample
efficiency and competitive or superior performance against current state-of-the-art.

1 Introduction

Normalizing flows [25, 29] provide an elegant framework for modelling complex, multimodal
probability distributions. Normalizing flows comprise a base distribution PU on a latent space
U and a diffeomorphism (a smooth bijection with a smooth inverse), which provides a 1-to-1
mapping of points in the data space to the latent space x = f(u) according to this base distribution.
The marginal likelihood of a data point can be computed via the change of variables formula
p(x) = p(u)|det Jf (u)|−1 = p(u)|det Jf−1(x)|. Typically, the base distribution PU is chosen to be
a standard normal or a uniform distribution, which are defined in Euclidean space.

Real world data, however, often lie on a manifold, with examples including protein structures [2, 14],
geological data [18, 28] or graph-structured and hierarchical data [31, 32]. Diffeomorphisms, being
bijections between smooth manifolds, preserve the topology of their domain and therefore modelling
the density of manifold-valued data is a known failure mode of flows, due to the topological mismatch
between the target distribution PX? and the base distribution PU [6–8]. In response, recent works
have constructed flows for specific manifolds, such as tori, spheres and hyperbolic spaces [3, 30].

Still, in many realistic situations one may not know the topology of a given data set a priori, but
one may reasonably assume an underlying manifold structure. Such cases generally fall under
the manifold hypothesis [11], an important heuristic in machine learning, which states that high
dimensional data can be described by a low dimensional submanifold embedded in the observation
space. So the question then emerges: Can flow models learn the shape of a data manifold along with
a probability density function on it? Works that provide an answer to this question can be roughly
divided between those that leverage known local geometric information of the manifold [10, 21, 22]
and those that learn its topological structure [4]. Our contribution falls in the latter category.

We present Multi-chart flows, a model that leverages the class of functions typically learned by flow
models to learn a collection of smooth coordinate charts that cover the data manifold. Unlike existing
methods, we learn data manifolds with complex (non-Euclidean) topologies, which in turn improves
our density estimates (Fig. 1). Furthermore, in contrast to methods that depend on local geometry,
our model scales to high dimensional data and is able to achieve competitive or superior performance
in all tasks with better sample efficiency and faster runtimes than most of our baselines.

∗Section for Cognitive Systems, Technical University of Denmark

Preprint. Under review.

ar
X

iv
:2

10
6.

03
50

0v
1

 [
cs

.L
G

]
 7

 J
un

 2
02

1

Ground truth Multi-chart flows M-flow [4] Figure 1: A bimodal distribution on
a sphere. Unlike our model, the Eu-
clideanM-flow model struggles to
push probability mass to cover both
modes.

2 Topological manifolds and smooth structures

To make subsequent exposition clearer we will briefly review a few basic notions. We begin with the
definition of a topological manifold since any smooth manifold is also a topological manifold.

Definition 1 A topological manifoldM of dimension N is locally Euclidean, i.e. each point ofM
has a neighborhood which is homeomorphic to an open subset of RN .

We can now formalize the “locally Euclidean” property of a topological manifold by introducing the
notion of local coordinate charts onM.

Definition 2 Given an N -dimensional topological manifoldM, a coordinate chart onM is a pair
(U, φ), where φ : U → Û is a homeomorphism between the open subsets U ⊂M and Û ⊂ RN .

Figure 2: Smoothly compatible charts.

To have local coordinates for every point onM
we can define a collection of coordinate charts
that coversM. This collection is called an at-
las and it is denoted by A. These definitions
are enough2 to concretely define the topology
of a manifoldM. However, in order to define
smooth functions, continuous densities and per-
form gradient-based optimization on M, we
need to impose further structure on it, which
will allow the use of differential forms. In par-
ticular, we need to impose a smooth structure.

We first require that our charts be smooth, in
the sense that for a function f : M → R, the
composition f ◦ φ−1 : Û → R is smooth. Fur-
thermore, given two coordinate charts (U1, φ1), (U2, φ2) if U1 ∩ U2 6= ∅, the composition φ2 ◦ φ−11
is called the transition map between φ1 and φ2 and is a homeomorphism since it’s composed from
homeomorphisms. Two charts are called smoothly compatible if their transition map is a diffeomor-
phism, i.e. a smooth bijection with a smooth inverse (see Fig. 2). If all coordinate charts within an
atlas A are smoothly compatible, then A is called a smooth atlas. If furthermore, A contains all
smoothly compatible charts then A is called maximal. We are now ready to give the definition of a
smooth structure on a topological manifold.

Definition 3 Given a topological manifoldM, a smooth structure onM, is a maximal smooth atlas.

In practice, when “gluing” together a collection of multiple smoothly compatible charts, it is
sufficient to choose the maximal smooth atlas A to be the atlas which contains all of these charts.

3 Multi-chart Flows

We now present our main contribution, Multi-chart flows (MCF). We introduce the model of the
generative process we are considering and subsequently discuss details on inference and training.

2A topological manifold is also a Hausdorff space and it is second countable but we omit these conditions
from the definition as they are not relevant for the setting we are considering.

2

h�1

c1

c2

��1
2

��1
1

Figure 3: Overview of the generative process proposed in Multi-chart flows. The base distribution on
a lower dimensional Euclidean space is transformed by a flow, h−1. Each point is then mapped onto
a manifold embedded in a higher dimensional space through its corresponding coordinate chart based
on its distance to the nearest chart center.

3.1 Model specification and generative process

We are considering a data manifoldM of dimension d, embedded in some Euclidean space RD with
d� D. We will think of densities onM as arising from transforming points in its coordinate patches,
Ûi ⊂ Rd. These points are themselves a result of a diffeomorphism h : Rd → Rd, which transforms
a simple base distribution defined in Rd, such as a standard Gaussian or a uniform distribution. We
furthermore segment Rd into N local neighborhoods Ûi. We represent these with points ci in Rd,
which we consider the centers of Ûi. We then “assign” a diffeomorphism to each such neighborhood
to construct local coordinate charts (Ûi, φi).

We now turn our attention to the generative process we seek to model. We begin by first sampling
from our base distribution PŨ and then transform points with h−1:

u = h−1(ũ), where ũ ∼ PŨ (1)
We compute pairwise distances with neighborhood centers ci for all transformed points u, find the
closest neighborhood center for each point and then map it onto the manifold with the corresponding
coordinate map φ−1i : Ûi →M:

x = φ−1k (u), where k = arg min
i
{||u− ci)||22}Ni=1 and x ∈M ⊂ RD. (2)

3.2 Inference

The inference process for MCF is similar to established flow models. The generative model is
inverted in order to map the observed data distribution to the base distribution in latent space. For N
coordinate charts, the defined generative process induces a density on the embedded data manifold:

pM(x) =

N∑
i=1

p(u)|detGi(u)| − 1/2 = p(u)|detGk(u)| − 1/2, (3)

where p(u) is the density in U ⊂ Rd and Gi = (Jφ−1
i

)>Jφ−1
i

the metric tensor induced by the

embedding φ−1i with the corresponding Jacobian matrix Jφ−1
i
∈ Rd×D. For ease of computation, we

define this density to be 0 when i 6= k in the sum in eq. 3, where k is defined in eq. 2. The density in
U is a simple application of the typical change of variables and expands as usual:

p(u) = p(ũ)|det Jh−1(ũ)|−1 = p(h(u))|det Jh(u)|. (4)
Finally the complete log likelihood on the data manifold is given by:

log pM(x) = log p(h(φk(x))) + log |det Jh(φk(x))| − 1

2
log |detG(φ−1k (x))|. (5)

While formally a coordinate chart is defined as a homeo- or diffeomorphic map, we can construct it
as an embedding, i.e. an injective map which preserves the topology of its domain and as such, it is
invertible with respect to its codomain. With regard to the embedded manifold, our injective maps
still function as coordinate charts. To construct such a map we append D − d zeros to u and map
to RD with φ−1. We denote this “augmented” variable by u′ = [u0, . . . , uD, 0, . . . , 0]> and for the
remainder of the paper we will use this symbol to refer to this construction.

3

3.3 Introducing a lower bound to the density

While the determinant term in eq. 5 can be computed exactly, it involves evaluating the metric tensor
G, which is prohibitively expensive even for a modest number of dimensions, since computing the
determinant is an O(d3) operation. We introduce a lower bound to the log likelihood by replacing the
determinant with the trace of G which is an O(d) operation. A sketch of a proof follows. For a more
complete proof see Appendix A. Denoting the singular values of Jφ−1 by {si}di=1 we have:

log p(x) = log p(u)− 1

2
log det |G(u)| = log p(u)− 1

2

∑
i

log s2i . (6)

Using Jensen’s inequality we can bound this density by:

log p(x) ≥ log p(u)− 1

2
log
∑
i

s2i = log p(u)− 1

2
log Tr[(Jφ−1(u))>Jφ−1(u)]. (7)

We can compute the trace efficiently using Hutchinson’s estimator [16] finally arriving at:

log p(x) ≥ log p(u)− 1

2
logEp(v)

[
||v>Jφ||22

]
, with v ∼ N (0, ID). (8)

Alternatively, since we construct φ : RD →M⊂ RD such that u′ 7→ φ(u′), we can apply a coarse-
grained approximation 1

2 log det |G(u)| ≈ log det |Jφ−1 | of the transformed volume from U toM.

3.4 Training

To compute the likelihood of a data point x we must determine which coordinate chart needs to be
inverted to map x to the latent space U or inversely, which coordinate chart gave rise to x. This
information is not readily available, since we segment the latent space instead of the observation space.

One solution to this problem is by having an ‘oracle’, which accurately approximates the inverse of a
coordinate chart given a data point. Given a large and flexible enough family of mappings, the chart
inverses can be approximated reasonably well for all practical purposes. We use continuously indexed
flows (CIFs) [6] to act as an ‘oracle map’. Whereas typical flows represent a single diffeomorphism
x = f(u), CIFs represent a whole family of indexed diffeomorphisms {F (u;a)}a∈A. The indices
are continuous and are represented by variables a ∈ RdA . We note that a separate unrestricted
encoder network should also perform well in this task.

Brehmer and Cranmer [4] showed that for manifold probabilistic models it is desirable to split
training into a manifold learning phase, where the model learns to reconstruct the manifold, and
then a density learning phase, where the parameters of the probabilistic model are learned on the
converged reconstruction. This increases robustness of training with better convergence rates and
local optima. We follow the same approach, where in the reconstruction phase we train only the chart
maps, i.e. φ and φ−1 on the following mean squared error loss.

LR =
1

M

M∑
i=1

||xi − φ−1(φ(xi))||22, (9)

where M is the number of samples in a batch. While in the manifold learning phase we train only the
h transform on the u coordinates by maximum likelihood. This way we restrict the evaluation of the
negative log likelihood on the learned manifold:

LM = − 1

M

M∑
i=1

log p(ui) = − 1

M

M∑
i=1

log p(φ−1(xi)) (10)

Beyond the advantages mentioned above, further benefits of this scheme include avoiding evaluating
the metric tensor during training (since the coordinate maps φ are trained on the reconstruction error
eq. 9) and also having a method to evaluate the likelihood of points close to the submanifold in the
observation space by first projecting them onto the manifold.

4

Target MCF (ours) NMODE [21] NCPS [30]

Figure 4: Density estimation on the sphere S2 visualized via the Mollweide projection.

Target MCF (ours) NMODE [21] WHC [3]

Figure 5: Density estimation on the hyperboloid H2 projected on the Poincaré disk.

4 Related work

Learning the manifold structure. The work closest to ours is that of Brehmer and Cranmer
[4]. They, too, split training into two distinct phases. Initially they learn the data manifold via an
embedding g : M → RK , which can be considered a composition f ◦ φ with φ : M → RD the
manifold chart and f : RD → RK an injective map. Then they learn the density on the manifold via a
transformation h : RD → RD. A crucial limitation is that the data manifold is assumed to be covered
by the single chart φ, i.e. it is homeomorphic to Euclidean space. The model, thus, cannot represent
non-trivial manifolds. Lou et al. [21] proposed another closely related method treating the exponential
map as a chart. Since the exponential map exp : TxM→M is a local diffeomorphism between
the (Euclidean) tangent space at x and the manifoldM, it is treated as a chart φ centered at x. They
learn a vector field in TxM by solving a local ODE for a short time interval [ts, te], which is mapped
toM by the expmap. They use the inverse chart, log : M → Tx′M, to map to the new tangent
space centered at x′ and repeat the process. In principle, this scheme is general, but in practice, the
exponential and logarithmic maps are prohibitively expensive for high dimensional manifolds.

Flows on fixed manifolds. A related body of work pertains to flows on manifolds with a priori
known topological structure. Rezende et al. [30] construct flows defined on circles, tori and spheres
through projective transformations, as well as by adapting Euclidean models, such as autoregressive
flows [24] and spline flows [9, 23]. Flow-based models defined in hyperbolic space were presented
by Bose et al. [3], wherein two variants are proposed, which use parallel transport of vectors and
repeated calls to the exponential and logarithmic maps to map between the tangent bundle and the
manifold. A more general method of learning a flow on a manifold was proposed by Gemici et al.
[13], which assumes knowledge of a coordinate chart φ :M→ RD and an embedding g :M→ RK
with D < K. A limitation here is thatM needs to be homeomorphic to RD, since it is described by
a single chart. When φ and g are learned we arrive at the models presented by Brehmer and Cranmer
[4]. We generalize this setting by learning transformations between patches of the manifoldM and
subsets of Euclidean space RD.

5

Fires Earthquakes
MCF 0.46± 0.001 0.24± 0.004

NMODE −0.78± 0.003 −0.93± 0.001
NCPS −1.14± 0.004 −1.32± 0.002

Figure 6: Density estimation results on real world densities. Left: the learned density of the fires
and earthquakes geological data as distributions on a sphere. Green denotes training points, while
red denotes evaluation points. Right: kernel density estimation for samples drawn from the model.
Higher is better

5 Experiments

5.1 Qualitative experiments: Estimation of synthetic densities on 2D manifolds

For our first experiment we trained our model, denoted MCF, on synthetic densities on 2D manifolds
of well studied topology: the sphere S2 and hyperbolic space H2. Our baselines were chosen among
models that encode topological information as structural priors by way of a prescribed chart to
access the manifold and models that generally rely on the exponential map which still encodes local
topological information on the manifold. Of the former we chose the Wrapped Hyperboloid Coupling
(denoted by WHC) [3] for H2 and the recursive circular spline flow (NCPS) [30] for S2. As for
the latter type of models, we chose neural manifold ODEs (NMODE) [21]. Results can be seen in
Figures 4 and 5. Our approach achieves improved performance over NCPS and WHC and performs
on par with NMODE at significantly reduced running times (see section 5.5). Complete experimental
details can be found in Appendix B

5.2 Qualitative experiments: Estimation of real world densities on 2D manifolds

We next examine a scenario of real world densities on a low dimensional manifold with known non-
Euclidean topology. Our datasets contain the locations of 2 types of natural disasters: earthquakes
[12] and fires [1]. These distributions are represented on the sphere S2. They are complex and
multimodal and as such, they are suitable for assessing our model’s usefulness in real world scenarios.
Figure 6 shows our model’s results. The density learned by our model, while relatively diffuse,
captures the modes and general patterns in the data and can serve as a modelling tool which can be
subject to further refinement by domain experts. As baselines, we trained NCPS and NMODEs, the
same models we trained on spherical densities in section 5.1, but could not achieve satisfactory results.
We include them for completeness along with different spherical projections in Appendix C. For a
quantitative measure of the learned density, we drew samples from the model and evaluated their
density in the ambient space with kernel density estimation, using a Gaussian kernel with bandwidth
set to ε = 0.1. For NCPS we used its evaluated density to construct an importance sampler for points
drawn uniformly on the sphere, since the model does not have a generative mode. Results are shown
in Figure 6.

5.3 Qualitative experiments: Lorenz attractor

Next we model densities residing on topologically complex manifolds. Following Brehmer and
Cranmer [4] we illustrate our model’s ability to learn the manifold structure and probability density
of the Lorenz system by training on points along sampled trajectories. The stable manifold of the
system’s trajectories is a genus 2, two-dimensional manifold embedded in R3. For the classical
parameter values, the Lorenz attractor admits a Sinai-Ruelle-Bowen (SRB) measure with support over
the surface of the system [33]. Informally, we can say that initial values “diffuse” over this surface.

To create an i.i.d. data set we generated 100 trajectories using the classical parameter values for the
system, then uniformly sampled positions x(t) ∈ R3 for t ∈ [0, 1000] along these. The procedure
for the creation of the data set matches [4]. Our model takes advantage of rational-quadratic spline

6

Figure 7: The learned manifold and probability density for the Lorenz attractor system. Brighter
color represents areas of higher estimated density. Ground truth shows sampled trajectories from the
Lorenz system.

coupling transformations and models the manifold using four coordinate charts. More details on
architectures and hyperparameter settings can be found in Appendix D.

Fig. 7 shows the manifold and probability density learned by our model andM-flow. Parameterizing
the manifold with multiple charts yields visible advantages as our model is able to capture the
topology faithfully, without any artifacts, even though the surface is self-intersecting. The single
chartedM-flow struggles to accurately reconstruct the manifold, as it tries to cover the surface with
a single coordinate chart, which implies an underlying Euclidean topology.

5.4 Quantitative experiments: Real world particle physics data

Our quantitative experiment focuses on the task of inferring the parameters of a proton-proton
collision process at the Large Hadron Collider. Raw data is usually in the order of millions, but
following common practice among domain experts, we use a vector of 40 features to represent
the data. The model of the process is based on a simulator which generates data x ∈ R40 given
parameters θ ∈ R3 according to an implicit probability distribution p(x|θ). From domain experts we
know that the data resides in a 14-dimensional manifold embedded in R40. Given the observations x
and parameters θ, our task is to infer the posterior distribution over the parameters p(θ|x). Thus, we
train our model as a conditional density estimator to learn the simulator likelihood function.

Our baselines include a Euclidean flow based on rational quadratic spline transformations [9] (RQ-
Flow), theM-flow model, as well as anM-flow variant with an unrestricted encoder denoted by
Me-flow, both of which were proposed by [4]. Furthermore, [4] introduced versions of the models
trained with the SCANDAL method [5], which improves inference. All baselines are composed of 35
coupling layers, interspersed with invertible, LU-decomposed linear transformations. The RQ-Flow
is trained with maximum likelihood, while theM-flow models are trained in two phases, as in [4]
corresponding to the manifold learning phase and the density estimation phase. Our model (MCF) is
composed of 12 coupling layers, interspersed with invertible, LU-decomposed linear transformations
and trained similarly to theM-flow variants. We furthermore introduce a variant of MCF, which
we fine-tune with early stopping on both phases of training. For further details on architectures and
hyperparameters, see Appendix E.

We evaluate our model through a series of metrics. First, we investigate the generative capabilities of
all models by evaluating a series of tests on model samples. These “closure tests” are a weighted
sum of individual constraints encoding relationships (derived from domain knowledge) between
dimensions in the observed vector, taking values in [0, 1], where the closer the value is to 0 the
higher the quality of the samples. Then, we project test samples on the learned manifold and

7

Model sample closure mean reconstruction error log posterior
RQ-Flow 0.0019 ± 0.0001 - -3.94 ± 0.87

RQ-Flow (SCANDAL) 0.0565 ± 0.0059 - -0.49 ± 0.09
M-flow 0.0045 ± 0.0004 0.012 ± 0.001 -1.71 ± 0.30

M-flow (SCANDAL) 0.0045 ± 0.0004 0.011 ± 0.001 0.11 ± 0.04
Me-flow 0.0046 ± 0.0002 0.029 ± 0.001 -1.44 ± 0.34

Me-flow (SCANDAL) 0.0291 ± 0.0010 0.03 ± 0.002 0.14 ± 0.09
MCF [ours] 0.031 ± 0.0024 0.0015 ± 0.0005 -1.02 ± 0.14

MCF (fine-tuned) [ours] 0.084 ± 0.016 0.009 ± 0.002 0.38 ± 0.14

Table 1: Quantitative results on the LHC data. Sample quality is measured by sample closure (lower
is better), mean reconstruction error is measured in the ambient/observation space and indicates
a model’s manifold learning capability (lower is better), while log-posterior score log p(θ|xobs)
measures quality of inference (higher is better).M-flow was proposed by [4], RQ-Flow by [9], while
MCF denotes our approach. Baseline results from [4].

measure the reconstruction error, corresponding to the mean squared L2-norm measured in the
ambient/observation space. This gives us a measure for the manifold learning capabilities of the
models. Finally, we measure the quality of the log posterior inference. Given a set of 20 observed
samples xobs ∼ p(x|θ?) we use all models to evaluate the likelihood in a Metropolis-Hastings
MCMC sampler to generate posterior samples θ ∼ p(θ|xobs). To evaluate the posterior, we then use
kernel density estimation with a Gaussian kernel. We evaluate all models for three different ground
truth parameter points θ?. For more details on the experimental setting of the task, see [4].

Table 1 summarizes results for the the Large Hadron Collider data. While the RQ-Flow learns a good
sampler for the observed data judging by the closure test score, it does not estimate the density well,
as evidenced by the low log posterior estimate. Naive maximum likelihood does not take manifold
topology into account, nor does it incentivize models to learn the shape of the embedded data
submanifold, rather it relies on models with enough capacity to transform the data in the observation
space to a base distribution using invertible maps. To the extent the model manages to learn such
a map, this will result in an adequate data sampler but might concurrently lead to overestimating
the density of off-the-manifold points. Conversely, models that learn the manifold, project points
off-the-manifold onto it, which might yield more accurate density estimates. This is suggested by
the results as models that also learn the manifold, result in much better density estimators. The
single chartedM-flow variants achieve better estimates than the RQ-Flow, albeit with worse sample
quality. The fine-tuned (early-stopped) variant of our model yields comparable results in the manifold
learning task. It results in much better density estimates however, managing to capture a more
complex topology than what is suggested by a single chart covering the whole manifold, namely
Euclidean topology. Models trained with the SCANDAL scheme invariably trade sample quality off
for better density estimates.

5.5 Running times

Modelling the topology of the data manifold yields tangible benefits regarding computation time.
Since learning the topology of Euclidean patches is easier for a model, our approach generally uses
fewer flow layers and parameters than most baselines. Furthermore, with the exception of NCPS and
WHC for the synthetic data sets, convergence times are consistently faster than all other baselines even
when early stopping is used. Table 2 shows the wallclock times of all models. For the experiments
on section 5.1 all models were trained on the CPU since runtimes were significantly faster than on
GPUs. For all other experiments all models were trained on a Titan X (Pascal) GPU. Further details
can be found in Appendix F.

6 Conclusion

We have presented Multi-chart flows, a flow-based generative model for modelling data distributions
on non-Euclidean manifolds. Recent works in this direction either encode the topology of the
target manifold in the model’s architecture, rely on operations that do not scale to moderate and
high dimensions or can, in principle, only learn Euclidean manifolds. In contrast, our model can

8

Datasets Models
MCF (ours) NMODE NCPS

Wrapped normals (S2) 7.21± 0.30 54.28± 4.01 2.69± 0.42
Checkerboard (S2) 3.78± 0.19 50.81± 2.74 8.13± 0.82

MCF (ours) NMODE WHC
Five gaussians (H2) 2.50± 0.05 6.48± 2.89 0.02± 0.0028
Checkerboard (H2) 2.31± 0.17 50.88± 9.29 0.01± 0.0014

MCF (ours) M-flow
Lorenz attractor 12.05± 0.75 35.84± 0.91

MCF (ours) M-flow RQ-Flow
Large Hadron Collider 12.04± 0.08 96.61± 1.93 99.74± 4.71

Table 2: Model wallclock time per dataset (in hours). Computed over 3 training runs with independent
initializations.

generalize to non-Euclidean manifolds, learning both their shape and probability densities residing
on them. Some of the advantages of our model include faster convergence times and better optima
compared to most Euclidean baselines. Shorter convergence times are not surprising since our model
does not need a lot of capacity to learn subsets of the data manifold that have simpler (Euclidean)
topology and optimization is also easier. Models employing ODEs and making use of local geometric
information match and in cases, surpass the performance of our model. This is expected since
geometric operations respect manifold topology, and therefore provide a strong inductive bias. Should
the bias of these models, however, be incorrect it is detrimental to performance as the bias is served as
a hard constraint. Furthermore, these models are inherently at a disadvantage regarding computational
cost, since they rely on sequential solvers and do not take full advantage of parallelization. Against
models with structural topological priors our model is slower both in wall-clock and convergence
time but achieves better optima since it does not rely on classical projection techniques (such as the
cylindrical projection as in the case of NCPS [30]) which do not preserve topology.

Limitations. Our model relies on rational quadratic (RQ) coupling layers and while we consider
the fact that our method is transformation-“agnostic” an advantage, it comes with its own challenges.
Specifically, RQ couplings yield unstable log-determinants if left unchecked. In our experiments
we have tried various strategies for mitigating this, such as penalizing and clipping gradients, as
well as penalizing large log-determinants. All of these methods resulted in similar behaviour and we
generally opted for the fastest one. Furthermore, an assumption we make is that the underlying data
follows a smooth manifold, which might not necessarily be true. In theory our model would have
difficulty modelling a manifold with disconnected components, although in practice it finds a good
smooth approximation as evidenced by the checkerboard synthetic densities in section 5.1. Moreover,
in the LHC experiments we observed the paradoxical phenomenon where higher sample quality
correlates with lower posterior estimates and vice versa. SCANDAL training alleviated this, but it
still trades sample quality off for better posterior estimates. This is certainly not new or exclusive
to our model but we could not provide a convincing explanation in this work. Finally, quantitative
comparisons with other models become harder as different chart parameterizations of manifolds
result in different units for the estimated log-likelihood.

Broader societal impact. While our model is a more fundamental contribution, it is general enough
to be used in more applied scenarios. Specifically, it can be used for learning image manifolds and
indeed, we wish to iterate in this direction in future work. While we do not expect our method
to immediately perform on par with state-of-the-art methods typically used in the generation of
malicious content, it will be part of the broader literature. Given runtime results our method provides
a road map for reducing computation times, and by extension, carbon footprints not just for flow
models but also deep learning in general. We furthermore showed in our experiments that our
approach can provide other disciplines with tools of exploratory and probabilistic analyses for domain
specific problems.

9

7 Acknowledgements

We would like to thank Johann Brehmer, Alison Pouplin, Andrea Dittadi and Didrik Nielsen for
numerous, insightful conversations.

We are grateful to Johann Brehmer and Kyle Cranmer, and Aaron Lou, Derek Lim, Isay Katsman, Leo
Huang and Qingxuang Jiang for making the implementations of [4] and [21] respectively publicly
available. We are furthermore grateful to the authors and maintainers of SciPy [17], NumPy [34],
scikit-learn [27], PyTorch [26] and matplotlib [15].

This work was supported in part by a research grant (15334) from VILLUM FONDEN. This project
has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no 757360).

References
[1] EOSDIS (2020). Active fire data. https://earthdata.nasa.gov/

earth-observation-data/near-real-time/firms/active-fire-data, 2020. Land,
Atmosphere Near real-time Capability for EOS (LANCE) system operated by NASA’s Earth
Science Data and Information System (ESDIS).

[2] Wouter Boomsma, Kanti V Mardia, Charles C Taylor, Jesper Ferkinghoff-Borg, Anders Krogh,
and Thomas Hamelryck. A generative, probabilistic model of local protein structure. Proceed-
ings of the National Academy of Sciences, 105(26):8932–8937, 2008.

[3] Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent
variable modelling with hyperbolic normalizing flows. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 1045–1055, Virtual, 13–18 Jul 2020. PMLR.
URL http://proceedings.mlr.press/v119/bose20a.html.

[4] Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density
estimation. arXiv preprint arXiv:2003.13913, 2020.

[5] Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. Mining gold from implicit
models to improve likelihood-free inference. Proceedings of the National Academy of Sciences,
117(10):5242–5249, 2020.

[6] Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity
constraints with continuously indexed normalising flows. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 2133–2143, Virtual, 13–18 Jul 2020. PMLR.
URL http://proceedings.mlr.press/v119/cornish20a.html.

[7] Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, and Hugo Larochelle. A RAD approach
to deep mixture models. CoRR, abs/1903.07714, 2019. URL http://arxiv.org/abs/1903.
07714.

[8] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32, pages 3140–3150. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf.

[9] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32, pages 7511–7522.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/7ac71d433f282034e088473244df8c02-Paper.pdf.

[10] Luca Falorsi and Patrick Forré. Neural ordinary differential equations on manifolds. arXiv
preprint arXiv:2006.06663, 2020.

10

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
http://proceedings.mlr.press/v119/bose20a.html
http://proceedings.mlr.press/v119/cornish20a.html
http://arxiv.org/abs/1903.07714
http://arxiv.org/abs/1903.07714
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf

[11] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

[12] NOAA National Centers for Environmental Information. Ncei/wds global significant earth-
quake database. https://www.ngdc.noaa.gov/hazard/earthqk.shtml, 2020. National
Geophysical Data Center / World Data Service (NGDC/WDS).

[13] Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian
manifolds. arXiv preprint arXiv:1611.02304, 2016.

[14] Thomas Hamelryck, John T Kent, and Anders Krogh. Sampling realistic protein conformations
using local structural bias. PLoS Comput Biol, 2(9):e131, 2006.

[15] John D Hunter. Matplotlib: A 2d graphics environment. IEEE Annals of the History of
Computing, 9(03):90–95, 2007.

[16] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–
1076, 1989.

[17] Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy: Open source scientific tools for python.
2001.

[18] Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, Hassan Ali Babaie, and Vipin Kumar. Machine
learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge
and Data Engineering, 31(8):1544–1554, 2018.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[21] Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim, and Christo-
pher De Sa. Neural manifold ordinary differential equations. arXiv preprint arXiv:2006.10254,
2020.

[22] Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. arXiv
preprint arXiv:2006.10605, 2020.

[23] Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
importance sampling. ACM Trans. Graph., 38(5), October 2019. ISSN 0730-0301. doi:
10.1145/3341156. URL https://doi.org/10.1145/3341156.

[24] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

[25] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference. pages 1–60,
2019. URL http://arxiv.org/abs/1912.02762.

[26] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[27] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[28] David Peel, William J Whiten, and Geoffrey J McLachlan. Fitting mixtures of kent distributions
to aid in joint set identification. Journal of the American Statistical Association, 96(453):56–63,
2001.

11

https://www.ngdc.noaa.gov/hazard/earthqk.shtml
https://doi.org/10.1145/3341156
http://arxiv.org/abs/1912.02762

[29] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 1530–1538, Lille,
France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/rezende15.
html.

[30] Danilo Jimenez Rezende, George Papamakarios, Sebastien Racaniere, Michael Albergo, Gurtej
Kanwar, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
8083–8092, Virtual, 13–18 Jul 2020. PMLR. URL http://proceedings.mlr.press/v119/
rezende20a.html.

[31] Daniel M Roy, Charles Kemp, Vikash K Mansinghka, and Joshua B Tenenbaum. Learning
annotated hierarchies from relational data. In Advances in neural information processing
systems, pages 1185–1192, 2007.

[32] Mark Steyvers and Joshua B Tenenbaum. The large-scale structure of semantic networks:
Statistical analyses and a model of semantic growth. Cognitive science, 29(1):41–78, 2005.

[33] Warwick Tucker. A rigorous ode solver and smale’s 14th problem. Foundations of Computa-
tional Mathematics, 2(1):53–117, 2002.

[34] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in science & engineering, 13(2):22–30, 2011.

12

http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v119/rezende20a.html
http://proceedings.mlr.press/v119/rezende20a.html

A Appendix

A Proof of the lower bound on the data manifold log likelihood

Proposition 1 The log likelihood on the data manifold log p(x) = log p(u) − 1
2 log det |G(u)| is

bounded from below by L = log p(u)− 1
2 log Tr(J>φ−1(u)Jφ−1(u)).

Proof Denoting the singular values of a matrix by si, we have:

1

2

∑
i

log s2i ≤
1

2
log
∑
i

s2i (11)

−1

2

∑
i

log s2i ≥ −
1

2
log
∑
i

s2i (12)

log p(u)− 1

2

∑
i

log s2i ≥ log p(u)− 1

2
log
∑
i

s2i (13)

log p(x) ≥ log p(u)− 1

2
log
∑
i

s2i (14)

Furthermore for a matrix A, we have:

Tr(A>A) = Tr(U>Σ>V V >ΣU) = Tr(Σ>ΣUU>) = Tr(Σ>Σ) =
∑
i

s2i (15)

with U, V orthogonal matrices and Σ a diagonal matrix containing the singular values of A.

Thus, eq. 14 becomes:

log p(x) ≥ log p(u)− 1

2
log Tr(J>φ−1(u)Jφ−1(u)) = L (16)

(17)

Using Hutchinson’s estimator we can compute the trace efficiently. With Jφ−1 ∈ RD×d and
p(v) = N (0, ID):

L ≈ log p(u)− 1

2
logEp(v)

[
v>J>φ−1(u)Jφ−1(u)v

]
(18)

= log p(u)− 1

2
logEp(v)

[
||v>Jφ||22

]
(19)

B Details on synthetic 2D experiments

Datasets For all target densities in figures 4 and 5, we generated 50000 points for the train set and
10000 points for the validation set. For details on generating the datasets, please see [21].

Architectures Table 3 shows the architecture details for MCF. All flow layers are implemented as
rational quadratic coupling flows. In all cases, our base distribution is a standard normal in the latent
space U .

Baseline implementations are provided by Lou et al. [21] in https://github.com/CUAI/
Neural-Manifold-Ordinary-Differential-Equations.

Training To train MCF we split training in a manifold learning and a maximum likelihood phase
for all datasets. During the former we train for 150 epochs, while during the latter we train for 500
epochs. We used a learning rate of 2 ·10−4 and a batch size of 128. During reconstruction, to stabilize
training, we add a regularization term a = (log det Jφ(x) + log detJφ−1(u))2 to the reconstruction

13

https://github.com/CUAI/Neural-Manifold-Ordinary-Differential-Equations
https://github.com/CUAI/Neural-Manifold-Ordinary-Differential-Equations

Hyperparameters Datasets
Checkerboard (S2) Four wrapped Normals (S2)

Charts 5 4
Chart flow layers 2 6
Base flow layers 2 6

Chart bins 32 6
Base bins 32 6

Spline range [-3, 3] [-6, 6]
Linear transform No random permutation

MLP layers (& units) 2 (100) 2 (64)
Activation ReLU tanh

Checkerboard (H2) Five Gaussians (H2)
Charts 2 2

Chart flow layers 4 2
Base flow layers 2 2

Chart bins 12 6
Base bins 12 32

Spline range [−4, 4] [−4, 4]
Linear transform No No

MLP layers (& units) 2 (64) 2 (100)
Activation ReLU ReLU

Table 3: Architecture details for MCF on all synthetic datasets.

loss, which we multiply by 0.5. During the maximum likelihood phase we clip the gradient norm to
1.

To train NCPS we used a learning rate of 10−3 and a batch size of 200. For the spherical checkerboard
dataset we train for 10000 epochs, while for the four wrapped normals dataset we train for 5000
epochs.

Training WHC proved to be very challenging and we used big batch sizes and slower learning rates in
an attempt to stabilize training. As such, we used a batch size of 500 and a learning rate of 3 · 10−4.
Even so, training still diverged after a number of epochs, so we checkpoint the model and show the
best obtained results in the main text.

For NMODE, on four wrapped normals we used a batch size of 200 and a learning rate of 10−2,
training for 600 epochs. For the spherical checkerboard we used a batch size of 200 and a learning
rate of 10−2, training for 700 epochs. For five gaussians we train for 500 epochs, using a learning
rate of 10−3 and a batch size of 200. Finally, for hyperbolic checkerboard we train for 3000 epochs,
using a learning rate of 10−3 and a batch size of 200.

All models are trained with the Adam optimizer [19]. In general, we chose baseline hyperparameters
such that we can have the fastest possible convergence without sacrificing training stability. Please
note however that this is a different training setting to the one used for NMODE and the other
baselines by Lou et al. [21], as they generated a random batch of points on the manifold for every
iteration, whereas in our case we generate a fixed, modest amount of training points and iterate on
those. We think that while this is a much harder training scenario, it’s also a more realistic one.

C Details on real world 2D experiments

C.1 Experimental details

MCF For both datasets (fires and earthquakes) our model uses 3 coordinate charts to parameterize
the manifold. The chart centers are sampled from a standard normal distribution in the latent space U.
The chart models φ and base model h comprise 2 flow layers each. These are implemented as rational
quadratic coupling layers. We use no linear transformation between the flow layers but alternate
the masking of the vectors passing through the flow as is typically done when using flows on low

14

dimensional vector data. We use 5 bins for the φ and h maps in the range [-4, 4]. Each coupling
transform is parameterized by an MLP with 2 hidden layers. Each hidden layer consists of 50 ReLU
units. The dimensionality of the index variable for CIF is 2. Our base distribution is a standard
normal in the latent space U .

Baselines The architectures of both the NMODE and NCPS baselines are the same as in the
synthetic datasets case.

Datasets The fires dataset consists of 66444 data points, while the earthquakes dataset consists of
5883 data points at the time of writing. We shuffle both datasets and keep 80% for the train sets and
20% for the validation sets.

Training on fires To train our model (MCF) we split training in two phases: manifold learning and
maximum likelihood. During the former we train the model for 200 epochs, while during the latter
we train for 500 epochs. We used the Adam optimizer with a learning rate of 3 · 10−5 and a batch
size of 200. During maximum likelihood training we clipped the gradient norm to 2.

We train NCPS with the Adam optimizer for 3000 epochs with a learning rate of 10−3 and a batch
size of 200.

We train NMODE with the Adam optimizer for 600 epochs with a learning rate 3 · 10−4 and a batch
size of 500.

Training on earthquakes Once again, we train MCF with split training as before. We use 1000
epochs for the manifold learning phase and 3000 epochs for the maximum likelihood phase. We
use the Adam optimizer with a learning rate of 3 · 10−5 and a batch size of 200. During maximum
likelihood training we clipped the gradient norm to 2.

We train NCPS with the Adam optimizer for 10000 epochs with a learning rate of 10−3 and a batch
size of 200.

We train NMODE with the Adam optimizer for 10000 epochs with a learning rate 3 · 10−4 and a
batch size of 500.

For all baselines in both datasets we decay the learning rate every 1/3d of the total epochs with a
scaling factor of 0.1. We found that training was difficult for all models. The hardest model to train
was NMODE even though results for both baselines are generally unsatisfactory (see figure 8). Given
this, in our choice of hyperparameters we attempted to strike a balance between fast convergence
and stable gradient updates. Furthermore, we checkpoint the models to retain the best performing
parameter configuration according to validation results. Finally, regarding MCF, for both datasets we
add a regularization term a = (log det Jφ(x) + log det Jφ−1(u))2 to the reconstruction loss, which
we multiply by 0.3 to stabilize training.

D Details on the Lorenz experiment

MCF Our model uses 4 coordinate charts to parameterize the manifold. The chart centers are
sampled from a standard normal distribution in the latent space U . The chart models φ comprise
3 flow layers, while the base model h comprises 2 flow layers. These are implemented as rational
quadratic coupling layers, interspersed with random feature permutations. We use 5 bins for both the
φ and h maps in the range [−6, 6]. Each coupling transform is parameterized by a residual network
with 2 residual blocks and 2 hidden layers per block. Each hidden layer consists of 64 ReLU units.
The dimensionality of the index variable for CIF is 2. Our base distribution is a standard normal in
the latent space U

M-flow ForM-flow we reproduced the reference architecture given by Brehmer and Cranmer [4].
Both the chart model and the base model comprise 5 rational quadratic coupling layers, interspersed
with random feature permutations. We use 5 bins for both maps in the range [-3, 3]. Each coupling
transform is parameterized by a residual network with 2 residual blocks and 2 hidden layers per block.
Each hidden layer consists of 100 ReLU units.

15

Earthquakes Fires

Figure 8: Density estimation results on the earthquakes and fires data. Robinson projection. Top row:
MCF (ours), middle row: NMODE, bottom row: NCPS

Training Both models were trained on a dataset of 106 samples with split manifold learning
and maximum likelihood training phases. The AdamW optimizer [20] was used in both cases
with a learning rate of 3 · 10−4, cosine annealing and weight decay of 10−4. We use a batch
size of 100. Initially we used 50 epochs for the manifold learning phase and another 50 epochs
and for the maximum likelihood phase but we noticed that our model consistently converged in
about 1/5th of the available epochs for both phases so ultimately we used only 15 epochs for
each training phase for MCF. We checkpoint both models to retain the best performing parameter
configuration according to validation results. To stabilize training we add a regularization term
a = (log det Jφ(x)+log det Jφ−1(u))2 to the reconstruction loss, which we multiply by 0.3. Finally
we clip the gradient norm to 2 during the maximum likelihood phase.

E Details on the Large Hadron Collider experiment

For details on dataset generation, as well as an explanation on the closure tests we refer the interested
reader to [4]. The dataset itself can be found in https://drive.google.com/drive/folders/
13x8lEO8--L8-ORoN_QTUbSC_fRBAdRPT.

MCF Our model uses 4 coordinate charts to parameterize the manifold. The chart centers are
sampled from a standard normal distribution in the latent space U . The chart models φ comprise 4
flow layers, while the base model h comprises 12 layers. These are implemented as rational quadratic
coupling layers, interspersed with LU-decomposed invertible linear transformations. We use 11 bins
for both maps in the range [-10, 10]. Each coupling transform is parameterized by a residual network
with 2 residual blocks of 2 hidden layers per block. Each hidden layer consists of 100 ReLU units.
The dimensionality of the index variable for CIF is 14. Our base distribution is a standard normal in
the latent space U

16

https://drive.google.com/drive/folders/13x8lEO8--L8-ORoN_QTUbSC_fRBAdRPT
https://drive.google.com/drive/folders/13x8lEO8--L8-ORoN_QTUbSC_fRBAdRPT

Baselines To estimate baseline runtimes we run both RQ-flow andM-flow but we note that baseline
results are taken from the paper itself. Both baselines are composed of 35 rational quadratic coupling
layers, interspersed with LU-decomposed invertible linear transformations. ForM-flow, the chart
model φ uses 20 layers and the base model h uses 15 layers. Each coupling transform is parameterized
by a residual network with 2 residual blocks of 2 hidden layers per block. Each hidden layer consists
of 100 ReLU units. All runtime estimations are based on the implementation provided by Brehmer and
Cranmer [4], which can be found in https://github.com/johannbrehmer/manifold-flow.

Training We trained our model on the same dataset as [4], using 106 samples. We used the AdamW
optimizer with a learning rate of 3 · 10−4, cosine annealing and a weight decay of 10−5. We split
our training in two phases, manifold learning and maximum likelihood. We do not multiply terms in
our loss functions with coefficients throughout training as Brehmer and Cranmer [4] do because we
found this often destabilized training. In general, we found that our model converges to better optima
when trained for fewer iterations, so our fine-tuned version of the model is only trained for 20 epochs
with 5 epochs devoted to manifold reconstruction and 15 epochs to density estimation.

Evaluation Our evaluation procedure is identical to [4]. In brief, we generate 3 different datasets
using 3 different parameter points θ1 = (0, 0), θ2 = (0.5, 0) and θ3 = (−1,−1). Each dataset has
15 i.i.d. samples. For each model and each observed dataset, we generate four MCMC chains of
length 750 each, with a Gaussian proposal distribution with mean step size 0.15 and a burn in of 100
steps. Then we obtain kernel density estimates of the log-posterior for each of the 3 parameter points
and report the average value in table 1. Like Brehmer and Cranmer [4] we train 5 instances of our
model with independent initializations, remove the top and bottom value and report the mean over
the remaining runs.

F Details on Runtimes

Tables 4, 5 & 6 show additional (per epoch) runtime measurements for all models and tasks. NCPS
and WHC are faster than our model in per epoch runtimes but converge to worse performing minima.
Our construction is generally faster than most baselines and while it is matched in pure per epoch
runtimes, it often needs much fewer iterations to converge (as in the case of the Lorenz attractor and
the two hyperbolic datasets).

Sphere S2
Dataset Models

MCF NMODE NCPS
Wrapped normals 42.20± 4.30 225± 0.70 3.1± 0.20

Checkerboard 20.17± 1.50 230± 5.60 2.8± 0.60
Hyperboloid H2

Dataset Models
MCF NMODE WHC

Five gaussians 14.62± 0.72 15± 1.75 7± 0.15
Checkerboard 13.86± 2.24 20± 2.15 8.5± 0.30

Table 4: Per epoch runtimes in seconds for synthetic datasets. Measured over 500 epochs.

MCF M-flow
Reconstruction phase 29.09± 1.8 30.00± 0.7

Density phase 28.7± 2.3 29.84± 2.0

Table 5: Per epoch runtimes in minutes for the Lorenz attractor data, measured over 100 epochs.

MCF M-flow RQ-Flow
Reconstruction phase 39.09± 1.8 117.8± 4.7 –

Density phase 32.7± 2.3 110.53± 3.9 121.3± 5.5

Table 6: Per epoch runtimes in minutes for the Large Hadron Collider data, measured over 50 epochs.

17

https://github.com/johannbrehmer/manifold-flow

	1 Introduction
	2 Topological manifolds and smooth structures
	3 Multi-chart Flows
	3.1 Model specification and generative process
	3.2 Inference
	3.3 Introducing a lower bound to the density
	3.4 Training

	4 Related work
	5 Experiments
	5.1 Qualitative experiments: Estimation of synthetic densities on 2D manifolds
	5.2 Qualitative experiments: Estimation of real world densities on 2D manifolds
	5.3 Qualitative experiments: Lorenz attractor
	5.4 Quantitative experiments: Real world particle physics data
	5.5 Running times

	6 Conclusion
	7 Acknowledgements
	A Appendix
	A Proof of the lower bound on the data manifold log likelihood
	B Details on synthetic 2D experiments
	C Details on real world 2D experiments
	C.1 Experimental details

	D Details on the Lorenz experiment
	E Details on the Large Hadron Collider experiment
	F Details on Runtimes

